J. For. Sci., 2015, 61(7):315-324 | DOI: 10.17221/24/2015-JFS

Intra-annual patterns of weather and daily radial growth changes of Norway spruce and their relationship in the Western Carpathian mountain region over a period of 2008-2012Original Paper

A. Leštianska, K. Merganičová, J. Merganič, K. Střelcová
Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovak Republic

The contribution presents the results of a 5-year (2008-2012) dendroecological research in a Norway spruce (Picea abies [L.] Karst.) clone forest (Northern Slovakia). Due to different climatic and soil moisture conditions in the monitored years, different seasonal courses of stem increment formation were observed using band dendrometers with continuous data recording. The lack of precipitation affected growth processes mainly during the growth culmination and at the end of summer. The multiple regression analysis of the impact of individual factors on stem circumference changes on the basis of their partial correlation coefficients revealed that the individual environmental characteristics influenced daily stem radial changes with time lags of one to ten days. The results of the analysis of variance showed that the stem radial reactions to climatic and soil moisture factors were not significantly different between the clones.

Keywords: dendrometers; Picea abies; environmental fluctuation; Western Beskids; stem circumference changes

Published: July 31, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Leštianska A, Merganičová K, Merganič J, Střelcová K. Intra-annual patterns of weather and daily radial growth changes of Norway spruce and their relationship in the Western Carpathian mountain region over a period of 2008-2012. J. For. Sci. 2015;61(7):315-324. doi: 10.17221/24/2015-JFS.
Download citation

References

  1. Bouriaud O., Leban J.M., Bert D., Deleuze C. (2005): Intraannual variations in climate influence growth and wood density of Norway spruce. Tree Physiology, 25: 651-660. Go to original source... Go to PubMed...
  2. Bouriaud O., Popa I. (2009): Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees 23: 95-106. Go to original source...
  3. Clausnitzer F., Kostner B., Schwärzel K., Bernhofer C. (2011): Relationships between canopy transpiration, atmospheric conditions and soil water availability - Analyses of longterm sap-flow measurements in an old Norway spruce forest at the Ore Mountains/Germany. Agricultural and Forest Meteorology, 151: 1023-1034. Go to original source...
  4. Čufar K., Prislan P., Gričar J. (2008a): Cambial activity and wood formation in beech (Fagus sylvatica) during the 2006 growth season. Wood Research, 53: 1-12.
  5. Deslauriers A., Rossi S., Anfondillo T. (2007): Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia, 25: 113-124. Go to original source...
  6. Dillen S.Y., Storme V., Marron N., Bastien C., Neyrinck S., Steenackers M., Ceulemans R., Boerjan W. (2009): Genomic regions invlved in productivity of two interspecific poplar families in Europe. 1. Stem height, circumference and volume. Tree Genetics & Genomes, 5: 147-164. Go to original source...
  7. Downes G., Beadle Ch., Worledge D. (1999): Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Tree, 14: 102-111. Go to original source... Go to PubMed...
  8. Drew D.M., Downes G.M., Grzeskowiak V., Naidoo T. (2009): Differences in daily stem size variation and growth in two hybrid eucalypt clones. Trees, 23: 585-595. Go to original source...
  9. Eriksson G. (1982): Ecological genetics of conifers in Sweden. Silva Fennica, 16: 149-156.
  10. IPCC (2001): Climate change 2001: the scientific basis. In: Contribution of Workking Group I to the Third Assessment Report of the IPCC: Cambridge, Cambridge University Press: 83.
  11. Ge Z.M., Kellomäki S., Zhou X., Wang K.Y., Peltola H., Väisänen H., Strandman H. (2013): Effects of climate change on evapotranspiration and soil water availability in Norway spruce forests in spouthern Finland: an ecosystem model based approach. Ecohydrology, 6: 51-63. Go to original source...
  12. Gryc V., Hacura J., Vavrčík H., Urban J., Gebauer R. (2012): Monitoring of xylem formationin Picea abies under drought stress influence. Dendrobiology, 67: 15-24.
  13. Hylen G. (1997): Genetic variation of wood density and its relationship with growth traits in young Norway spruce. Silvae Genetica, 46: 55-60.
  14. Ježík M., Blaženec M., Střelcová K. (2007): Intraseasonal stem circumference oscillations: their connection to weather course. In: Střelcová K., Škvarenina J., Blaženec M. (eds): Bioclimatology and Natural Hazards. International Scientific Conference. Poľana nad Detvou, Sept 17-20, 2007: [CD].
  15. Ježík M., Blaženec M., Letts M., Ditmarová Ľ., Sitková Z., Střelcová K. (2014): Assessing seasonal drought stress response in Norway spruce (Picea abies (L.) Karst.) by monitoring stem circumference and sap flow. Ecohydrology, 8: 378-386. Go to original source...
  16. King G., Fonti P., Nievergelt D., Bntgen U., Frank D. (2013): Climatic drivers of hourly to yearly tree radius variations along a 6°C natural warming gradient. Agricultural and Forest Meteorology, 168: 36-46. Go to original source...
  17. Klein T., Rotenberg E., Cohen-Hilaleh E., Raz-Yaseef N., Tatarinov F., Preisler Y., Ogée J., Cohen S., Yakir D. (2014): Quantifying transpirable soil water and its relations to tree water use dynamics in a water-limited pine forest. Ecohydrology, 7: 409-419. Go to original source...
  18. Kmeť J., Ditmarová Ľ., Kurjak D. (2008): Drought as stress factor and its role in spruce (Picea abies /L./ Karst) dieback. Beskydy, 1: 35-41.
  19. Knott R. (2004): Seasonal dynamics of the diameter increment of fir (Abies alba Mill.) and beech (Fagus sylvatica L.) in a mixed stand. Journal of Forest Science, 50: 149-160. Go to original source...
  20. Köcher P., Horna V., Leuschner Ch. (2012): Environmental control of daily stem growth patterns in five temperate broadleaved tree species. Tree Physiology, 32: 1021-1032. Go to original source... Go to PubMed...
  21. Lapin M., Faško P., Kveták Š. (1988): Metodický predpis 3-09-1/1, Klimatické normály. Bratislava, SHMÚ: 25.
  22. Larcher W. (2003): Physiological Plant Ecology - Ecophysiology and Stress Physiology of Functional Groups. Berlin, SpringerVerlag: 514.
  23. Lebourgeois F., Bréda N., Ulrich E., Granier E. (2005): Climatetree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees, 19: 385-401. Go to original source...
  24. Mayer P., Prins K. (2003): State of Europe's Forests 2003. The MCPFE Report on Sustainable Forest Management in Europe. Horn, Ferdinand Berger & Söhne GmbH: 114.
  25. Mäkinen H., Nojd P., Saranpaa P. (2003): Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiology, 23: 959-968. Go to original source... Go to PubMed...
  26. Mistrík I., Ješko T., Repčák M., Masarovičová E., Gašparíková O. (2002): Fyziológia stresu. In: Masarovičová E., Repčák M. et al. (eds): Fyziológia rastlín. Bratislava, Univerzita Komenského: 267-283.
  27. Oberhuber W., Gruber A. (2010): Climatic influences on intraannual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees, 24: 887-898. Go to original source... Go to PubMed...
  28. Orwig D.A., Abrams M.D. (1997): Variation in radial growth responses to drought among species, site, and canopy strata. Trees, 11: 474-484. Go to original source...
  29. Panshin A.J., De Zeeuw C. (1980): Textbook of Wood Technology. New York, McGraw-Hill: 722.
  30. Sevanto S., Suni T., Pumpanen J., Grönholm T., Kolari P., Nikinmaa E., Hari P., Vesala T. (2006): Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiology, 26: 749-757. Go to original source... Go to PubMed...
  31. Schmitt U., Möller R., Eckstein D. (2000): Seasonal wood formation dynamics of beech (Fagus sylvatica L.) and black locust (Robinia pseudoacacia L.) as determined by the "pinning" technique. Journal of Applied Botany, 74: 10-16.
  32. Schmidt-Vogt H. (1978): Genetics of Picea abies (L.) Karst. Annales Forestales, 7/5: 147-186.
  33. Sonesson J., Eriksson G. (2003): Genetic variation in drought tolerance in Picea abies seedlings and its relationship to growth in controlled and field environments. Scandinavian Journal of Forest Research, 18: 7-18. Go to original source...
  34. Soulé P.T. (2011): Changing climate atmospheric composition and radial tree growth in a spruce-fir ecosystem on Grandfather Mountain, North Carolina. Natural Areas Journal, 31: 65-74. Go to original source...
  35. Strmeň S. (2004): Stav autovegetatívneho smrekového porastu 11 rokov po výsadbe v imisiami zasiahnutej oblasti Kysúc. Forestry Journal, 50: 41-52.
  36. Škvarenina J., Tomlain J., Hrvoľ J., Škvareninová J., Nejedlík P. (2009): Progress in dryness and wetness parameters in altitudinal vegetation stages of West Carpathians: Time-series analysis 1951-2007. Quarterly Journal of the Hungarian Meteorological Service, 113: 47-54 Go to original source...
  37. Vieira J., Rossi S., Campelo F., Freitas H., Nabais C. (2013): Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agricultural and Forest Meteorology, 180: 173-181. Go to original source...
  38. Vitas A. (2011): Seasonal growth variation of pine, spruce, and birch recorded by band dendrometers in NE Lithuania. Baltic Forestry, 17: 197-204.
  39. Volland-Voigt F., Brauning A., Ganzhi O., Peters T., Maza H. (2011): Radial stem variations of Tabebuia chrysantha (Bignoniaceae) in different tropical forest ecosystems of southern Ecuador. Trees, 25: 39-48. Go to original source...
  40. Zweifel R., Häsler R. (2001): Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiology, 21: 561-569. Go to original source... Go to PubMed...
  41. Zweifel R., Item H., Häsler R. (2000): Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees, 15: 50-57. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.