J. For. Sci., 2019, 65(2):51-60 | DOI: 10.17221/135/2018-JFS

Interception and soil water relation in Norway spruce stands of different age during the contrasting vegetation seasons of 2017 and 2018Original Paper

Vít ©rámek*, Kateřina Neudertová Hellebrandová, Věra Fadrhonsová
Forestry and Game Management Research Institute, Jíloviątě-Strnady, Czech Republic

Interception, soil moisture and soil water potential were observed in four Norway spruce stands of different age in two subsequent vegetation seasons 2017 and 2018. Vegetation season 2018 can be characterized as being abnormally hot and dry with only 66% of precipitation in comparison with normal conditions. The interception of spruce increased with the stand age and its dimensions, ranging between 16 and 48% in 2017 and in the majority of stands even increasing in 2018. The soil moisture significantly decreased during the vegetation season 2018, with soil water potential close to the permanent wilting point (-1.5 MPa) for a substantial part of the monitored period. Differences between individual stands were observed in terms of the soil water potential (SWP) development which does not follow the interception patterns suggesting that the stand transpiration is a driving factor responsible for the soil water budget. In all stands, with the exception of the oldest one, the SWP of the upper soil horizon was less than 1.5 MPa for more than 80 days. In such extreme conditions the drought would negatively influence any Norway spruce stand regardless of its age or structure.

Keywords: water balance; precipitation; throughfall; soil moisture; drought episodes

Published: February 28, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
©rámek V, Neudertová Hellebrandová K, Fadrhonsová V. Interception and soil water relation in Norway spruce stands of different age during the contrasting vegetation seasons of 2017 and 2018. J. For. Sci. 2019;65(2):51-60. doi: 10.17221/135/2018-JFS.
Download citation

References

  1. Barbier S., Balandier P., Gosselin F. (2009): Influence of several tree traits on rainfall partitioning in temperate and boreal forests: A review. Annals of Forest Science, 66: 602. doi: 10.1051/forest/2009041 Go to original source...
  2. Braun S., Remund J., Rihm B. (2015): Indikatoren zur Schätzung des Trockenheits-risikos in Buchen- und Fichtenwäldern. Schweizerische Zeitschrift für Forstwesen, 6: 361-371. Go to original source...
  3. Černohous V., ©vihla V., ©ach F. (2018): Projevy sucha ve smrkové tyčovině v létě 2015. Zprávy lesnického výzkumu, 63: 10-19.
  4. Crhová L., Čekal R., Černá L., Grüsserová P., Kimlová M., ©těpánková B., Vrabec M. (2018): Roční zpráva o hydrometeorologické situaci v České republice 2017. Prague, Český hydrometeorologický ústav: 37.
  5. Dohnal M., Černý T., Votrubová J., Tesař M. (2014): Rainfall interception and spatial variability of throughfall in spruce stand. Journal of Hydrology and Hydromechanics, 62: 277-284. Go to original source...
  6. Gash J.H.C., Wright I.R., Lloyd C.R. (1980): Comparative estimates of interception loss from three coniferous forests in Great Britain. Journal of Hydrology, 48: 89-105. Go to original source...
  7. Gebhardt T., Häberle K.H., Matyssek R., Schulz C., Ammer C. (2014): The more, the better? Water relations of Norway spruce stands after progressive thinning. Agricultural and Forest Meteorology, 197: 235-243. Go to original source...
  8. Granier A., Reichstein M., Bréda N., Janssens I.A., Falge E., Ciais P., Grünwald T., Aubinet M., Berbigier P., Bernhofer C., Buchmann N., Facini O., Grassi G., Heinesch B., Ilvesniemi H., Keronen P., Knohl A., Köstner B., Lagergren F., Lindroth A. et al. (2007): Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143: 123-145.
  9. Grelle A., Lundberg A., Lindrooth A., Morén A.S., Ciencala E. (1997): Evaporation components of a boreal forests: Variations during the growing season. Journal of Hydrology, 197: 70-87. Go to original source...
  10. Herbst M., Rosier P.T.V., McNeil D.D., Harding R.J., Gowing D.J. (2008): Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest. Agricultural and Forest Meteorology, 148: 1655-1667. Go to original source...
  11. Holuąa J., Liąka J. (2002): Hypotéza chřadnutí a odumírání smrkových porostů ve Slezsku (Česká republika). Zprávy lesnického výzkumu, 47: 9-15.
  12. Holuąa J., Lubojacký J., Čurn V., Tonka T., Lukáąová K., Horák J. (2018): Combined effects of drought stress and Armillaria infection on tree mortality in Norway spruce plantations. Forest Ecology and Management, 427: 434-445. Go to original source...
  13. Johnson R.C. (1990): The interception, throughfall and stemflow in a forest highland in Scotland and the comparison with other upland forests in the UK. Journal of Hydrology, 118: 281-287. Go to original source...
  14. Keim R.F., Link T.E. (2018): Linked spatial variability of throughfall amount and intensity during rainfall in a coniferous forest. Agricultural and Forest Meteorology, 248: 15-21. Go to original source...
  15. Krečmer V. (1968): K intercepci sráľek ve středohorské smrčině. Opera Contortica, 5: 83-96.
  16. Lochman V., Fadrhonsová V., Bíba M. (2005): Water chemistry development of surface sources in the ®elivka area with regard to air pollution load and management in the catchment. Communicationes Instituti Forestalis Bohemicae, 21: 53-74.
  17. Minďáą J., Bartík M., ©kvareninová J., Repiský R. (2018): Functional effects of forest ecosystems on water cycle - Slovakia case study. Journal of Forest Science, 64: 331-339. Go to original source...
  18. Ministry of Agriculture of the Czech Republic (2017): Zpráva o stavu lesa a lesního hospodářství České republiky v roce 2016. Prague, Ministry of Agriculture of the Czech Republic: 128.
  19. Ozolincius R., Stakenas V., Varnagiryte-Kabasinskiene I., Buozyte R. (2009): Artificial drought in Scots pine stands: Effects on soil, ground vegetation and tree condition. Annales Botanici Fennici, 46: 299-307. Go to original source...
  20. Rötzer T., Häberle K.H., Kallenbach C., Matyssek R., Schutze G., Pretzsch H. (2017): Tree species and size drive water consumption of beech/spruce forests - a simulation study highlighting growth under water limitation. Plant and Soil, 418: 337-356. Go to original source...
  21. Rutter A.J., Morton A.J., Robins P.C. (1975): A predictive model of rainfall interception in forest. II. Generalization of the model and comparison with observation in some coniferous and hardwood stands. Journal of Applied Ecology, 12: 367-380. Go to original source...
  22. Schwärzel K., Menzer A., Clausnitzer F., Spank U., Häntzschel J., Grünwald T., Köstner B., Bernhofer C., Feger K.H. (2009): Soil water content measurements deliver reliable estimates of water fluxes: A comparative study in beech and spruce stand in the Tharandt forest (Saxony, Germany). Agricultural and Forest Meteorology, 149: 1994-2006. Go to original source...
  23. Seidl R., Müller J., Hothorn T., Bassler C., Heurich M., Kautz M. (2016): Small beetle, large-scale drivers: How regional and landscape factors affect outbreaks of the European spruce bark beetle. Journal of Applied Ecology, 53: 530-540. Go to original source... Go to PubMed...
  24. Seidling W. (2007): Signals of summer drought in crown condition data from the German Level I network. European Journal of Forest Research, 126: 529-544. Go to original source...
  25. ©rámek V., Neudertová Hellebrandová K. (2016): Mapy ohroľení smrkových porostů suchem jako nástroj identifikace rizikových oblastí. Zprávy lesnického výzkumu, 61: 305-309.
  26. ©rámek V., Vejpustková M., Novotný R., Hellebrandová K. (2008): Yellowing of Norway spruce stands in the Silesian Beskids - damage extent and dynamics. Journal of Forest Science, 54: 55-63. Go to original source...
  27. ©rámek V., Vejpustková M., Buriánek V., Fabiánek P., Fadrhonsová V. (2016): Projevy sucha 2015 na plochách monitoringu zdravotního stavu lesů ICP Forests. In: Kníľek M. (ed.): ©kodliví činitelé v lesích Česka 2015/2016 - vliv sucha na stav lesních porostů. Sborník referátů z celostátního semináře s mezinárodní účastí, Průhonice, Apr 14, 2016: 47-50.
  28. Staelens J., De Schrijver A., Verheyen K., Verhoest N.E.C. (2008): Rainfall partitioning into throughfall, stemflow and interception within a single beech (Fagus sylvatica L.) canopy: Influence of foliation, rain event characteristics, and meteorology. Hydrological Processes, 22: 33-45. Go to original source...
  29. Teklehaimanot Z., Jarvis P.G. (1991): Direct measurement of evaporation of intercepted water from forest canopies. Journal of Applied Ecology, 28: 603-618. Go to original source...
  30. Temperli C., Bugmann H., Elkin C. (2012): Adaptive management for competing forest goods and services under climate change. Ecological Applications, 22: 2065-2077. Go to original source... Go to PubMed...
  31. Tolasz R., Čekal R., ©káchová H., Vlasáková L. (2019): Rok 2018 v Česku. Available at http://www.infomet.cz/index.php?id=read&idd=1547039890
  32. Tumajer J., Altman J., ©těpánek P., Treml V., Doleľal J., Ciencala E. (2017): Increasing moisture limitation of Norway spruce in Central Europe revealed by forward modelling of tree growth in tree-ring network. Agriculture and Forest Meteorology, 247: 56-64. Go to original source...
  33. van Dijk A.I.J.M., Gash J.H., van Gorsel E., Blanken P.D., Cescati A., Emmel C., Gielen B., Harman I.N., Kiely G., Merbold L., Montagnani L., Moors E., Sottocornola M., Varlagin A., Wiliams C.A., Wohlfart G. (2015): Rainfall interception and the coupled surface water and energy balance. Agricultural and Forest Meteorology, 214-215: 402-415. Go to original source...
  34. Vose J.M., Miniat C.F., Luce C.H., Asbjornsen H., Caldwell P.V., Campbell J.L., Grant G.E., Isaak D.J., Loheide S.P., Sun G. (2016): Ecohydrological implications of drought for forests in the United States. Forest Ecology and Management, 380: 335-345. Go to original source...
  35. Waring R.H., Running S.W. (2007): Water cycle. In: Forest Ecosystems: Analysis at Multiple Scales. 3rd Ed. London, Academic Press: 19-57. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.