J. For. Sci., 2016, 62(12):537-544 | DOI: 10.17221/103/2015-JFS
Potential changes in Czech forest soil carbon stocks under different climate change scenariosOriginal Paper
- 1 Centre MendelGlobe - Global Climate Changes and Managed Ecosystems, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
- 2 CzechGlobe - Global Change Research Institute CAS, Brno, Czech Republic
- 3 Forest Management Institute, Brandýs nad Labem, Czech Republic
- 4 Institute of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
Detailed inventory data (n = 3,930; approximately one representative sampling point per 650 ha) on soil organic carbon (SOC) to a depth of 30 cm has been used to characterize carbon content in forest soils in the Czech Republic across all altitudinal vegetation zones and forest ecological series. This data set was used to predict the most probable changes in soil carbon content in the altitudinal vegetation zones due to global warming. The mean value of the SOC content in forest soils of the Czech Republic was determined to be 62.6 ± 17.2 t.ha-1. Under different warming scenarios the major SOC loss was observed at an altitude of 700-900 m a.s.l. Using a pessimistic emission scenario in the climatic model (i.e. predicted temperature change by +4.24°C), losses of C from forest soils in the Czech Republic, or potentially in central Europe, could be as high as 13% of the current carbon stock in forest soils.
Keywords: oxidizable soil carbon content; altitudinal vegetation zone; ecological series
Published: December 31, 2016 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Bottner P., Couteaux M.M., Anderson J.M., Berg B., Billes G., Bolger T., Casabianca H., Romanya J., Rovira P. (2000): Decomposition of 13C-labelled plant material in a European 65-40° latitudinal transect of coniferous forest soils: Simulation of climate change by translocation of soils. Soil Biology and Biochemistry, 32: 527-543.
Go to original source... - Callesten I., Liski J., Raulund-Rasmussen K., Tau-Strand L., Vesterdal L., Westman C.J. (2003): Soil carbon stores in Nordic well-drained forest soils - relationships with climate and texture class. Global Change Biology, 9: 358-370.
Go to original source... - Cienciala E., Exnerova Z., Schelhaas M.J. (2008): Development of forest carbon stock and wood production in the Czech Republic until 2060. Annals of Forest Science, 65: 603.
Go to original source... - de Vries W., Solberg S., Dobbertin M., Sterba H., Laubhahn D., Reinds G.J., Nabuurs G.J., Gundersen P., Sutton M.A. (2008): Ecologically implausible carbon response? Nature, 451: E1-E3.
Go to original source...
Go to PubMed... - Dixon R.K., Brown S., Houghton R.A., Solomon A.M., Trexler M.C., Wisniewski J. (1994): Carbon pools and flux of global forest ecosystems. Science, 263: 185-190.
Go to original source...
Go to PubMed... - Euskirchen E.S., McGuire A.D., Chapin F.S., Rupp T.S. (2010): The changing effects of Alaska's boreal forests on the climate system. Canadian Journal of Forest Research, 40: 1336-1346.
Go to original source... - Falloon P., Jones C.D., Cerri C.E., Al-Adamat R., Kamoni P., Bhattacharyyae T., Easterf M., Paustianf K., Killianf K., Colemang K., Milneh E. (2007): Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agriculture, Ecosystems & Environment, 122: 114-124.
Go to original source... - Forest Management Institute (2008): Forest and Forest Management Report of the Czech Republic. Prague, Ministry of Agriculture of the Czech Republic: 112.
- Jones D.L., Healey J.R., Willett V.B., Farrar J.F., Hodge A. (2005): Dissolved organic nitrogen uptake by plants - an important N uptake pathway? Soil Biology and Biochemistry, 37: 413-423.
Go to original source... - Kalvová J., Kašpárek L., Janouš D., Žalud Z., Kazmarová H. (2002): Zpřesnění scénářů projekce klimatické změny na území České republiky a odhadů projekce klimatické změny na hydrologický režim, sektor zemědělství, sektor lesního hospodářství a na lidské zdraví v ČR. Prague, Národní klimatický program České republiky: 151.
- Kurz-Besson C., Couteaux M.M., Berg B., Remacle J., Ribeiro C., Romanya J., Thiery J.M. (2006): A climate response function explaining most of the variation of the forest floor needle mass and the needle decomposition in pine forests across Europe. Plant and Soil, 285: 97-114.
Go to original source... - Ladegaard-Pedersen P., Elberling B., Vesterdal L. (2005): Soil carbon stocks, mineralization rates, and CO2 effluxes under 10 tree species on contrasting soil types. Canadian Journal of Forest Research, 35: 1277-1284.
Go to original source... - Lal R. (2004): Soil carbon sequestration to mitigate climate change. Geoderma, 123: 1-22.
Go to original source... - Liski J., Westman J. (1997): Carbon storage in forest soil of Finland. 1. Effect of thermoclimate. Biogeochemistry, 36: 239-260.
Go to original source... - Liski J., Perruchoud D., Karjalainen T. (2002): Increasing carbon stocks in the forest soils of western Europe. Forest Ecology and Management, 169: 159-175.
Go to original source... - Magnani F., Mencuccini M., Borghetti M., Berbigier P., Berninger F., Delzon S., Grelle A., Hari P., Jarvis P.G., Kolari P., Kowalski A.S., Lankreijer H., Law B.E., Lindroth A., Loustau D., Manca G., Moncrieff J.B., Rayment M., Tedeschi V., Valentini R., Grace J. (2007): The human footprint in the carbon cycle of temperate and boreal forests. Nature, 441: 848-850.
Go to original source...
Go to PubMed... - Pavelka M., Acosta M., Marek M.V., Kutsch W., Janouš D. (2007): Dependence of the Q10 values on the depth of the soil temperature measuring point. Plant and Soil, 292: 171-179.
Go to original source... - Plíva K. (1984): Typologická klasifikace lesů ČSR. Brandýs nad Labem, Lesprojekt: 172.
- Reay D.S., Dentener F., Smith P., Grace J., Feely R.A. (2008): Global nitrogen deposition and carbon sinks. Nature Geoscience, 1: 430-437.
Go to original source... - Rodeghiero M., Cescatti A. (2005): Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Global Change Biology, 11: 1024-1041.
Go to original source... - Scharlemann J.P.W., Tanner E.V.J., Hiederer R., Kapos V. (2014): Gobal soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5: 81-91.
Go to original source... - Schwartz D., Namri M. (2002): Mapping the total organic carbon in the soils of the Congo. Global Planet Change, 33: 77-93.
Go to original source... - Smith P., Smith J., Wattenbach M., Meyer J., Lindner M., Zaehle S., Hiederer R., Jones R.J.A., Montanarella L., Rounsevell M., Reginster I., Kankaanpaa S. (2006): Projected changes in mineral soil carbon of European forests, 1990-2100. Canadian Journal of Soil Science, 86: 159-169.
Go to original source... - Subke J., Reichstein M., Tenhunen J.D. (2003): Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany. Soil Biology and Biochemistry, 35: 1467-1483.
Go to original source... - Trnka M., Muška F., Semeradová D., Dubrovský M., Kocmanková E., Žalud Z. (2007): European Corn Borer life stage model: Regional estimates of pest development and spatial distribution under present and future climate. Ecological Modelling, 207: 61-84.
Go to original source... - Vogel J.G., Valentiny E.W., Ruess R.W. (2005): Soil and root respiration in mature Alaskan black spruce forests that vary in soil organic matter decomposition rates. Canadian Journal of Forest Research, 35: 161-174.
Go to original source... - Xu C., Gertner G.Z., Scheller R.M. (2009): Uncertainties in the response of a forest landscape to global climatic change. Global Change Biology, 15: 116-131.
Go to original source... - Zlatník A. (1976): Lesnická fytocenologie. Prague, SZN: 387.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.

