J. For. Sci., 2014, 60(8):318-323 | DOI: 10.17221/7591-JFS

Topography of material made by the application of abrasive water jet technologyOriginal Paper

M. Kvietková
Department of Wood Processing, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic

Water jet cutting technology is widely applicable in all industrial areas in areas where the need for high dimensional precision machined material. Quality of surface corresponds to the scale from middle smooth milling to rough milling. It shows the results of undulation in dependence on technical and technological parameters ‒ feed rate and abrasive mass flow. The paper also contains the methodology for assessment of the effect of these parameters on surface finished undulation. Our paper presents significant results of experiments made by this methodology applied to MDF, OSB boards and to technical beech plywood. We can see from the above-mentioned results that the fundamental indicator for roughness assessment is the arithmetical mean deviation of roughness profile Ra. MDF boards have the most homogeneous structure in the entire cut among the monitored materials, which affects the insignificance of parameter Ra. For OSB boards, we can see the worse surface quality with higher feed rate and vice versa for plywood, higher feed rate improves the surface quality. A higher amount of abrasive flow causes the worse surface quality.

Keywords: abrasive flow; feed rate; cutting by abrasive water jet

Published: August 31, 2014  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kvietková M. Topography of material made by the application of abrasive water jet technology. J. For. Sci. 2014;60(8):318-323. doi: 10.17221/7591-JFS.
Download citation

References

  1. Beer P. (2007): Niekonwencjonalne narzedzia do obróbki drewna. [Unconventional Tools for Woodworking.] Poznaň, Wydawnictwo Akademii Rolniczej: 58-70.
  2. Engemann B. K. (1993): Wasserstrahlschneiden und Laserstrahlung. Berlin, Ehningen bei Böblingen, Verlag: 53-93.
  3. Gerencsér K., Bejóm L. (2003): Investigations into the cutting of solid wood. Faipar, 54: 32-45.
  4. Hascalik, A., Caydas, U., Gurun, H. (2007): Effect of traverse speed on abrasive waterjet machining of Ti-6Al-4V alloy. Materials & Design, 28: 1953-1957. Go to original source...
  5. Hashish M. (1993): Prediction models for AWJ machining operation. In: Proceedings of the 7th American Waterjet Conference. Seattle, 28.-31. August 1993. St. Louis, Water Jet Technology Association: 205-209.
  6. Hashish M. (1991): Optimization factors in abrasive waterjet machining. Journal of Engineering for Industry-Transactions of the ASME, 113: 29-37. Go to original source...
  7. Havlík B. (1995): Kvantifikácia technologických parametrov pre obrábania vodným lúčom. [The Quantification of Technological Parameters for Water-jet Processing.] Bratislava, KVT Slovak Technical University: 69.
  8. Fabian S., Hloch S. (2005): Abrasive waterjet process factors influence on stainless steel AISI 304 Macrogeometricalcutting duality. Scientific Bulletin North University of Baia Mare, XIX: 261-266.
  9. Junkar M., Jurisevic B., Fajdiga M., Grah M. (2006): Finite element analysis of single-particle impact in abrasive water jet machining. International Journal of Impact Engineering, 32: 1095-1112. Go to original source...
  10. Kalyanasundaram D., Shehata G., Neumann C., Shrotriya P., Molian P. (2008): Design and validation of a hybrid laser/water-jet machining system for brittle materials. Journal of Laser Applications, 20: 127-134. Go to original source...
  11. Krajný Z. (1998): Water jet and its application in practice. Bratislava, EPOS: 10-250.
  12. Kvietková M. (2011): Analýza faktorov vplývajúcich na kvalitu opracovania kompozitných drevných materiálov pri rezaní vodným lúčom. [Analysis of Factors which Impact the Quality of Manufacturing Wood Materials by the Abrasive Water jet Cutting] [Ph.D Thesis.] Zvolen, Technical University in Zvolen: 171.
  13. Kulekci M.K. (2002): Processes and apparatus developments in industrial waterjet applications. International Journal of Machining Tool Manufacturing, 42: 1297-1306. Go to original source...
  14. Maková I. (2000): Progresívne technológie. [Progresive Technologies.] Košice, Vienala: 275.
  15. Öjmerts C., Amini N. (1994): Discrete approach to the abrasive waterjet milling process. In: Proceedings of the 12th International Conference on Jet Cutting Technology. Rounen, 25.-27. October 1994. London, Mechanical Engineering Publications: 425-434.
  16. Plessis M.P., Hashish M. (1978): High Energy Water Jet Cutting Equations for Wood. Journal of Engineering for Industry, 100: 452-458. Go to original source...
  17. Vikram G, Ramesh Babu N. (2002): Modelling and analysis of abrasive water jet cut surface topography. International Journal of Machine Tools and Manufacture, 42: 1345-54. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.