J. For. Sci., 2018, 64(7):289-295 | DOI: 10.17221/5/2018-JFS

Effect of thinning on the amount of mineral nitrogenOriginal Paper

Ladislav HOLÍK*,1, Jana ROSÍKOVÁ2, Valerie VRANOVÁ2
1 Crop Research Institute, Prague 6-Ruzyně, Czech Republic
2 Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic

The soil nitrogen cycle and the dynamics of its transformation are closely related to the functioning of the forest ecosystem. This cycle, and the availability of nitrogen as a necessary nutrient in the soil, can be influenced by the process of thinning. The aim of this study is to describe the impact of silvicultural measures on the content of ammonium and nitrate nitrogen in forest soil. Attention is paid to the organic (spruce treatments) and organomineral horizon (beech treatments) in which the transformation of soil nitrogen is most pronounced. Spruce treatments at the Rájec-Němčice area and beech stands at the Březina area, both in the region of Drahanská vrchovina (Czech Republic), were selected for the experiments. Two variants of thinning thinning from below and thinning from above, were performed in the spruce treatments, and thinning from above was performed in the beech treatments. Control variants with no silvicultural measures were defined in both treatments. The amount of ammonium nitrogen in the spruce treatments with thinning from above was in most cases higher than in the other variants. On the contrary, in variant with thinning from below, the ammonium nitrogen content decreased. In terms of the nitrate nitrogen content, the values were generally higher for variants with silvicultural measures than for the control variants. In the beech treatments, the amount of ammonium nitrogen increased and, on the contrary, there was a small decrease in the amount of nitrate nitrogen due to the effect of thinning from above. The differences between thinning from above and the control variants in the beech treatments were less noticeable than in the spruce treatments. Overall, however, it can be said that the nitrogen content available to the vegetation increased. The results of the given experiment provide insight into the trends of nitrogen mineralization intensity in stands in which silvicultural measures are performed.

Keywords: nitrogen mineralization; forest management; Norway spruce; European beech

Published: July 31, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
HOLÍK L, ROSÍKOVÁ J, VRANOVÁ V. Effect of thinning on the amount of mineral nitrogen. J. For. Sci. 2018;64(7):289-295. doi: 10.17221/5/2018-JFS.
Download citation

References

  1. Alvarez S., Ortiz C., Díaz-Pinés E., Rubio A. (2016): Influence of tree species composition, thinning intensity and climate change on carbon sequestration in Mediterranean mountain forests: A case study using the CO2Fix model. Mitigation and Adaptation Strategies for Global Change, 21: 1045-1058.
  2. Arbestain M.C., Macías F., Chesworth W., Chesworth W., Spaargaren O., Semoka J. (2008): Nitrogen cycle. In: Chesworth W. (ed.): Encyclopedia of Soil Science. Dordrecht, Springer: 491-494. Go to original source...
  3. Blanco J.A., Bosco Imberta J., Castillo F.J. (2008): Nutrient return via litterfall in two contrasting Pinus sylvestris forests in the Pyrenees under different thinning intensities. Forest Ecology and Management, 256: 1840-1852. Go to original source...
  4. Burgess D., Wetzel S. (2000): Nutrient availability and regeneration response after partial cutting and site preparation in eastern white pine. Forest Ecology and Management, 138: 249-261. Go to original source...
  5. Chapin F.S., Matson P.A., Mooney H.A. (2002): Terrestrial nutrient cycling. In: Chapin F.S., Matson P.A., Mooney H.A. (eds): Principles of Terrestrial Ecosystem Ecology. New York, Berlin, Heidelberg, Springer-Verlag: 197-215. Go to original source...
  6. Craine J.M., Brookshire E.N.J., Cramer M.D., Hasselquist N.J., Koba K., Marin-Spiotta E., Wang L. (2015): Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil, 396: 1-26. Go to original source...
  7. Dannenmann M., Gasche R., Ledebuhr A., Papen H. (2006): Effects of forest management on soil N cycling in beech forests stocking on calcareous soils. Plant and Soil, 287: 279-300. Go to original source...
  8. Dušek D., Novák J., Slodičák M. (2014): Reakce mladých smrkových porostů na výchovné zásahy v oblastech chronického chřadnutí smrku. Zprávy lesnického výzkumu, 59: 104-108.
  9. Fang Y.T., Mo J.M., Gundersen P., Zhou G.Y., Li D.J. (2004): Nitrogen transformations in forest soils and its responses to atmospheric nitrogen deposition: A review. Acta Ecologica Sinica, 24: 1523-1531.
  10. Finkral A.J., Evans A.M. (2008): The effects of a thinning treatment on carbon stocks in a northern Arizona ponderosa pine forest. Forest Ecology and Management, 255: 2743-2750. Go to original source...
  11. Formánek P., Kulhavý J. (2001): Nitrogen transformation in soil and nutrition conditions of young spruce stands in the Moravian-Silesian Beskids. Journal of Forest Science, 47: 383-391.
  12. Formánek P., Vranová V. (2003): The effect of spruce stand thinning on biological activity in soil. Journal of Forest Science, 49: 523-530. Go to original source...
  13. Geng Y., Dighton J., Gray D. (2012): The effects of thinning and soil disturbance on enzyme activities under pitch pine soil in New Jersey Pinelands. Applied Soil Ecology, 62: 1-7. Go to original source...
  14. Gessler A., Jung K., Gasche R., Papen H., Heidenfelder A., Börner E., Metzler B., Augustin S., Hildebrand E., Rennenberg H. (2005): Climate and forest management influence nitrogen balance of European beech forests: Microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots. European Journal of Forest Research, 124: 95-111. Go to original source...
  15. Gömöryová E., Gregor J., Pichler V., Gömöry D. (2006): Spatial patterns of soil microbial characteristics and soil moisture in a natural beech forest. Biologia, 61: 329-333. Go to original source...
  16. Hwang J., Son Y. (2006): Short-term effects of thinning and liming on forest soils of pitch pine and Japanese larch plantations in central Korea. Ecological Research, 21: 671-680. Go to original source...
  17. IUSS Working Group WRB (2015): World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome, FAO: 192.
  18. Jokela E.J., Dougherty P.M., Martin T.A. (2004): Production dynamics of intensively managed loblolly pine stands in the southern United States: A synthesis of seven longterm experiments. Forest Ecology and Management, 192: 117-130. Go to original source...
  19. Jonard M., Misson L., Ponette Q. (2006): Long-term thinning effects on the forest floor and the foliar nutrients status of Norway spruce stands in the Belgian Ardennes. Canadian Journal of Forest Research, 36: 2684-2695. Go to original source...
  20. Jones D.L., Shannon D., Murphy D.V., Farrar J. (2004): Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biology and Biochemistry, 36: 749-756. Go to original source...
  21. Klimo E. (1990): Lesnická pedologie. Brno, Vysoká škola zemědělská v Brně: 256.
  22. Kučera A., Holík L., Marosz K., Martiník A., Vavříček D. (2013): Changes in forms of available nitrogen and respiration in soil of beech forest as a reaction to a deforestation resulting from wind storm. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61: 107-114. Go to original source...
  23. Kulhavý J., Menšík L. (2014): Nitrogen in forest ecosystems. Vedecký obzor No. 2/2014: 6-15. (in Slovak with English abstract)
  24. Kuzyakov Y., Xu X. (2013): Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist, 198: 656-669. Go to original source... Go to PubMed...
  25. LeBauer D.S., Treseder K.K. (2008): Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89: 371-379. Go to original source... Go to PubMed...
  26. Ma S., Concilio A., Oakley B., North M., Chen J. (2010): Spatial variability in microclimate in a mixed-conifer forest before and after thinning and burning treatments. Forest Ecology and Management, 259: 904-915. Go to original source...
  27. Moghaddas E.E.Y., Stephens S.L. (2007): Thinning, burning, and thin-burn fuel treatment effects on soil properties in a Sierra Nevada mixed-conifer forest. Forest Ecology and Management, 250: 156-166. Go to original source...
  28. Podrázský V., Novák J., Moser W.K. (2005): Vliv výchovných zásahů na množství a charakter nadložního humusu v horském smrkovém porostu. Zprávy lesnického výzkumu, 50: 222-225. Go to original source...
  29. Podrázský V., Vacek S. Matějka K. (2006): Půdy a půdní procesy dle dominantních dřevin v Krkonoších. In: Neuhöferová P. (ed.): Zvýšení podílu přírodě blízké porostní složky lesů se zvláštním statutem ochrany. Kostelec nad Černými lesy, Ústav hospodářské úpravy lesů LDF MZLU v Brně a Katedra pěstování lesů FLD ČZU v Praze: 1-12.
  30. Prietzel J., Stetter U., Klemmt H.J., Rehfuess K.E. (2006): Recent carbon and nitrogen accumulation and acidification in soils of two Scots pine ecosystems in Southern Germany. Plant and Soil, 289: 153-170. Go to original source...
  31. Purahong W., Kapturska D., Pecyna M.J., Schulz E., Schloter M., Buscot F., Hofrichter M., Krüger D. (2014): Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: A case study from Central European forests. PLoS ONE, 9: e93700. Go to original source... Go to PubMed...
  32. Ritter E. (2005): Litter decomposition and nitrogen mineralization in newly formed gaps in a Danish beech (Fagus sylvatica) forest. Soil Biology and Biochemistry, 37: 1237-1247. Go to original source...
  33. Ritter E., Vesterdal L. (2006): Gap formation in Danish beech (Fagus sylvatica) forests of low management intensity: soil moisture and nitrate in soil solution. European Journal of Forest Research, 125: 139-150. Go to original source...
  34. Ryu S.R., Concilio A., Chen J., North M., Ma S. (2009): Prescribed burning and mechanical thinning effects on belowground conditions and soil respiration in a mixedconifer forest, California. Forest Ecology and Management, 257: 1324-1332. Go to original source...
  35. Schöning I., Schrumpf M. (2017): The hidden impact of forest management on the decomposition of soil organic matter. Geophysical research abstracts No. 19. In: Proceedings of the European Geosciences Union General Assembly 2017 Conference, Vienna, Apr 23-28: 17355.
  36. Schrumpf M., Kaiser K., Schulze E.D. (2014): Soil organic carbon and total nitrogen gains in an old growth deciduous forest in Germany. PLoS ONE, 9: e89364. Go to original source... Go to PubMed...
  37. Slodičák M., Novák J. (2007): Výchova lesních porostů hlavních hospodářských dřevin. Recenzované metodiky. Lesnický průvodce No. 4/2007. Strnady, VÚLHM: 46.
  38. Smith C.T., Lowe A.T., Skinner M.F., Beets P.N., Schoenholtz S.H., Fang S. (2000): Response of radiata pine forests to residue management and fertilisation across a fertility gradient in New Zealand. Forest Ecology and Management, 138: 203-223. Go to original source...
  39. Son Y., Lee I.K. (1997): Soil nitrogen mineralization in adjacent stands of larch, pine and oak in central Korea. Annales des Sciences Forestières, 54: 1-8. Go to original source...
  40. Son Y., Kim J.T., Lee S.E., Lee I.K. (1995): Differences of nitrogen mineralization in Larix decidua, Pinus strobus, and Thuja occidentalis plantations of the Kwangneung experimental forest, Kyonggi province. Korean Journal of Ecology, 18: 395-398.
  41. Tang J., Qi Y., Xu M., Misson L., Goldstein A.H. (2005): Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada. Tree Physiology, 25: 57-66. Go to original source... Go to PubMed...
  42. Thomas R.Q., Zaehle S., Templer P.H., Goodale C.L. (2013): Global patterns of nitrogen limitation: Confronting two global biogeochemical models with observations. Global Change Biology, 19: 2986-2998. Go to original source... Go to PubMed...
  43. Vesterdal L., Dalsgaard M., Felby C., Raulund-Rasmussen K., Jørgensen B.B. (1995): Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands. Forest Ecology and Management, 77: 1-10. Go to original source...
  44. Vestgarden L.S., Kjønaas O.J. (2003): Potential nitrogen transformations in mineral soils of two coniferous forests exposed to different N inputs. Forest Ecology and Management, 174: 191-202. Go to original source...
  45. Vitousek P.M., Aber J.D., Howarth R.H., Likens G.E., Matson P.A., Schindler D.W., Schlesinger W.H., Tilman D.G. (1997): Human alteration of the global nitrogen cycle: Source and consequences. Ecological Applications, 7: 737-750. Go to original source...
  46. Vranová V., Holík L., Rohlík T., Rejšek K., Formánek P. (2010): Carbon, nitrogen, C/N ratio and their stand heterogeneity in the soil of Norway spruce stands. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 58: 413-416. Go to original source...
  47. Zbíral J., Honsa I., Malý S. (2010): Jednotné pracovní postupy: Analýza půd I. Brno, Ústřední kontrolní a zkušební ústav zemědělský: 290.
  48. Zhu X., Zhang W., Chen H., Mo J. (2015): Impacts of nitrogen deposition on soil nitrogen cycle in forest ecosystems: A review. Acta Ecologica Sinica, 35: 35-43. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.