J. For. Sci., 2020, 66(1):9-21 | DOI: 10.17221/66/2019-JFS

Work sampling and work process optimization in sonic and electrical resistance tree tomographyOriginal Paper

Martin Baláš*, Josef Gallo, Ivan Kuneš
Department of Silviculture, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic

Using non-destructive techniques in investigating tree stem rots is a modern approach in arboriculture and urban forestry. We used PiCUS® 3 Sonic tomograph (SoT) and TreeTronic® electrical resistance tomograph (ERT) to inspect the health status of urban and park trees. The process of setting up the device and measuring is time demanding as it requires numerous delicate operations. The aim of the study was to evaluate the time needed for measurement and to propose an optimal workflow. The results of work sampling suggest that scanning of one average-difficulty tree by SoT and ERT resistance tomography takes an average approximately 52 min (when one operator measures one scan), and approx. 37 min (when two operators measure a queue of trees). Working in two-person-team is moderately more efficient. Typically, the overall costs of one scan are approximately EUR 25-30 (~ CZK 650-780), depending on many variables.

Keywords: arboriculture; job sequencing; PiCUS tree tomography; tree risk management; trunk decay; urban forestry

Published: January 31, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Baláš M, Gallo J, Kuneš I. Work sampling and work process optimization in sonic and electrical resistance tree tomography. J. For. Sci. 2020;66(1):9-21. doi: 10.17221/66/2019-JFS.
Download citation

References

  1. Arciniegas A., Prieto F., Brancheriau L., Lasaygues P. (2014): Literature review of acoustic and ultrasonic tomography in standing trees. Trees, 28: 1559-1567. Go to original source...
  2. Arciniegas A., Brancheriau L., Lasaygues P. (2015): Tomography in standing trees: revisiting the determination of acoustic wave velocity. Annals of Forest Science, 72: 685-691. Go to original source...
  3. Argus Electronic (2013): PiCUS Tree Inspection Equipment. Argus Electronic GmbH. Available at http://www.arguselectronic.de/en/tree-inspection/support/pdf-archive/picus-tree-inspection-equipment-at-a-glance-english (accessed Jun 31, 2018).
  4. Baláš M., Kuneš I., Šrenk M., Koňasová T. (2011): Časová a pracovní náročnost výsadby prostokořenných odrostků listnatých dřevin v horských polohách. Zprávy lesnického výzkumu, 56: 235-243.
  5. Bieker D., Rust S. (2010): Non-destructive estimation of sapwood and heartwood width in Scots pine (Pinus sylvestris L.). Silva Fennica, 44: 267-273. Go to original source...
  6. Brazee N.J., Marra R.E., Göcke L., van Wassenaer P. (2011): Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography. Forestry, 84: 33-39. Go to original source...
  7. CSO (2019): Average wages - 3rd quarter of 2018. Quick information, code: 110031-18. Czech Statistical Office, Prague. Available at https://www.czso.cz/csu/czso/ari/average-wages-3-quarter-of-2018 (accessed Feb 7, 2019).
  8. Deflorio G., Fink S., Schwarze F.W. (2008): Detection of incipient decay in tree stems with sonic tomography after wounding and fungal inoculation. Wood Science and Technology, 42: 117-132. Go to original source...
  9. Ellis D., Ellis T. (2013): Tree tomography - From a consulting arborist's perspective: Part 1. Western Arborist, 39: 46-52.
  10. Ellis D., Ellis T. (2014): Tree tomography - From a consulting arborist's perspective: Part 2. Western Arborist, 40: 53-55.
  11. Feng H., Li G., Wang X. (2014): Tomographic image reconstruction using an interpolation method for tree decay detection. BioResources, 9: 3248-3263. Go to original source...
  12. Gallo J., Baláš M., Nováková O., Kuneš I. (2014): The use of sonic and electrical impedance tomography for identification of internal tree defects. In: Štefančík I. (ed.): Proceedings of Central European Silviculture: Silviculture in Central Europe. Zvolen, Národné lesnícke centrum, September 8-10, 2014: 150-156.
  13. Gilbert G.S., Ballesteros J.O., Barrios-Rodriguez C.A., Bonadies E.F., Cedeño-Sánchez M.L., Fossatti-Caballero N.J., Trejos-Rodríguez M.M., Pérez-Suñiga J.M., Holub-Young K.S., Henn L.A.W., Thompson J.B., García-López C.G., Romo A.C., Johnston D.C., Barrick P.B., Jordan F.A., Hershcovich S., Russo N., Sánchez J.D., Fábrega J.P., Lumpkin R., McWilliams H.A., Chester K.N., Burgos A.C., Wong E.B., Diab J.H., Renteria S.A., Harrower J.T., Hooton D.A., Glenn T.C., Faircloth B.C., Hubbell S.P. (2016): Use of sonic tomography to detect and quantify wood decay in living trees. Applications in Plant Sciences, 4(12): 1600060. Go to original source... Go to PubMed...
  14. Gilbert E.A., Smiley E.T. (2004): Picus Sonic Tomography for the quantification of decay in white oak (Quercus alba) and Hickory (Carya spp.). Journal of Arboriculture, 30: 277-281. Go to original source...
  15. Göcke L., Rust S., Weihs U., Günther T., Rücker C. (2008): Combining sonic and electrical impedance tomography for the nondestructive testing of trees. Western Arborist, 34: 1-11.
  16. Göcke L. (2017): PiCUS Sonic Tomograph. Software Manual Q74. Manual version: February 1st, 2017. Argus Electronic GmbH, 92 p. Available at http://www.argus-electronic.de/en/tree-inspection/support/pdf-archive/picus-sonictomograph-manual-of-pc-software-q74-release-datefebruary-1st-2017 (accessed Jul 31, 2018).
  17. Grabowski J., Pempera J. (2000): Sequencing of jobs in some production system. European Journal of Operational Research, 125: 535-550. Go to original source...
  18. Guyot A., Ostergaard K.T., Lenkopane M., Fan J., Lockington D.A. (2013): Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers. Tree Physiology, 33: 187-194. Go to original source... Go to PubMed...
  19. Heikura T., Terho M., Perttunen J., Sievänen R. (2008): A computer-based tool to link decay information to 3D architecture of urban trees. Urban Forestry and Urban Greening, 7: 233-239. Go to original source...
  20. Helliwell D.R. (2007): A short note on effects of boring holes in trees. Arboricultural Journal, 30: 245-248. Go to original source...
  21. Humplík P., Čermák P., Žid T. (2016): Electrical impedance tomography for decay diagnostics of Norway spruce (Picea abies): possibilities and opportunities. Silva Fennica, 50: 1, article id 1341. Go to original source...
  22. Kazemi-Najafi S., Shalbafan A., Ebrahimi G. (2009): Internal decay assessment in standing beech trees using ultrasonic velocity measurement. European Journal of Forest Research, 128: 345-350. Go to original source...
  23. Koeser A.K., Hauer R.J., Klein R.W., Miesbauer J.W. (2017): Assessment of likelihood of failure using limited visual, basic, and advanced assessment techniques. Urban Forestry and Urban Greening, 24: 71-79. Go to original source...
  24. Leong E.-Ch., Burcham D.C., Fong Y.-K. (2012): A purposeful classification of tree decay detection tools. Arboricultural Journal, 34: 91-115. Go to original source...
  25. Li G., Wang X., Feng H., Wiedenbeck J., Ross R.J. (2014): Analysis of wave velocity patterns in black cherry trees and its effect on internal decay detection. Computers and Electronics in Agriculture, 104: 32-39. Go to original source...
  26. Lin Ch.-J., Yang T.-H. (2015): Detection of acoustic velocity and electrical resistance tomographies for evaluation of peripheral-inner wood demarcation in urban royal palms. Urban Forestry and Urban Greening, 14: 583-589. Go to original source...
  27. MoLSA (2019): Informace o minimální mzdě od 1. ledna 2019 (Information about minimal wage from January 1st, 2019). Ministry of Labour and Social Affairs of the Czech Republic, Prague. Available at https://www.mpsv.cz/files/clanky/34725/Informace_o_MMe_od_1_ledna_2019_na_web_MPSV.pdf. (accessed February 7, 2019).
  28. Nicolotti G., Socco L.V., Martinis R., Godio A., Sambuelli L. (2003): Application and comparison of three tomographic techniques for detection of decay in trees. Journal of Arboriculture, 29: 66-78. Go to original source...
  29. Niemtur S., Chomicz E., Kapsa M. (2014): Occurrence of the silver fir (Abies alba Mill.) butt rot in protected areas. Leśne Prace Badawcze, 75: 343-352. Go to original source...
  30. Oh J.K., Lee J.J. (2014): Feasibility of ultrasonic spectral analysis for detecting insect damage in wooden cultural heritage. Journal of Wood Science, 60: 21-29. Go to original source...
  31. Ostrovský R., Kobza M., Gažo J. (2017): Extensively damaged trees tested with acoustic tomography considering tree stability in urban greenery. Trees, 31: 1015-1023. Go to original source...
  32. Rabe C., Ferner D., Fink S., Schwarze F.W.M.R. (2004): Detection of decay in trees with stress waves and interpretation of acoustic tomograms. Arboricultural Journal, 28: 3-19. Go to original source...
  33. Raz T., Barnes R., Dvir D. (2003): A critical look at critical chain project management. Project Management Journal, 34: 24-32. Go to original source...
  34. Rand G.K. (2000): Critical chain: the theory of constraints applied to project management. International Journal of Project Management, 18: 173-177. Go to original source...
  35. Ross R.J. (Ed.) (2015): Nondestructive evaluation of wood. General Technical Report FPL-GTR-238. Madison, WI: U.S., Department of Agriculture, Forest Service, Forest Products Laboratory.
  36. Unterwieser H., Schickhofer G. (2011): Influence of moisture content of wood on sound velocity and dynamic MOE of natural frequency- and ultrasonic runtime measurement. European Journal of Wood and Wood Products, 69: 171-181. Go to original source...
  37. Wang X., Allison R.B. (2008): Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling. Arboriculture and Urban Forestry, 34: 1-4. Go to original source...
  38. Wang X., Wiedenbeck J., Liang S. (2009): Acoustic tomography for decay detection in black cherry trees. Wood and Fiber Science, 41: 127-137.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.