J. For. Sci., 2021, 67(2):80-86 | DOI: 10.17221/73/2020-JFS

Effect of the standard levels of forest road segments on soil lossOriginal Paper

Ghaffar Yolmeh1, Aidin Parsakhoo*,1, Vahedberdi Sheikh2, Jahangir Mohamadi1
1 Department of Forestry, Faculty of Forest Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Department of Watershed management, Faculty of Rangeland and Watershed, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Roads with the low standard level are often more susceptible to soil loss and production of sediment during rainfall events. The main aims of this research were to investigate the relationships between the standard level of the road and soil loss and determine the most effective road attributes in soil loss. Therefore, 30 road segments were selected in Bahramnia forest district, Golestan Province. These segments were classified into low standard, medium standard and high standard levels based on longitudinal slope, coverage on cut slopes, distance from runoff origin to culvert, traffic volume, and surfacing quality. A rubber bar was installed at the end of each segment to divert runoff into a sediment trap. In each trap, a series of wooden pins marked the locations for repeated elevation measurements of trapped sediment. Sediment volume was measured after each rainfall event. Results of the study showed that the most effective road attributes in soil loss were distance from runoff origin to trap and depth of ditch. Soil loss from road segments increased with the decreasing standard level of segments but this relationship was moderately strong (correlation coefficient: -0.45). An average amount of soil loss from low level standard road segments was 6.56 t.ha-1.year-1 while an amount of soil loss for high level standard roads was 2.66 t.ha-1.year-1. Indeed, by improving the road attributes and standard level, less sediment is produced from road segments.

Keywords: sediment trap; rainfall duration-intensity; road standards; runoff; Bahramnia forest

Published: February 8, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Yolmeh G, Parsakhoo A, Sheikh V, Mohamadi J. Effect of the standard levels of forest road segments on soil loss. J. For. Sci. 2021;67(2):80-86. doi: 10.17221/73/2020-JFS.
Download citation

References

  1. Afzalimehr H., Dey S. (2009): Influence of bank vegetation and gravel bed on velocity and Reynolds stress distributions. International Journal of Sediment Research, 24: 236-246. Go to original source...
  2. Aust W.M., Bolding M.C., Barrett S.M. (2015): Best management practices for low-volume forest roads in the Piedmont region: Summary and implications of research. Transportation Research Record: Journal of Transportation Research Board, 2472: 51-55. Go to original source...
  3. Broda J., Gawlowski A., Rom M., Laszczak R., Mitka A., Przybylo S. (2016): Innovative geotextiles for reinforcement of roadside ditch. Tekstilec, 59: 115-120. Go to original source...
  4. Brown K.R., Aust W.M., McGuire K.J. (2013): Sediment delivery from bare and graveled forest road stream crossing approaches in the Virginia Piedmont. Forest Ecology and Management, 310: 836-846. Go to original source...
  5. Cao L., Zhang K., Zhang W. (2009): Detachment of road surface soil by flowing water. Catena, 76: 155-162. Go to original source...
  6. Croke J., Mockler S., Fogarty P., Takken I. (2005): Sediment concentration changes in runoff pathways from a forest road network and the resultant spatial pattern of catchment connectivity. Geomorphology, 68: 257-268. Go to original source...
  7. Dymond S.F., Aust W.M., Prisley S.P., Eisenbies M.H., Vose J.M. (2014): Application of a distributed process-based hydrologic model to estimate the effects of forest road density on storm flows in the southern Appalachians. Forest Science, 60: 1213-1223. Go to original source...
  8. Foltz R.B., Copeland N.S., Elliot W.J. (2009): Reopening abandoned forest roads in Northern Idaho, USA: Quantification of runoff, sediment concentration, infiltration, and interrill erosion parameters. Journal of Environmental Management, 90: 2542-2550. Go to original source... Go to PubMed...
  9. Jia Z., Chen C., Luo W., Zou J., Tang Y. (2019): Hydraulic conditions affect pollutant removal efficiency in distributed ditches and ponds in agricultural landscapes. Science of the Total Environment, 649: 712-721. Go to original source... Go to PubMed...
  10. Jones J.I., Murphy J.F., Collins A.L., Sear D.A., Naden P.S., Armitage P.D. (2011): The impact of fine sediment on macro-invertebrates. River Research and Applications, 28: 1055-1071. Go to original source...
  11. Jordán-López A., Martínez-Zavala L., Bellinfante N. (2009): Impact of different parts of unpaved forest roads on runoff and sediment yield in a Mediterranean area. Science of the Total Environment, 407: 937-944. Go to original source... Go to PubMed...
  12. Lang A.J. (2016): Soil Erosion from Forest Haul Roads at Stream Crossings as Influenced by Road Attributes. [Doctor Thesis.], Blacksburg, Faculty of the Virginia Polytechnic Institute and State University, 158p.
  13. Luce C.H., Black T.A. (1999): Sediment production from forest roads in western Oregon. Water Resources Research, 35: 2561-2570. Go to original source...
  14. Madjnounian B., Nikooy M., Mahdavi M. (2005): Cross drainage design of forest road in Shafarood basin, Guilan Province. Iranian Journal of Natural Resources, 58: 339-350. (in Persian)
  15. Madjnounian B., Abdi E., Zobeiri M., Puya K. (2010): Monitoring the conditions of forest road network compared to the standards (case study: Namkhaneh district of Kheyrood forest). Journal of Forest and Wood Products, 63: 177-186. (in Persian)
  16. Mohammadi J., Shataee Sh., Namiranian M. (2014): Comparison of quantitative characteristics of forests structure and composition in natural and managed forest stands. Journal of Wood and Forest Sciences Technology, 21: 65-83. (in Persian)
  17. Moqadamirad M., Abdi E., Mohsenisavari M., Rouhani H., Majnounian B. (2013): Effect of the slope of forest roads on runoff and sediment yield (Case study: Azadshahr Kouhmian forest). Journal of Forest and Wood Product, 66: 389-399. (in Persian)
  18. Mostafa M., Shataee Sh., Lotfalian M., Sadoddin A. (2016): Comparison of geometric characterizes Shehel-chay forest watershed roads with rural road standards with an emphasis of runoff product. Journal of Wood & Forest Science and Technology, 23: 123-145. (in Persian)
  19. Nearing M.A., Bradford J.M., Parker S.C. (1991): Soil detachment by shallow flow at low slopes. Soil Science Society of American Journal, 55: 339-344. Go to original source...
  20. Robichaud P.R., Brown R.E. (2002): Silt Fences: an Economic Technique for Measuring Hillslope Soil Erosion. USDA Forest Service General Technical Report RMRS-GTR-95, Rocky Mountain Research Station, Fort Collins: 24. Go to original source...
  21. Sheridan G.J., Noske P.J. (2007): Catchment-scale contribution of forest roads to stream exports of sediment, phosphorus and nitrogen. Hydrological Processes 21: 3107-3122. Go to original source...
  22. Streeter M.T., Schilling K.E., Clair M.St. (2019): Soil sedimentation and quality within the roadside ditches of an agricultural watershed. Science of the Total Environment, 657: 1432-1440. Go to original source... Go to PubMed...
  23. Surfleet C.G., Skaugset A.E., Meadows M.W. (2011): Road runoff and sediment sampling for determining road sediment yield at the watershed scale. Canadian Journal of Forest Research, 41: 1970-1980. Go to original source...
  24. Vymazal J., Březinová T.D. (2018): Removal of nutrients, organics and suspended solids in vegetated agricultural drainage ditch. Ecological Engineering, 118: 97-103. Go to original source...
  25. Wischmeier W.H., Smith D.D. (1958): Rainfall energy and its relationship to soil loss. Transactions, American Geophysical Union, 39: 285-291. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.