J. For. Sci., 2016, 62(10):441-451 | DOI: 10.17221/77/2016-JFS

Below-canopy and topsoil temperatures in young Norway spruce and Carpathian birch stands compared to gaps in the mountainsOriginal Paper

O. Špulák, D. Kacálek
Forestry and Game Management Research Institute, Jíloviště-Strnady, Opočno Research Station, Opočno, Czech Republic

Reduced air pollution load has allowed to use commercially oriented forestry in the Central European mountains since the 1990s. The goal is, however, to restore species- and age-diversified stable stands that are expected to cope with uncertain changes of the harsh mountain climate. The microclimate of current young forest stands can impact on growth and performance of underplanted seedlings. In the present study, aboveground (+10 cm), surface (0 cm) and belowground (-10 cm) temperatures were compared under Norway spruce and Carpathian birch canopies. Measurements were performed in 22-year-old Norway spruce and Carpathian birch stands and replicated three times. These measurements were compared with three adjacent gaps dominated by herbal vegetation. Temperatures were measured automatically during the growing periods 2011 and 2012. The research was conducted on Norway spruce on an acidic Spodosol forest site in the summit part of the Jizerské hory Mts., Czech Republic. Data were analysed using the Horn procedure of pivot measures. The highest variability of aboveground and soil surface temperatures was observed within the gaps during a spring time. The temperatures beneath the leafless birch were close to those within the gaps, whereas in the period of leaved trees the temperature extremes were reduced similarly like under the spruce stand canopy compared to the gaps. The differences between the plots were the smallest at the end of growing seasons.

Keywords: air; soil; below-canopy climate; microclimate; stand environment

Published: October 31, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Špulák O, Kacálek D. Below-canopy and topsoil temperatures in young Norway spruce and Carpathian birch stands compared to gaps in the mountains. J. For. Sci. 2016;62(10):441-451. doi: 10.17221/77/2016-JFS.
Download citation

References

  1. Augusto L., De Schrijver A., Vesterdal L., Smolander A., Prescott C., Ranger J. (2015): Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biological Reviews of the Cambridge Philosophical Society, 90: 444-466. Go to original source... Go to PubMed...
  2. Balcar V., Podrázský V. (1994): Založení výsadbového pokusu v hřebenové partii Jizerských hor. Zprávy lesnického výzkumu, 39: 1-7.
  3. Balcar V., Špulák O., Kacálek D. (2010): Tvorba druhové skladby horských lesů na lokalitách extrémně zatížených klimatickými stresy. Zprávy lesnického výzkumu, 55: 241-250.
  4. Balcar V., Špulák O., Kacálek D., Kuneš I. (2012a): Klimatické podmínky na výzkumné ploše Jizerka - I. Srážky a půdní vlhkost. Zprávy lesnického výzkumu, 57: 74-81.
  5. Balcar V., Špulák O., Kacálek D., Kuneš I. (2012b): Klimatické podmínky na výzkumné ploše Jizerka. II - teplota, vítr a sluneční svit. Zprávy lesnického výzkumu, 57: 160-172.
  6. Bartoš J., Špulák O., Černohous L. (2009): Ukládání sněhu ve vztahu k dřevinám vysazeným na kalamitní holině v hřebenové partii horských poloh. Zprávy lesnického výzkumu, 54: 166-173. Go to original source...
  7. Bäucker B., Eisenhauer D.R. (2001): Damage to common birch (Betula pendula Roth) in higher altitudes of the Ore Mts. (Erzgebirge). Journal of Forest Science, 47 (Special Issue): 156-163.
  8. Box G.E.P., Cox D.R. (1964): An analysis of transformations. Journal of the Royal Statistical Society, Series B (Methodological), 26: 211-252. Go to original source...
  9. Carlson D. (1997): Microclimate of clear-cut, forest interior, and small openings in trembling aspen forest. Agricultural and Forest Meteorology, 87: 313-329. Go to original source...
  10. Chávez V., Macdonald S.E. (2010): The influence of canopy patch mosaics on understory plant community composition in boreal mixedwood forest. Forest Ecology and Management, 259: 1067-1075. Go to original source...
  11. Čihal A., Jurča J. (1961): Příspěvek k otázce využívání údajů o délkách stínu a podzáření při obnovách lesních porostů. Sborník Vysoké školy zemědělské v Brně, Řada C: Spisy fakulty lesnické: 21-32.
  12. Crippa M., Janssens-Maenhout G., Dentener F., Guizzardi D., Sindelarova K., Muntean M., Van Dingenen R., Granier C. (2016): Forty years of improvements in European air quality: Regional policy-industry interactions with global impacts. Atmospheric Chemistry and Physics, 16: 3825-3841. Go to original source...
  13. Dickerson-Lange S.E., Lutz J.A., Martin K.A., Raleigh M.S., Gersonde R., Lundquist J.D. (2015): Evaluating observational methods to quantify snow duration under diverse forest canopies. Water Resources Research, 51: 1203-1224. Go to original source...
  14. Drobyshev I., Nihlgård B. (2000): Growth response of spruce saplings in relation to climatic conditions along a gradient of gap size. Canadian Journal of Forest Research, 30: 930-938. Go to original source...
  15. Dy G., Payette S. (2007): Frost hollows of the boreal forest as extreme environments for black spruce tree growth. Canadian Journal of Forest Research, 37: 492-504. Go to original source...
  16. El Kateb H., Benabdellah B., Ammer C., Mosandl R. (2004): Reforestation with native tree species using site preparation techniques for the restoration of woodlands degraded by air pollution in the Erzgebirge, Germany. European Journal of Forest Research, 123: 117-126. Go to original source...
  17. Ešnerová J., Karlík P., Zahradník D., Koňasová T., Stejskal J., Baláš M., Vítámvás J., Rašáková N., Stacho J., Kuthan J., Lukášová M., Kuneš I. (2012): Morfologická variabilita rodu bříza (Betula L.) v Krkonoších se zaměřením na tetraploidní zástupce. Zprávy lesnického výzkumu, 57: 112-125.
  18. Ešnerová J., Vítámvás J., Koňasová T., Kolář F., Baláš M., Karlík P., Zahradník D., Křížová M., Stacho J., Rašáková N., Stejskal J., Kuneš I. (2013): Využití obrysové analýzy při sledování morfologické variability listů rodu bříza (Betula L.). Zprávy lesnického výzkumu, 58: 107-114.
  19. Fenger J. (2009): Air pollution in the last 50 years - from local to global. Atmospheric Environment, 43: 13-22. Go to original source...
  20. Froelich N.J., Grimmond C.S.B., Schmid H.P. (2011): Nocturnal cooling below a forest canopy: Model and evaluation. Agricultural and Forest Meteorology, 151: 957-968. Go to original source...
  21. Games P.A., Howell J.F. (1976): Pairwise multiple comparison procedures with unequal n's and/or variances: A Monte Carlo study. Journal of Educational Statistics, 1: 113-125. Go to original source...
  22. Geiger R. (1950): The Climate Near the Ground. Cambridge, Harvard University Press: 482.
  23. Horn P.S., Pesce A.J., Copeland B.E. (1998): A robust approach to reference interval estimation and evaluation. Clinical Chemistry, 44: 622-631. Go to original source...
  24. Hynynen J., Niemistö P., Viherä-Aarnio A., Brunner A., Hein S., Velling P. (2010): Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry, 83: 103-119. Go to original source...
  25. Latif Z.A., Blackburn G.A. (2010): The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest. International Journal of Biometeorology, 54: 119-129. Go to original source... Go to PubMed...
  26. Leikola M., Pylkkö P. (1969): Verhopuuston tiheyden vaikutus metsikön minimilämpötiloihin hallaöinä. Silva Fennica, 3: 20-32. Go to original source...
  27. Leuzinger S., Koerner C. (2007): Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agricultural and Forest Meteorology, 146: 29-37. Go to original source...
  28. Lomský B., Šrámek V., Novotný R. (2012): Changes in the air pollution load in the Jizera Mts.: Effects on the health status and mineral nutrition of the young Norway spruce stands. European Journal of Forest Research, 131: 757-771. Go to original source...
  29. Meloun M., Hill M., Militký J., Kupka K. (2001): Analysis of large and small samples of biochemical and clinical data. Clinical Chemistry and Laboratory Medicine, 39: 53-61. Go to original source... Go to PubMed...
  30. Natkhin M., Steidl J., Dietrich O., Dannowski R., Lischeid G. (2012): Differentiating between climate effects and forest growth dynamics effects on decreasing groundwater recharge in a lowland region in Northeast Germany. Journal of Hydrology, 448: 245-254. Go to original source...
  31. Neuhäuslová Z., Moravec J., Chytrý M., Sádlo J., Rybníček K., Kolbek J., Jirásek J. (1997): Mapa potenciální přirozené vegetace České republiky. 1:500 000. Průhonice, Botanický ústav AV ČR.
  32. Nihlgård B. (1969): Microclimate in a beech and a spruce forest - a comparative study from Kongalund, Scania, Sweden. Botaniska Notiser, 122: 333-352.
  33. Parker G.G. (1995): Structure and microclimate in forest canopies. In: Lowman M.D., Nadkarni N.N. (eds): Forest Canopies. San Diego, Academic Press: 73-106.
  34. Portsmuth A., Niinemets Ü. (2006): Interacting controls by light availability and nutrient supply on biomass allocation and growth of Betula pendula and B. pubescens seedlings. Forest Ecology and Management, 227: 122-134. Go to original source...
  35. Prescott C.E. (2002): The influence of the forest canopy on nutrient cycling. Tree Physiology, 22: 1193-1200. Go to original source... Go to PubMed...
  36. Prévost M., Raymond P. (2012): Effect of gap size, aspect and slope on available light and soil temperature after patchselection cutting in yellow birch-conifer stands, Quebec, Canada. Forest Ecology and Management, 274: 210-221. Go to original source...
  37. Ranger J., Marques R., Colin-Belgrand M. (1997): Nutrient dynamics during the development of a Douglas-fir (Pseudotsuga menziesii Mirb.) stand. Acta Oecologica, 18: 73-90. Go to original source...
  38. Reid T.D., Spencer M., Huntley B., Hancock S., Essery R.L.H., Carle J., Holden R., Baxter R., Rutter N. (2014): Spatial quantification of leafless canopy structure in a boreal birch forest. Agricultural and Forest Meteorology, 188: 1-12. Go to original source...
  39. Renaud V., Rebetez M. (2009): Comparison between opensite and below-canopy climatic conditions in Switzerland during the exceptionally hot summer of 2003. Agricultural and Forest Meteorology, 1495: 873-880. Go to original source...
  40. Repola J. (2008): Biomass equations for birch in Finland. Silva Fennica, 42: 605-624. Go to original source...
  41. Rich R.L., Stefanski A., Montgomery R.A., Hobbie S.E., Kimball B.A., Reich P.B. (2015): Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Global Change Biology, 21: 2334-2348. Go to original source... Go to PubMed...
  42. Rothe A., Binkley D. (2001): Nutritional interactions in mixed species forests: A synthesis. Canadian Journal of Forest Research, 31: 1855-1870. Go to original source...
  43. Savoy P., Mackay D.S. (2015): Modeling the seasonal dynamics of leaf area index based on environmental constraints to canopy development. Agricultural and Forest Meteorology, 200: 46-56. Go to original source...
  44. Souček J. (2015): Stanovení délky a průběhu stínu v maloplošných obnovních prvcích. Certifikovaná metodika. Lesnický průvodce 2/2015. Strnady, Výzkumný ústav lesního hospodářství a myslivosti: 22.
  45. Špulák O., Balcar V., Kacálek D. (2011): Vliv mletého vápence v jamce na prosperitu výsadeb, fluorescenci chlorofylu a obsah živin v listech břízy karpatské a buku lesního. Zprávy lesnického výzkumu, 56 (Special Issue): 57-64.
  46. Šrámek V., Slodičák M., Lomský B., Balcar V., Kulhavý J., Hadaš P., Pulkráb K., Šišák L., Pěnička L., Sloup M. (2008): The Ore Mountains: Will successive recovery of forests from lethal disease be successful? Mountain Research and Development, 28: 216-221. Go to original source...
  47. ÚHÚL (1999): OPRL - Oblastní plán rozvoje lesů. Přírodní lesní oblast č. 21 - Jizerské hory a Ještěd. Jablonec nad Nisou, Ústav pro hospodářskou úpravu lesů Brandýs nad Labem: 247.
  48. Vašát R., Pavlů L., Borůvka L., Tejnecký V., Nikodem A. (2015): Modelling the impact of acid deposition on forest soils in North Bohemian Mountains with two dynamic models: The Very Simple Dynamic Model (VSD) and the Model of Acidification of Groundwater in Catchments (MAGIC). Soil and Water Research, 10: 10-18. Go to original source...
  49. Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 85-93. Go to original source...
  50. von Arx G., Dobbertin M., Rebetez M. (2012): Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agricultural and Forest Meteorology, 166-167: 144-155. Go to original source...
  51. Webster C., Rutter N., Zahner F., Jonas T. (2016): Measurement of incoming radiation below forest canopies: A comparison of different radiometer configurations. Journal of Hydrometeorology, 17: 853-864. Go to original source...
  52. Welch B.L. (1951): On the comparison of several mean values: An alternative approach. Biometrika, 38: 330-336. Go to original source...
  53. Winkel T., Lhomme J.P., Nina Laura J.P., Mamani Alcón C., del Castillo C., Rocheteau A. (2009): Assessing the protective effect of vertically heterogeneous canopies against radiative frost: The case of quinoa on the Andean Altiplano. Agricultural and Forest Meteorology, 149: 1759-1768. Go to original source...
  54. Yanai R.D., Siccama T.G., Arthur M.A., Federer C.A., Friedland A.J. (1999): Accumulation and depletion of base cations in forest floors in the northeastern United States. Ecology, 80: 2774-2787. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.