J. For. Sci., 2018, 64(11):455-468 | DOI: 10.17221/112/2018-JFS

LaiPen LP 100 - a new device for estimating forest ecosystem leaf area index compared to the etalon: A methodologic case studyOriginal Paper

Jakub ČERNÝ*,1,2, Jan KREJZA3, 4, Radek POKORNÝ2, Pavel BEDNÁŘ1
1 Forestry and Game Management Research Institute, Strnady, Opočno Research Station, Opočno, Czech Republic
2 Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
3 Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic 4 Centre MendelGlobe, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic

Fast and precise leaf area index (LAI) estimation of a forest stand is frequently needed for a wide range of ecological studies. In the presented study, we compared side-by-side two instruments for performing LAI estimation (i.e. LaiPen LP 100 as a "newly developed device" and LAI-2200 PCA as the "world standard"), both based on indirect optical methods for performing LAI estimation in pure Norway spruce (Picea abies (Linnaeus) H. Karsten) stands under different thinning treatments. LAI values estimated by LaiPen LP 100 were approximate 5.8% lower compared to those measured by LAI-2200 PCA when averaging all collected data regardless of the thinning type. Nevertheless, when we considered the differences among LAI values at each measurement point within a regular grid, LaiPen LP 100 overestimated LAI values compared to those from LAI-2200 PCA on average by 1.4%. Therefore, both instruments are comparable. Similar LAI values between thinning from above (A) and thinning from below (B) approaches were indirectly detected by both instruments. The highest values of canopy production index and leaf area efficiency were observed within the stand thinned from above (plot A).

Keywords: LAI-2200 PCA; indirect LAI; Norway spruce; thinning; canopy production index; leaf area efficiency

Published: November 30, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ČERNÝ J, KREJZA J, POKORNÝ R, BEDNÁŘ P. LaiPen LP 100 - a new device for estimating forest ecosystem leaf area index compared to the etalon: A methodologic case study. J. For. Sci. 2018;64(11):455-468. doi: 10.17221/112/2018-JFS.
Download citation

References

  1. Albrechtová J., Kupková L., Campbell P.K.E., Rock B.N., Cudlín P., Červená L., Fárová K., Havránek F., Chmelíková E., Edwards Jonášová M., Kopačková V., Krása P., Kubínová Z., Lhotáková Z., Liška J., Melichar V., Mišurec J., Moravec I., Neuwirthová E., Novák J., Potůčková M., Slodičák M., Šrámek V. (2017): Metody hodnocení fyziologického stavu smrkových porostů. 1st Ed. Prague, Česká geografická společnost: 401.
  2. Barr A.G., Black T.A., Hogg E.H., Kljun N., Morgenstern K., Nesic Z. (2004): Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agricultural and Forest Meteorology, 126: 237-255. Go to original source...
  3. Barták M., Dvořák V., Hudcová L. (1993): Rozložení biomasy jehlic v korunové vrstvě smrkového porostu. LesnictvíForestry, 39: 273-281.
  4. Bequet R. (2011): Environmental determinants of the temporal and spatial variability in leaf area index of Fagus sylvatica L., Quercus robur L., and Pinus sylvestris L. [Ph.D. Thesis.] Antwerpen, University of Antwerp: 105.
  5. Bréda N.J.J. (2003): Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. Journal of Experimental Botany, 54: 2403-2417. Go to original source... Go to PubMed...
  6. Bréda N.J.J., Granier A. (1996): Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Annals of Forest Science, 53: 521-536. Go to original source...
  7. Campbell G.S., Norman J.M. (1989): The description and measurement of plant canopy structure. In: Russell G., Marshall B., Jarvis P.G. (eds): Plant Canopies: Their Growth, Form, and Function. Cambridge, Cambridge University Press: 1-19. Go to original source...
  8. Carroll G.L. (1980): Forest canopies: Complex and independent subsystems. In: Waring R.H. (ed.): Forests: Fresh Perspectives from Ecosystem Analysis. Corvallis, Oregon State University Press: 87-107.
  9. Čater M., Schmid I., Kazda M. (2013): Instantaneous and potential radiation effect on underplanted European beech below Norway spruce canopy. European Journal of Forest Research, 132: 23-32. Go to original source...
  10. Černý J., Haninec P., Pokorný R. (2018): Leaf area index estimated by direct, semi-direct, and indirect methods in European beech and sycamore maple stands. Journal of Forestry Research. doi: 10.1007/s11676-018-0809-0 Go to original source...
  11. Cescatti A. (1998): Effects of needle clumping in shoots and crowns on the radiative regime of a Norway spruce canopy. Annals of Forest Science, 55: 89-102. Go to original source...
  12. Chason J.W., Baldocchi D.D., Huston M.A. (1991): A comparison of direct and indirect methods for estimating forest canopy leaf area. Agricultural and Forest Meteorology, 57: 107-128. Go to original source...
  13. Chen J.M. (1996): Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology, 80: 135-163. Go to original source...
  14. Chen J.M., Black T.A. (1992): Foliage area and architecture of plant canopies from sunfleck size distributions. Agricultural and Forest Meteorology, 60: 249-266. Go to original source...
  15. Chen J.M., Black T.A., Adams R.S. (1991): Evaluation of hemispherical photography for determining plant area index and geometry of a forest stand. Agricultural and Forest Meteorology, 56: 129-143. Go to original source...
  16. Chen J.M., Rich P.M., Gower S.T., Norman J.M., Plummer S. (1997): Leaf area index of boreal forests: Theory, techniques, and measurement. Journal of Geophysical Research, 102: 29429-29443. Go to original source...
  17. Chianucci F., Macfarlane C., Pisek J., Cutini A., Casa R. (2015): Estimation of foliage clumping from the LAI2000 Plant Canopy Analyzer: Effect of view caps. Trees - Structure and Function, 29: 355-366. Go to original source...
  18. Chroust L. (1993): Asimilační biomasa smrku (Picea abies) a její fotosyntetický výkon. Lesnictví-Forestry, 39: 265-272.
  19. Cutini A., Matteucci G., Mugnozza G.S. (1998): Estimation of leaf area index with the Li-Cor LAI 2000 in deciduous forests. Forest Ecology and Management, 105: 55-65. Go to original source...
  20. Danner M., Locherer M., Hank T., Richter K. (2015): Measuring Leaf Area Index (LAI) with the Li-Cor LAI 2200C or LAI2200 (+2200Clear Kit) - Theory, Measurement, Problems, Interpretation. EnMAP Field Guides Technical Report. Potsdam, GFZ Data Services: 24.
  21. Duveiller G., Weiss M., Baret F., Defourny P. (2011): Retrieving wheat green area index during the growing season from optical time series measurements based on neural network radiative transfer inversion. Remote Sensing of Environment, 115: 887-896. Go to original source...
  22. Eckrich C.A., Flaherty E.A., Ben-David M. (2013): Estimating leaf area index in Southeast Alaska: A comparison of two techniques. PLoS One, 8: e77642. Go to original source... Go to PubMed...
  23. Fassnacht K.S., Gower S.T., Norman J.M., McMurtrie R.E. (1994): A comparison of optical and direct methods for estimating foliage surface area index in forests. Agricultural and Forest Meteorology, 71: 183-207. Go to original source...
  24. Fernandes R., Plummer S., Nightingale J., Baret F., Camacho F., Fang H., Garrigues S., Gobron N., Lang M., Lacaze R., Le Blanc S., Meroni M., Martinez B., Nilson T., Pisek J., Sonnentag O., Verger A., Welles J., Weiss M., Widlowski J.L. (2014): Global leaf area index product validation good practices. Version 2.0. Available at https://lpvs.gsfc.nasa.gov/PDF/CEOS_LAI_PROTOCOL_Aug2014_v2.0.1.pdf
  25. Fleck S., Raspe S., Čater M., Schleppi P., Ukonmaanaho L., Greve M., Hertel C., Weiss W., Rumpf S. (2012): Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. Part XVII. Leaf Area Measurements. Hamburg, UNECE ICP Forests Programme Co-ordinating Centre: 36.
  26. Gholz H.L. (1982): Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest. Ecology, 63: 469-481. Go to original source...
  27. Gower S.T., Norman J.M. (1991): Rapid estimation of leaf area index in conifer and broad-leaf plantations. Ecology, 72: 1896-1900. Go to original source...
  28. Gower S.T., Kucharik C.J., Norman J.M. (1999): Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sensing of Environment, 70: 29-51. Go to original source...
  29. Grassi G., Bagnaresi U. (2001): Foliar morphological and physiological plasticity in Picea abies and Abies alba saplings along a natural light gradient. Tree Physiology, 21: 959-967. Go to original source... Go to PubMed...
  30. Gspaltl M., Bauerle W., Binkley D., Sterba H. (2013): Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes. Forest Ecology and Management, 288: 49-59. Go to original source... Go to PubMed...
  31. Hadaš P. (2002): Temperature and precipitation conditions in the high elevation spruce stands of the Drahanská vrchovina upland. Ekológia, 21: 69-87.
  32. He Y., Guo X., Wilmshurst J.F. (2007): Comparison of different methods for measuring leaf area index in a mixed grassland. Canadian Journal of Plant Science, 87: 803-813. Go to original source...
  33. Hicks S., Lescano R. (1995): Estimation of leaf area index for cotton canopies using the Li-Cor LAI 2000 plant canopy analyser. Agronomy Journal, 87: 458-464. Go to original source...
  34. Hirose T. (2005): Development of the Monsi-Saeki theory on canopy structure and function. Annals of Botany, 95: 483-494. Go to original source... Go to PubMed...
  35. Homolová L., Malenovský Z., Hanuš J., Tomášková I., Dvořáková M., Pokorný R. (2007): Comparison of different ground techniques to map leaf area index of Norway spruce forest canopy. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVI-7/C50: 499-504.
  36. Hyer E.J., Goetz S.J. (2004): Comparison and sensitivity analysis of instruments and radiometric methods for LAI estimation: Assessments from a boreal forest site. Agricultural and Forest Meteorology, 122: 157-174. Go to original source...
  37. IUSS Working Group WRB (2006): World Reference Base for Soil Resources 2006: A Framework for International Classification, Correlation and Communication. World Soil Resources Reports No. 103. Rome, FAO: 128.
  38. Jonckheere I. (2005): Consistent determination of leaf area index and quantification of foliage distribution in forest canopies based on digital hemispherical photography. [Ph.D. Thesis.] Leuven, University of Leuven: 157.
  39. Jonckheere I., Fleck S., Nackaerts K., Muys B., Coppin P., Weiss M., Baret F. (2004): Review of methods for in situ leaf area index determination. Part I. Theories, sensors, and hemispherical photography. Agricultural and Forest Meteorology, 121: 19-35. Go to original source...
  40. Kenkel N.C. (1988): Pattern of self-thinning in jack pine: Testing the random mortality hypothesis. Ecology, 69: 1017-1024. Go to original source...
  41. Knott R. (2002): Development of a young stand of a Norway spruce (Picea abies [L.] Karst.) of the second generation on an allochthonous site. Ekológia, 21: 5-13.
  42. Köstner B., Falge E., Tenhunen J.D. (2002): Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany. Tree Physiology, 22: 567-574. Go to original source... Go to PubMed...
  43. Krejza J., Pokorný R., Marková I. (2013): Is allometry for aboveground organ's mass estimation in young Norway spruce stands affected by different type of thinning? Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61: 1755-1761. Go to original source...
  44. Krejza J., Světlík J., Pokorný R. (2015): Spatially explicit basal area growth of Norway spruce. Trees - Structure and Function, 29: 1545-1558. Go to original source...
  45. Kučera J., Bednářová E., Kamlerová K. (2002): Vertical profile of needle biomass and penetration of radiation through the spruce stand. Ekológia, 21: 107-121.
  46. Kucharik C.J., Norman J.M., Gower S.T. (1998): Measurements of branch area and adjusting leaf area index indirect measurements. Agricultural and Forest Meteorology, 91: 69-88. Go to original source...
  47. Küssner R., Mosandl R. (2000): Comparison of direct and indirect estimation of leaf area index in mature Norway spruce stands of eastern Germany. Canadian Journal of Forest Research, 30: 440-447. Go to original source...
  48. Kuuluvainen T., Pukkala T. (1989): Simulation of within-tree and between-tree shading of direct radiation in a forest canopy: Effect of crown shape and sun elevation. Ecological Modelling, 49: 89-100. Go to original source...
  49. Lang A.R.G. (1991): Application of some Cauchy's theorems to estimation of surface area of leaves, needles and branches of plants, and light transmittance. Agricultural and Forest Meteorology, 55: 191-212. Go to original source...
  50. Larcher W. (2003): Physiological Ecology of Plants: Ecophysiology and Stress Physiology of Functional Groups. 4th Ed. Berlin, Heidelberg, New York, Springer: 517.
  51. Le Dantec V., Dufrêne E., Saugier B. (2000): Interannual and spatial variation in maximum leaf area index of temperate deciduous stands. Forest Ecology and Management, 134: 71-81. Go to original source...
  52. LI-COR (1991): LAI-2000 Plant Canopy Analyzer. Instruction Manual. Lincoln, LI-COR, Inc.: 179.
  53. LI-COR (2011): LAI-2200 Plant Canopy Analyzer. Instruction Manual. Available at https://www.licor.com/documents/6n3conpja6uj9aq1ruyn
  54. Liu Z., Jin G., Zhou M. (2015): Evaluation and correction of optically derived leaf area index in different temperate forests. iForest, 9: 55-62. Go to original source...
  55. Majasalmi T., Rautiainen M., Stenberg P., Rita H. (2012): Optimizing the sampling scheme for LAI-2000 measurements in a boreal forest. Agricultural and Forest Meteorology, 154-155: 38-43. Go to original source...
  56. Mäkinen H., Isomäki A. (2004): Thinning intensity and long-term changes in increment and stem form of Norway spruce trees. Forest Ecology and Management, 201: 295-309. Go to original source...
  57. Menšík L., Fabiánek T., Tesař V., Kulhavý J. (2009): Humus conditions and stand characteristics of artificially established young stands in the process of the transformation of spruce monocultures. Journal of Forest Science, 55: 215-223. Go to original source...
  58. Meyers T.P., Paw U K.T. (1986): Testing of a higher-order closure model for modelling airflow within and above plant canopies. Boundary-Layer Meteorology, 37: 297-311. Go to original source...
  59. Meyers T.P., Paw U K.T. (1987): Modelling the plant canopy micrometeorology with higher-order closure principles. Agricultural and Forest Meteorology, 41: 143-163. Go to original source...
  60. Miller J.B. (1967): A formula for average foliage density. Australian Journal of Botany, 15: 141-144. Go to original source...
  61. Misson L., Vincke C., Devillez F. (2003): Frequency responses of radial growth series after different thinning intensities in Norway spruce (Picea abies (L.) Karst.) stands. Forest Ecology and Management, 177: 51-63. Go to original source...
  62. Moffet M.W. (2001): The nature and limits of canopy biology. Selbyana, 22: 155-179. Go to original source...
  63. Mussche S., Samson R., Nachtergale L., De Schrijver A., Lemeur R., Lust N. (2001): A comparison of optical and direct methods for monitoring the seasonal dynamics of leaf area index in deciduous forests. Silva Fennica, 35: 373-384. Go to original source...
  64. Němeček J., Macků J., Vokoun J., Vavříček D., Novák P. (2001): Taxonomický klasifikační systém půd České republiky. Prague, ČZU, VÚMOP: 78.
  65. Niinemets Ü., Kull O., Tenhunen J.D. (1998): An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiology, 18: 681-696. Go to original source... Go to PubMed...
  66. Nilson T., Kuusk A., Lang M., Pisek J., Kodar A. (2011): Simulation of statistical characteristics of gaps in plant stands. Agricultural and Forest Meteorology, 141: 895-905. Go to original source...
  67. Norby R.J. (1996): Forest canopy productivity index. Nature, 381: 564. Go to original source...
  68. Norman J.M., Campbell G.S. (1989): Canopy structure. In: Pearcy R.W., Mooney H.A., Ehrelinger J.R., Rundel P.W. (eds): Physiological Plant Ecology: Field Methods and Instrumentation. London, Chapman and Hall: 301-325. Go to original source...
  69. Pokorný R., Stojnić S. (2012): Leaf area index of Norway spruce stands in relation to age and defoliation. Beskydy, 5: 173-180. Go to original source...
  70. Pokorný R., Tomášková I., Havránková K. (2008): Temporal variation and efficiency of leaf area index in young mountain Norway spruce stand. European Journal of Forest Research, 127: 359-367. Go to original source...
  71. PSI Czech Republic (2015): LaiPen LP 100. Manual and User Guide. Drásov, Photon Systems Instruments, spol. s r.o.: 45. Go to original source...
  72. Rich P.M. (1990): Characterizing plant canopies with hemispherical photographs. Remote Sensing Reviews, 5: 13-29. Go to original source...
  73. Smith N.J., Chen J.M., Black T.A. (1993): Effects of clumping on estimates of stand leaf area index using LI-COR LAI2000. Canadian Journal of Forest Research, 23: 1940-1943. Go to original source...
  74. Sommer K.J., Lang A.R.G. (1994): Comparative analysis of two indirect methods of measuring leaf area index as applied to minimal and spur pruned grape vines. Australian Journal of Plant Physiology, 21: 197-206. Go to original source...
  75. Stenberg P. (1996): Correcting LAI-2000 estimates for the clumping of needles in shoots of conifers. Agricultural and Forest Meteorology, 79: 1-8. Go to original source...
  76. Taylor C.S. (1993): Kenaf: An emerging new crop industry. In: Janick J., Simon J.E. (eds): New Crops. New York, Wiley Press: 402-407.
  77. Urban O., Košvancová M., Marek M.V., Lichtenthaler H.K. (2007): Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone. Tree Physiology, 27: 1207-1215. Go to original source... Go to PubMed...
  78. Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 74-82. Go to original source...
  79. Ward J.S., Parker G.R. (1989): Spatial dispersion of woody regeneration in an old-growth forest. Ecology, 70: 1279-1285. Go to original source...
  80. Watson D.J. (1947): Comparative physiological studies in the growth of field crops. I. Variation in net assimilation rate and leaf area between species, varieties, and within and between years. Annals of Botany, 11: 41-76. Go to original source...
  81. Welles J.M. (1990): Some indirect methods of estimating canopy structure. Remote Sensing Reviews, 5: 31-43. Go to original source...
  82. Welles J.M., Cohen S. (1996): Canopy structure measurement by gap fraction analysis using commercial instrumentation. Journal of Experimental Botany, 47: 1335-1342. Go to original source...
  83. Zheng G., Moskal M. (2009): Retrieving leaf area index (LAI) using remote sensing: Theories, methods and sensors. Sensors, 9: 2719-2745. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.