J. For. Sci., 2018, 64(4):149-156 | DOI: 10.17221/152/2017-JFS
Dry Biomass Estimation of Hedge Banks: Allometric Equation vs. Structure from Motion via Unmanned Aerial VehicleOriginal Paper
- 1 Institute of Agricultural Engineering, University of Kiel, Kiel, Germany
- 2 Institute for Natural Resource Conservation, University of Kiel, Kiel, Germany
The wood yield of hedge banks is very heterogeneous and hard to estimate in advance. The aim of the present study was to estimate the dry biomass of hedge banks shortly before harvesting using two different non-destructive approaches: (i) allometric equation based on DBH, (ii) volume calculations based on Structure from Motion; and to compare these estimations to the results of the (invasive) reference method: weighing after harvesting. Study objects were three different 100 m hedge banks in Schleswig-Holstein, Germany that were divided into 10 m segments (n = 30). These segments were harvested and weighed separately to calculate dry biomass. The allometric equation yielded a relative root mean square error (rRMSE) of 32.4%. The Structure from Motion (SfM) volume models yielded an rRMSE of 30.0%. These results indicate that SfM approaches are comparably precise to allometric equations for dry mass estimations of hedge banks. SfM approaches are less time consuming but have higher technical requirements.
Keywords: drone; dry mass; point cloud; trees outside forests
Published: April 30, 2018 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Annighöfer P., Ameztegui A., Ammer C., Balandier P., Bartsch N., Bolte A., Coll L., Collet C., Ewald J., Frischbier N., Gebereyesus T., Haase J., Hamm T., Hirschfelder B., Huth F., Kändler G., Kahl A., Kawaletz H., Kuehne C., Lacointe A. et al. (2016): Species-specific and generic biomass equations for seedlings and saplings of European tree species. European Journal of Forest Research, 135: 313-329.
Go to original source...
- Dandois J.P., Ellis E.C. (2010): Remote sensing of vegetation structure using computer vision. Remote Sensing, 2: 1157-1176.
Go to original source...
- Díaz-Varela R., de la Rosa R., León L., Zarco-Tejada P. (2015): High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: Application in breeding trials. Remote Sensing, 7: 4213-4232.
Go to original source...
- Dittmann S., Thiessen E., Hartung E. (2017): Applicability of different non-invasive methods for tree mass estimation: A review. Forest Ecology and Management, 398: 208-215.
Go to original source...
- Eigner J. (1982): Bewertung von Knicks in Schleswig-Holstein. In: Hecken und Flurgehölze - Structur, Funktion und Bewertung. Laufener Seminarbeiträge 5/82, Bayreuth, June 17-19, 1982: 110-117.
- Fritz A., Kattenborn T., Koch B. (2013): UAV-based photogrammetric point clouds - tree stem mapping in open stands in comparison to terrestrial laser scanner point clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/ W2: 141-146.
Go to original source...
- Hyde P., Nelson R., Kimes D., Levine E. (2007): Exploring LiDAR-RaDAR synergy - predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR. Remote Sensing of Environment, 106: 28-38.
Go to original source...
- Isensee E., Stübig D.K., Lubkowitz C. (2000): Bergung und Aufbereitung von Knick- und Schwachholz. Landtechnik - Agricultural Engineering, 55: 346-347.
- Mantau U. (2012): Holzrohstoffbilanz Deutschland: Entwicklungen und Szenarien des Holzaufkommens und der Holzverwendung 1987 bis 2015. Hamburg, Universität Hamburg: 65.
- Marshall E.J.P. (2004): Agricultural landscapes: Field margin habitats and their interaction with crop production. Journal of Crop Improvement, 12: 365-404.
Go to original source...
- Marshall E.J.P., Moonen A.C. (2002): Field margins in northern Europe: Their functions and interactions with agriculture. Agriculture, Ecosystems & Environment, 89: 5-21.
Go to original source...
- Miller J., Morgenroth J., Gomez C. (2015): 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and volume estimates. Urban Forestry & Urban Greening, 14: 932-940.
Go to original source...
- Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein (2017): Durchführungsbestimmungen zum Knickschutz. Kiel, Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein: 19.
- Mitchard E.T.A., Saatchi S.S., Woodhouse I.H., Nangendo G., Ribeiro N.S., Williams M., Ryan C.M., Lewis S.L., Feldpausch T.R., Meir P. (2009): Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophysical Research Letters, 36: L23401.
Go to original source...
- Ploton P., Pélissier R., Proisy C., Flavenot T., Barbier N., Rai S.N., Couteron P. (2012): Assessing aboveground tropical forest biomass using Google Earth canopy images. Ecological Applications, 22: 993-1003.
Go to original source...
Go to PubMed...
- Popescu S.C., Zhao K., Neuenschwander A., Lin C. (2011): Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sensing of Environment, 115: 2786-2797.
Go to original source...
- Roßkamp T. (2001): Zur Bestandssituation der Hecken in Niedersachsen und deren Auswirkung auf die Vogelwelt, dargestellt an traditionellen Wallheckenlandschaften im nordwestlichen Niedersachsen. Seevögel - Zeitschrift Verein Jordsand, 22: 49-53.
- Sader S.A., Waide R.B., Lawrence W.T., Joyce A.T. (1989): Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data. Remote Sensing of Environment, 28: 143-156, IN1-IN2, 159-198.
Go to original source...
- Segura M., Kanninen M., Suárez D. (2006): Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforestry Systems, 68: 143-150.
Go to original source...
- Seidel D., Busch G., Krause B., Bade C., Fessel C., Kleinn C. (2015): Quantification of biomass production potentials from trees outside forests - a case study from Central Germany. BioEnergy Research, 8: 1344-1351.
Go to original source...
- Snavely N., Seitz S.M., Szeliski R. (2007): Modeling the world from internet photo collections. International Journal of Computer Vision, 80: 189-210.
Go to original source...
- Tao W., Lei Y., Mooney P. (2011): Dense point cloud extraction from UAV captured images in forest area. In: Proceedings of the 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM 2011), Fuzhou, June 29-July 1, 2011: 389-392.
Go to original source...
- Turner D., Lucieer A., Watson C. (2012): An automated technique for generating georectified mosaics from ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SfM) point clouds. Remote Sensing, 4: 1392-1410.
Go to original source...
- Véga C., Vepakomma U., Morel J., Bader J.L., Rajashekar G., Jha C.S., Ferêt J., Proisy C., Pélissier R., Dadhwal V.K. (2015): Aboveground-biomass estimation of a complex tropical forest in India using Lidar. Remote Sensing, 7: 10607-10625.
Go to original source...
- Wickham H. (2007): Reshaping data with the reshape package. Journal of Statistical Software, 21: v021.i12.
Go to original source...
- Wickham H. (2009): ggplot2: Elegant Graphics for Data Analysis. New York, Springer-Verlag: 213.
Go to original source...
- Wickham H. (2011): The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40: v040.i01.
Go to original source...
- Zarco-Tejada P.J., Diaz-Varela R., Angileri V., Loudjani P. (2014): Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55: 89-99.
Go to original source...
- Zianis D., Muukkonen P., Mäkipää R., Mencuccini M. (2005): Biomass and Stem Volume Equations for Tree Species in Europe. Helsinki, Finnish Society of Forest Science, Finnish Forest Research Institute: 63.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.