J. For. Sci., 2021, 67(10):464-476 | DOI: 10.17221/79/2021-JFS

The mycological study of conifers in Tbilisi and its surroundingsOriginal Paper

Irina Danelia1, Nino Zaqariashvili1, Lia Amiranashvili1, Gulnara Badridze*,1,2, Salome Kvitsiani1
1 Department of Microbiology, Plant Genetics and Physiology, Faculty of Agrarian Technologies and Biosystems Engineering, Georgian Technical University, Tbilisi, Georgia
2 Department of Plant Physiology, Institute of Botany, Ilia State University, Tbilisi, Georgia

Extensive microbiological research was carried out in Tbilisi (capital of Georgia) and its surroundings to determine the causes of massive disease and dieback of urban coniferous plantations. The biological material was picked up in June-July 2020 from trees with various degrees of the disease in 42 different localities. 247 conifers (15 species) were examined microbiologically. 1 169 samples of microscopic fungi were isolated. Based on cultural-morphological and molecular-genetic (PCR) studies, 34 strains were identified to the species level, 17 to the genus level, and 1 strain to the family level. Ascomycota were represented by 15 families and 33 species, Basidiomycota by 1 family and 2 species and Zygomycota by 2 families and 2 species. Among the isolated strains, 9 species were clearly dominant and found in all studied coniferous species: Alternaria alternata (Fr.) Keissl, Sphaeropsis sapinea (Fr.) Dyko & B. Button, Epicoccum nigrum Link., Sordaria lappae Potebnia, Curvularia spp., Dothiorella spp, Nothophoma quercina (Sydow & P. Sydow) Q. Chen & L. Cai, Phoma odoratissimi Q. Chen, Didymella aliena (Fries) Q. Chen & L. Cai. It may be supposed that massive activation of pathogenic fungi is the result of weakening of plant immunity on the background of increasing abiotic stresses in Tbilisi over the years; which led to an imbalance between latent pathogens and host plants and eventually to the depressing consequences of trees dieback.

Keywords: conifers; endophytes; latent infection; pathogenic fungi; urban plantations

Published: October 15, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Danelia I, Zaqariashvili N, Amiranashvili L, Badridze G, Kvitsiani S. The mycological study of conifers in Tbilisi and its surroundings. J. For. Sci. 2021;67(10):464-476. doi: 10.17221/79/2021-JFS.
Download citation

References

  1. Abdaladze N., Bregadze N., Ugrekhelidze M. (2019): The city full of diseased trees. Investigative journalists' team. Available at: https://ifact.ge/en/diseased-trees/
  2. Abdullah A.S., Moffat C.S., Lopez-Ruiz F.J., Gibberd M.R., Hamblin J., Zerihun A. (2017): Host-multi-pathogen warfare: Pathogen interactions in co-infected plants. Frontiers jn Plant Science, 8: 1806. Go to original source... Go to PubMed...
  3. Agrios G.N. (2005): Plant Pathology. 5th Ed. Amsterdam, Elsevier Academic Press: 922.
  4. Annual of air pollution on the territory of Georgia (2018): Data from the Environmental Pollution Monitoring Department of the National Environment Agency. Tbilisi, National Environmental Agency: 52. Available at: https://air.gov.ge (in Georgian).
  5. Arnold A.E., Lutzoni F. (2007): Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology, 88: 541-549. Go to original source... Go to PubMed...
  6. Ayoubi N., Soleimani M.J., Zare R., Zafari D. (2017): First report of Curvularia inaequalis and C. spicifera causing leaf blight and fruit rot of strawberry in Iran. Nova Hedwigia, 105: 75-85. Go to original source...
  7. Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., De Wit P., Sánchez-García M., Ebersberger I., de Sousa F., Amend A., Jumpponen A., Unterseher M., Kristiansson E., Abarenkov K., Bertrand Y.J.K., Sanli K., Eriksson K.M., Vik U., Veldre V., Nilsson R.H. (2013): Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 4: 914-919. Go to original source...
  8. Bihon W., Slippers B., Burgess T., Wingfield M.J., Wingfield B.D. (2011): Sources of Diplodia pinea endophytic infections in Pinus patula and P. radiata seedlings in South Africa. Forest Pathology, 41: 370-375. Go to original source...
  9. Brader G., Compant S., Vescio K., Mitter B., Trognitz F., Ma L.J., Sessitsch A. (2017): Ecology and Genomic Insights into plant-pathogenic and plant-nonpathogenic endophytes. Annual Review of Phytopathology, 55: 61-83. Go to original source... Go to PubMed...
  10. Bußkamp J., Langer G.J., Langer E.J. (2020): Sphaeropsis sapinea and fungal endophyte diversity in twigs of Scots pine (Pinus sylvestris) in Germany. Mycological Progress, 19: 985-999. Go to original source...
  11. Carroll G. (1988): Fungal endophytes in stems and leaves: From latent pathogen to mutualistic symbiont. Ecology, 69: 2-9. Go to original source...
  12. Deb D., Khan A., Dey N. (2020): Phoma diseases: Epidemiology and control. Plant Pathology 69: 1203-1217. Go to original source...
  13. Dissanayake A.J., Camporesi E., Hyde K.D., Phillips A.J.L., Fu C.Y., Yan J.Y., Li X.H. (2016): Dothiorella species associated with woody hosts in Italy. Mycosphere, 7: 51-63. Go to original source...
  14. Elizbarashvili M., Elizbarashvili E, Tatishvili M., Elizbarashvili Sh., Meskhia R., Kutaladze N., King L., Keggenhoff I., Khardziani T. (2017): Georgian climate change under global warming conditions. Annals of Agrarian Science, 15: 17-25. Go to original source...
  15. Lagamayo E.N. (2015): Fungal isolation protocol. Available at: www.afwgonline.com/.../fungal-isolation-protocol
  16. Grunden E., Chen W.D., Crane J.L. (2001): Fungi colonizing microsclerotia of Verticillium dahliae in urban environments. Fungal Diversity, 8: 129-141.
  17. IPCC (2012): Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press: 582.
  18. Ivanová H., Pristaš P., Ondrušková E. (2016): Comparison of two Coniochaeta species (C. ligniaria and C. malacotricha) with a new pathogen of black pine needles - Sordaria macrospora. Plant Protection Science, 52: 18-25. Go to original source...
  19. Jentsch A., Kreyling J., Beierkuhnlein C. (2007): A new generation of climate-change experiments: events, not trends. Frontiers in Ecology and the Environment, 5: 365-374. Go to original source...
  20. Jia M., Chen L., Xin H.-L., Zheng C.-J., Rahman K., Han T., Qin L.-P. (2016): A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Frontiers in Microbiology, 7: 906. Go to original source... Go to PubMed...
  21. Kim C.K., Eo J.K., Eom A.H. (2013): Diversity and seasonal variation of endophytic fungi isolated from three conifers in Mt. Taehwa, Korea. Mycobiology, 41: 82-85. Go to original source... Go to PubMed...
  22. Kim J.-C., Choi G.J., Kim H.T., Kim H.-J., Cho K.Y. (2000): Pathogenicity and pyrenocine production of Curvularia inaequalis isolated from zoysia grass. Plant Disease, 84: 684-688. Go to original source... Go to PubMed...
  23. Krizsán K., Papp T., Manikandan P., Shobana C.S., Chandrasekaran M., Vágvölgyi C., Kredics L. (2015): Clinical importance of the genus Curvularia. In: Razzaghi-Abyaneh M, Shams-Ghahfarokhi M., Rai M. (eds): Medical Mycology: Current Trends and Future Prospects. Boca Raton, CRC Press: 147-204.
  24. Kusai N.A., Azmi M.M.Z., Zulkifly S., Yusof M.T., Zainudin N.A.I.M. (2016): Morphological and molecular characterization of Curvularia and related species associated with leaf spot disease of rice in Peninsular Malaysia. Rendiconti Lincei, 27: 205-214. Go to original source...
  25. Linnakoski R., Sugano J., Junttila S., Pulkkinen P., Asiegbu F.O., Forbes K.M. (2017): Effects of water availability on a forestry pathosystem: fungal strain-specific variation in disease severity. Science Reports, 7: 13501. Go to original source... Go to PubMed...
  26. Mehl J.W.M., Slippers B., Roux J., Wingfield M.J. (2013): Cankers and other diseases caused by the Botryosphaeriaceae. In: Gonthier P., Nicolotti G. (eds): Infectious Forest Diseases. Wallingford, CABI: 298-317. Go to original source...
  27. Mishra Y., Singh A., Batra A., Sharma M.M. (2014): Understanding the biodiversity and biological applications of endophytic fungi: A review. Journal of Microbial and Biochemical Technology, S8: 004. Go to original source...
  28. Müller M.M., Hantula J., Wingfield M., Drenkhan R. (2018): Diplodia sapinea found on Scots pine in Finland. Forest Pathology, 49: e12483. Go to original source...
  29. Newton A.C., Fitt B.D., Atkins S.D., Walters D.R., Daniell T.J. (2010): Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends in Microbiology, 18: 365-373. Go to original source... Go to PubMed...
  30. Noble J.A., Crow S.A., Ahearn D.G., Kuhn F.A. (1997): Allergic fungal sinusitis in the southeastern USA: involvement of a new agent Epicoccum nigrurn Ehrenb. ex Schlecht. 1824. Journal of Medical and Veterinary Mycology, 35: 405-409. Go to original source... Go to PubMed...
  31. Pavlov I.N. (2015):Bioticheskie i abioticheskie factory usikhaniya khvoynikh lesov Sibiri i Dalnego Vostoka. Sibirskiy. Ekologocheskiy Jurnal, 4: 537-554. (in Russian)
  32. Phillips A., Alves A., Correia A., Luque J. (2005): Two new species of Botryosphaeria with brown, 1-septate ascospores and Dothiorella anamorphs. Mycologia, 97: 513-529. Go to original source... Go to PubMed...
  33. Ribeiro T.H.C., Fernandes-Brum C.N., de Souza C.R., Dias F.A.N., de Almeida-Junior O., de Albuquerque Regina M., de Oliveira K.K.P., dos Reis G. L., Oliveira L. M., de Paula Fernandes F., Torregrosa L., de Souza J.T., ChalfunJunior A. (2020): Transcriptome analyses suggest that changes in fungal endophyte lifestyle could be involved in grapevine bud necrosis. Scientific Reports, 10: 9514. Go to original source... Go to PubMed...
  34. Rout N., Nanda B.K., Gangopadhyaya S. (1989): Experimental pheohyphomycosis and mycotoxicosis by Curvularia lunata in albino rats. Indian Journal of Pathology and Microbiology, 32: 1-6.
  35. Sayers E.W., Barrett T., Benson D.A., Bolton E., Bryant S.H., Canese K., Chetvernin V., Church D.M., DiCuccio M., Federhen S., Feolo M., Fingerman I.M., Geer L.Y., Helmberg W. et al. (2011): Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 40: D13-D25. Go to original source... Go to PubMed...
  36. Schulz B., Boyle C. (2005): The endophytic continuum. Mycological Research, 109: 661-686. Go to original source... Go to PubMed...
  37. Smahi H., Belhoucine-Guezouli L., Berraf-Tebbal A., Chouih S., Arkam M., Franceschini A., Linaldeddu B.T., Phillips A.J.L. (2017): Molecular characterization and pathogenicity of Diplodia corticola and other Botryosphaeriaceae species associated with canker and dieback of Quercus suber in Algeria. Mycosphere, 8: 1261-1272. Go to original source...
  38. Smith M.D. (2011): An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 99: 656-663. Go to original source...
  39. Stergiopoulos I., Gordon T.R. (2014): Cryptic fungal infections: the hidden agenda of plant pathogens. Frontiers in Plant Science, 5: 506. Go to original source... Go to PubMed...
  40. Strobel G. (2018): The emergence of endophytic microbes and their biological promise. Journal of Fungi, 4: 57. Go to original source... Go to PubMed...
  41. Sutton B.C. (1980): The Coelomycetes. Kew, Commonwealth Mycological Institute: 253. Go to original source...
  42. The Georgian Road Map on Climate Change Adaptation (2016): Available at: http://nala.ge/climatechange/uploads/RoadMap/TheRoadMapEngPre-design_reference191_Final.pdf
  43. Georgia's Third National Communication to the UN Framework Convention on Climate Change (2015): Tbilisi, Ministry of Environment and Natural Resources Protection of Georgia: 262.
  44. Tollenaere C., Susi H., Laine A.L. (2016): Evolutionary and epidemiological implications of multiple infection in plants. Trends in Plant Science, 21: 80-90. Go to original source... Go to PubMed...
  45. Vujanovic V., St-Arnaud M., Barabé D., Thibeault G. (2000): Viability testing of orchid seed and the promotion of colouration and germination. Annals of Botany, 86: 79-86. Go to original source...
  46. Weed A.S., Ayres M.P., Hicke J.A. (2013): Consequences of climate change for biotic disturbances in North American forests. Ecological Monographs, 83: 441-470. Go to original source...
  47. White T.J., Bruns T., Lee S., Taylor J. (1990): Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J. (eds): PCR Protocols. A Guide to Methods and Applications. San Diego, Academic Press: 315-322. Go to original source...
  48. Zhang Z., Schwartz S., Wagner L., Miller W. (2000): A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7: 203-214. Go to original source... Go to PubMed...
  49. Zheng W., Lehmann A., Ryo M., Vályi K.K., Rillig M.C. (2020): Growth rate trades off with enzymatic investment in soil filamentous fungi. Scientific Reports, 10: 11013. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.