J. For. Sci., 2018, 64(6):271-278 | DOI: 10.17221/23/2018-JFS

Shrinkage of Scots pine wood as an effect of different tree growth rates, a comparison of regeneration methodsOriginal Paper

Ondřej SCHÖNFELDER1, Aleš ZEIDLER*,1, Vlastimil BORŮVKA1, Lukáš BÍLEK2, Martin LEXA1
1 Department of Wood Processing, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
2 Department of Silviculture, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic

The Scots pine (Pinus sylvestris Linnaeus) is one of the most important commercial tree species in Central Europe, yet we know very little about the variability of its wood properties. The aim of this study is to primarily analyse the impact of different tree growth rates and site characteristics on the shrinkage of Scots pine wood. The investigated forest stands are located at two sites of the Czech Republic that are characteristic for Scots pine silviculture. At each site, sample trees were selected from two stands representing two variants of the silvicultural treatment, i.e. a clear-cutting and shelterwood system with long regeneration period. Wood shrinkage in radial and tangential directions and volumetric shrinkage were determined in accordance with Czech standards. Lower values of shrinkage were found out in forest stands regenerated by the shelterwood method. The wood in the central part of the trunk shows lower shrinkage values than in the basal part in both stands. The unambiguous effect of the horizontal position in the trunk stem was demonstrated in forest stands regenerated by the clear-cutting method, whilst stands regenerated by the shelterwood method showed a more even distribution of shrinkage along the trunk width. Furthermore, it was found that the shrinkage of the Scots pine has a medium dependence on wood density.

Keywords: Pinus sylvestris L.; wood physical properties; dimensional changes; management system; stand structure

Published: June 30, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
SCHÖNFELDER O, ZEIDLER A, BORŮVKA V, BÍLEK L, LEXA M. Shrinkage of Scots pine wood as an effect of different tree growth rates, a comparison of regeneration methods. J. For. Sci. 2018;64(6):271-278. doi: 10.17221/23/2018-JFS.
Download citation

References

  1. Awoyemi L. (2003): Reversibility of dimensional changes in birch (Betula pubescens) and Scots pine (Pinus sylvestris L.) wood. Taiwan Journal of Forest Science, 19: 97-101.
  2. Beck W. (2000): Silviculture and stand dynamics of Scots pine in Germany. Forest Systems, 9: 199-212. Go to original source...
  3. Czech Statistical Office (2017): Lesnictví - 2017. Tab. 1.8 Těžba dřeva dle krajů. Prague, Czech Statistical Office.
  4. Dinwoodie J.M. (2000): Structure of timber. In: Timber: Its Nature and Behaviour. 2nd Ed. New York, Taylor & Francis Group: 1-35. Go to original source...
  5. Eriksson D., Lindberg H., Bergsten U. (2006): Influence of silvicultural regime on wood structure characteristics and mechanical properties of clear wood in Pinus sylvestris. Silva Fennica, 40: 743-762. Go to original source...
  6. Farsi M., Kiaei M., Miar S., Kiasari S.M. (2013): Effect of seed source on physical properties of Scots pine (a case study in Neka, Iran). Drvna Industrija, 64: 183-191. Go to original source...
  7. Fellner J., Teischinger A., Zschokke W. (2007): Spektrum dřevin: vyobrazení, popis a srovnávací údaje. Wien, proHolz Austria: 111.
  8. Gryc V., Holan J. (2004): Influence of position within the tree stem according to growth-ring width of spruce (Picea abies /L./ Karst.) with compression wood. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 4: 59-72. Go to original source...
  9. Haapanen M., Pöykkö T. (1993): Genetic relationships between growth and quality traits in an 8-year-old half-sib progeny trial of Pinus sylvestris. Scandinavian Journal of Forest Research, 8: 305-312. Go to original source...
  10. Hautamäki S., Kilpeläinen H., Verkasalo E. (2014): Factors and models for the bending properties of sawn timber from Finland and north-western Russia. Part II: Scots pine. Baltic Forestry, 20: 142-156.
  11. Ivković M., Gapare W., Wu H., Espinoza S., Rozenberg P. (2013): Influence of cambial age and climate on ring width and wood density in Pinus radiata families. Annals of Forest Science, 70: 525-534. Go to original source...
  12. Jelonek T., Pazdrowski W., Tomczak A., Szaban J. (2008): The effect of social position of a tree in the stand and site on wood quality of Scots pine (Pinus sylvestris L.). Electronic Journal of Polish Agricultural Universities, 11: 10.
  13. Kollmann F. (1951): Technologie des Holzes und der Holzwerkstoffe. Berlin, Heidelberg, Springer-Verlag: 1050.
  14. Kord B., Kialashaki A., Kord B. (2010): The within-tree variation in wood density and shrinkage, and their relationship in Populus euramericana. Turkish Journal of Agriculture and Forestry, 34: 121-126. Go to original source...
  15. Koubaa A., Hernández R., Beaudoin M. (1998): Shrinkage of fast-growing hybrid poplar clones. Forest Products Journal, 48: 82-87.
  16. Krahmer R.L. (1986): Fundamental anatomy of juvenile and mature wood. In: Robertson D. (ed.): Proceedings of the Technical Workshop: Juvenile Wood. What Does it Mean to Forest Management and Forest Products?, Bellingham, Nov 7, 1985: 12-16.
  17. Liziniewicz M. (2014): Influence of spacing and thinning on wood properties in conifer plantations. [Ph.D. Thesis.] Alnarp, Swedish University of Agricultural Sciences: 62.
  18. Macdonald E., Hubert J. (2002): A review of the effects of silviculture on timber quality of Sitka spruce. Forestry, 75: 107-138. Go to original source...
  19. Möttönen V., Luostarinen K. (2006): Variation in density and shrinkage of birch (Betula pendula Roth) timber from plantations and naturally regenerated forests. Forest Products Journal, 56: 34-39.
  20. Muñoz G.R., Cañas M.A.S., Soalleiro R.R. (2008): Physical properties of wood in thinned Scots pines (Pinus sylvestris L.) from plantations in northern Spain. Annals of Forest Science, 65: 507. Go to original source...
  21. Nicholls J.W.P., Brown A.G. (1974): The relationship between ring width and wood characteristics in double-stemmed trees of radiata pine. New Zealand Journal of Forestry Science, 4: 105-111.
  22. Pang S. (2002): Predicting anisotropic shringkage of softwood Part 1: Theories. Wood Science and Technology, 36: 75-91. Go to original source...
  23. Peltola H., Kilpelainen A., Sauvala K., Raisanen T., Ikonen V. (2007): Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine. Silva Fennica, 41: 489-505. Go to original source...
  24. Plíva K. (1971): Typologický systém ÚHÚL. Brandýs nad Labem, ÚHÚL: 119.
  25. Požgaj A., Chovanec D., Kurjatko S., Babiak M. (1997): Štruktúra a vlastnosti dreva. Bratislava, Príroda: 485.
  26. Raiskila S., Saranpää P., Fagerstedt K., Laakso T., Löija M., Mahlberg R., Paajanen L., Ritschkoff A.C. (2006): Growth rate and wood properties of Norway spruce cutting clones on different sites. Silva Fennica, 40: 247-256. Go to original source...
  27. Repola J. (2006): Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their application to determine average wood density. Silva Fennica, 40: 673-685. Go to original source...
  28. Shmulsky R., Jones D.P. (2011): Forest Products and Wood Science: An Introduction. 6 th Ed. New York, WileyBlackwell: 477. Go to original source...
  29. Šķēle K., Alksne A., Cīrule D., Hrols J. (2002): Anatomical structure and physical properties of pine (Pinus sylvestris L.) wood in Latvia. Proceedings of the Latvia University of Agriculture, 5: 68-74.
  30. Tomczak A., Jelonek T. (2013): Radial variation in the wood properties of Scots pine (Pinus sylvestris L.) grown on former agricultural soil. Leśne Prace Badawcze (Forest Research Papers), 74: 171-177. Go to original source...
  31. Tomczak A., Pazdrowski W., Jelonek T., Stypula I. (2007): Vertical variability of selected macrostructural properties of juvenile wood organization in trunks of Scots pine (Pinus sylvestris L.) trees. Acta Societatis Botanicorum Poloniae, 76: 27-33. Go to original source...
  32. Tsoumis G.T. (1991): Science and Technology of Wood: Structure, Properties, Utilization. New York, Van Nostrand Reinhold: 494.
  33. Vacek S., Vacek Z., Bílek L., Simon J., Remeš J., Hůnová I., Král J., Putalová T., Mikeska M. (2016): Structure, regeneration and growth of Scots pine (Pinus sylvestris L.) stands with respect to changing climate and environmental pollution. Silva Fennica, 50: 1564. Go to original source...
  34. Wagenführ R. (2002): Dřevo - obrazový lexikon. Prague, Grada Publishing, a.s.: 348.
  35. Wood L., Smith D., Hartley I. (2016): Predicting softwood quality attributes from climate data in interior British Columbia, Canada. Forest Ecology and Management, 361: 81-89. Go to original source...
  36. Worrell R., Malcolm D.C. (1990): Productivity of Sitka spruce in northern Britain. 1. The effects of elevation and climate. Forestry, 63: 105-118. Go to original source...
  37. Zeidler A. (2013): Shrinkage of Turkish hazel (Corylus colurna L.) wood and its within-stem variation. Zprávy lesnického výzkumu, 58: 10-16. Go to original source...
  38. Zobel B.J., van Buijtenen J.P. (1989): The effect of silvicultural practices on wood properties. In: Wood Variation: Its Causes and Control. Berlin, Heidelberg, Springer-Verlag: 218-248. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.