J. For. Sci., 2016, 62(7):314-321 | DOI: 10.17221/109/2015-JFS

Treatment of rubberwood (Hevea brasiliensis) (Willd. ex A. Juss.) Müll. Arg. with maleic anhydride to prevent mouldsOriginal Paper

K. Oldertrøen1, A. H-Kittikun1, S. Phongpaichit2, S. Riyajan3, R. Teanpaisal4
1 Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
2 Department of Microbiology and Natural Products Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
3 Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, Thailand
4 Department of Stomatology and Common Oral Diseases and Epidemiology Research Center, Faculty of Dentistry, Prince of Songkla University, HatYai, Thailand

The rubberwood samples were treated with 0.5-10% maleic anhydride (MA) solutions. The treatment of wood with 2.5% MA was adequate to prevent the growth of moulds on wood for 1 year at least. The viable count of Aspergillus niger van Tieghem PSU1 on MA treated wood indicated that fungal spores were not killed. The maleic anhydride treated wood slices had no antifungal activity. The concentration of MA released from treated wood in the leachate was 0.02 mg.m-3. Agar well diffusion showed that the leachate from MA treated wood had no antifungal activity. However, after leaching MA treated wood still had a high resistance to mould growth. The moisture contents of MA treated and untreated wood samples were not significantly different. The MA treated wood showed almost a smooth surface while the untreated wood showed a rough surface. The cytotoxicity test showed that the leachates of both MA treated and untreated wood samples had a similar effect. So the treatment of rubberwood with MA is a safe method to prevent mould growth.

Keywords: wood modification; mold prevention; leaching; wood moisture content

Published: July 31, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Oldertrøen K, H-Kittikun A, Phongpaichit S, Riyajan S, Teanpaisal R. Treatment of rubberwood (Hevea brasiliensis) (Willd. ex A. Juss.) Müll. Arg. with maleic anhydride to prevent moulds. J. For. Sci. 2016;62(7):314-321. doi: 10.17221/109/2015-JFS.
Download citation

References

  1. American Society for Testing and Materials (1998): Standard test method for fungicides for controlling sapstain and mold on unseasoned lumber (laboratory method). ASTM Standard D4445-91. In: Annual Book of ASTM Standards. West Conshohocken, ASTM: 497-500.
  2. Bardage S.L., Bjurman J. (1998): Isolation of an Aureobasidium pullulans polysaccharide that promotes adhesion of blastospores to water-borne paints. Canadian Journal of Microbiology, 44: 954-958. Go to original source...
  3. Chauhan S.S., Aggarwal P., Karmarkar A., Pandey K.K. (2001): Moisture adsorption behaviour of esterified rubberwood (Hevea brasiliensis). Holz als Roh- und Werkstoff, 59: 250-253. Go to original source...
  4. Clemons C., Young R.A., Rowell R.A. (1992): Moisture sorption properties of composite boards from esterified aspen fiber. Wood and Fiber Science, 24: 353-363.
  5. Ernst E.J., Yodoi K., Roling E.E., Klepser M.E. (2002): Rates and extents of antifungal activities of amphotericin B, flucytosine, fluconazole, and voriconazole against Candida lusitaniae determined by microdilution, Etest, and time-kill methods. Antimicrobial Agents and Chemotherapy, 46: 578-581. Go to original source... Go to PubMed...
  6. Fujimoto H. (1992): Weathering behaviour of chemically modified wood with maleic acid-glycerol (MG) mixture. FRI Bulletin, 176: 87-96.
  7. Fujimoto H. (1995): Reaction conditions of maleic acid-glycerol treatment of solid wood. Rinsan Shikenjoho, 9: 1-6.
  8. Hill C.A.S. (2006): Chemical modification of wood (II): Reaction with other chemicals. In: Wood Modification: Chemical, Thermal and Other Processes. Chichester, John Wiley & Sons: 77-97. Go to original source...
  9. Hill C.A.S., Mallon S. (1998): The chemical modification of Scots pine with succinic anhydride or octenyl succinic anhydride. I. Dimensional stabilisation. Holzforschung, 52: 427-433. Go to original source...
  10. Hill C.A.S., Farahani M.R.M., Hale M.D.C. (2004): The use of organo alkoxysilane coupling agents for wood preservation. Holzforschung, 58: 316-325. Go to original source...
  11. Iwamoto Y., Itoh T. (2005): Vapor phase reaction of wood with maleic anhydride (I): Dimensional stability and durability of treated wood. Journal of Wood Science, 51: 595-600. Go to original source...
  12. Li Y., Dong X., Liu Y., Li J., Wang F. (2011): Improvement of decay resistance of wood via combination treatment on wood cell wall: Swell-bonding with maleic anhydride and graft copolymerization with glycidyl methacrylate and methyl methacrylate. International Biodeterioration & Biodegradation, 65: 1087-1094. Go to original source...
  13. Lim S.C., Choo K.T., Gan K.S., Centre T.T. (2003): The Characteristics, Properties and Uses of Plantation Timbers - Rubberwood and Acacia Mangium. Timber Technology Bulletin No. 26. Kuala Lumpur, Timber Technology Centre, Forest Research Institute Malaysia: 11.
  14. Lugauskas A., Levinskaite L., Peciulyte D. (2003): Micromycetes as deterioration agents of polymeric materials. International Biodeterioration & Biodegradation, 52: 233-242. Go to original source...
  15. Mosmann T. (1983): Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65: 55-63. Go to original source... Go to PubMed...
  16. Muhammed S., Musgrave O.C., Petty J.A. (2009): Impregnation of rubberwood and other Malaysian timbers with copper naphthenate and trimethyl borate. Journal of Tropical Forest Science, 21: 345-352.
  17. Schiopu N., Tiruta-Barna L. (2012): Wood preservatives. In: Pacheco-Torgal F., Jalali S., Fucic A. (eds): Toxicity of Building Materials. Cambridge, Woodhead Publishing Ltd.: 138-165. Go to original source...
  18. Papadopoulos A.N., Hill C.A.S. (2002): The biological effectiveness of wood modified with linear chain carboxylic acid anhydrides against Coniophora puteana. Holz als Roh- und Werkstoff, 60: 329-332. Go to original source...
  19. Papadopoulos A.N., Duquesnoy P., Cragg S.M., Pitman A.J. (2008): The resistance of wood modified with linear chain carboxylic acid anhydrides to attack by the marine wood borer Limnoria quadripunctata Holthius. International Biodeterioration & Biodegradation, 61: 199-202. Go to original source...
  20. Priyadarshan P.M. (2011): Ancillary income generation. In: Biology of Hevea Rubber. Wallingford, CABI Publishing: 164-168. Go to original source...
  21. Ratnasingam J., Grohmann R. (2014): Color development in rubberwood (Hevea brasiliensis) during kiln drying. European Journal of Wood and Wood Products, 72: 555-557. Go to original source...
  22. Shigematsu A., Mizoue N., Ide K., Khun K., Pheng M., Yoshida S., Kohroki K., Sato N. (2010): Estimation of rubberwood production in Cambodia. New Forests, 42: 149-162. Go to original source...
  23. Simatupang M.H., Schmitt U. and Kasim A. (1994): Wood extractives of rubberwood (Hevea brasiliensis) and their influences on the setting of the inorganic binder in gypsumbonded particleboards. Journal of Tropical Forest Science, 6: 269-285.
  24. Teoh Y.P., Don M.M., Ujang S. (2011): Assessment of the properties, utilization, and preservation of rubberwood (Hevea brasiliensis): A case study in Malaysia. Journal of Wood Science, 57: 255-266. Go to original source...
  25. Tjeerdsma B.F., Swager P., Horstman B.J., Holleboom B.W., Homan W.J. (2005): Process development of treatment of wood with modified hot oil. In: Militz H., Hill C.A.S. (eds): Proceedings of the 2nd European Conference on Wood Modification, Göttingen, Oct 6-7, 2005: 186-197.
  26. Verran J., Rowe D.L., Cole D., Boyd R.D. (2000): The use of the atomic force microscope to visualise and measure wear of food contact surfaces. International Biodeterioration & Biodegradation, 46: 99-105. Go to original source...
  27. Vetter L.D., Depraetere G., Janssen C., Stevens M., Acker J.V. (2008): Methodology to assess both the efficacy and ecotoxicology of preservative-treated and modified wood. Annals of Forest Science, 65: 504. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.