J. For. Sci., 2014, 60(8):307-317 | DOI: 10.17221/22/2014-JFS

Proposals for Nothofagus antarctica diameter growth estimation: simple vs. global modelsOriginal Paper

H. Ivancich1, G.J. Martínez Pastur1, M.V. Lencinas1, J.M. Cellini2, P.L. Peri3
1 Centro Austral de Investigaciones Científicas (CONICET), Ushuaia, Tierra del Fuego, Argentina
2 Laboratorio de Investigaciones de Sistemas Ecológicos y Ambientales (LISEA-UNLP), La Plata, Buenos Aires, Argentina
3 Instituto Nacional de Tecnología Agropecuaria - Universidad Nacional de la Patagonia Austral, Río Gallegos, Santa Cruz, Argentina

Tree growth is one of the main variables needed for forest management planning. The use of simple models containing traditional equations to describe tree growth is common. However, equations that incorporate different factors (e.g. site quality of the stands, crown classes of the trees, silvicultural treatments) may improve their accuracy in a wide range of stand conditions. The aim of this work was to compare the accuracy of tree diameter growth models using (i) a family of simple equations adjusted by stand site quality and crown class of trees, and (ii) a unique global equation including stand and individual tree variables. Samplings were conducted in 136 natural even-aged Nothofagus antarctica (Forster f.) Oersted stands in Southern Patagonia (Argentina) covering age (20-200 years), crown class and site quality gradients. The following diameter growth models were fitted: 16 simple equations using two independent variables (age and one equation for each stand site quality or crown class) based on Richards model, plus a unique global equation using three independent variables (age, stand site quality and crown class). Simple equations showed higher variability in their accuracy, explained between 54% and 92% of the data variation. The global model presented similar accuracy like the better equations of the simple growth models. The unification of the simple growth models into a unique global equation did not greatly improve the accuracy of estimations, but positively influenced the biological response of the model. Another advantage of the global equation is the simple use under a wide range of natural stand conditions. The proposed global model allows to explain the tree growth of N. antarctica trees along the natural studied gradients.

Keywords: growth models; site quality; crown class

Published: August 31, 2014  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ivancich H, Martínez Pastur GJ, Lencinas MV, Cellini JM, Peri PL. Proposals for Nothofagus antarctica diameter growth estimation: simple vs. global models. J. For. Sci. 2014;60(8):307-317. doi: 10.17221/22/2014-JFS.
Download citation

References

  1. Adame P., Hynynen J., Cañellas I., Del Río M. (2008): Individual-tree diameter growth model for rebollo oak (Quercus pyrenaica Willd.) coppices. Forest, Ecology and Management, 255: 1011-1022. Go to original source...
  2. Bitterlich W. (1984): The Relascope Idea. London, Commonwealth Agricultural Bureaux: 242.
  3. Cochran W. (1977): Técnicas de muestreo. [Sampling Techniques.] Ciudad de México, Editorial Continental: 513.
  4. Crecente-Campo F., Soares P., Tomé M., Diéguez-Aranda U. (2010): Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations. Forest, Ecology and Management, 260: 1695-1974. Go to original source...
  5. Derose R.J., Seymour R.S. (2009): The effect of site quality on growth efficiency of upper crown class Picea rubens and Abies balsamea in Maine, USA. Canadian Journal of Forest Research, 39: 777-784. Go to original source...
  6. Donoso Z.C. (2006): Las especies arbóreas de los bosques Templados de Chile y Argentina. [Tree Species of Temperate Forests of Chile and Argentina.] Valdivia, Marisa Cuneo: 678.
  7. Ek A. (1971): A formula for white spruce site index curves. University of Wisconsin Forestry Research Note, 161: 2.
  8. Everard J., Christie J.M. (1995): Sweet chestnut: silviculture, timber quality and yield in the forest of Dean. Forestry, 68: 133-144. Go to original source...
  9. Fekedulegn D., Mac Siurtain M.P., Colbert J.J. (1999): Parameter estimation of nonlinear growth models in forestry. Silva Fennica, 33: 327-336. Go to original source...
  10. García O. (1988): Growth modelling - a (re)view. New Journal of Zealand Forestry, 33: 14-17.
  11. Hari P. (1996) Idealization and concretization in construction of models applied to forest growth. The Science of the Total Environment, 183: 179-185. Go to original source...
  12. Ivancich H., Soler Esteban R., Martínez Pastur G., Peri P.L. Bahamonde H. (2009): Índice de densidad de rodal aplicado al manejo silvopastoril en bosques de ñire (Nothofagus antarctica) en Patagonia sur. [Stand density index for silvopastoral management in antarctic beech (Nothofagus antarctica) forests of southern Patagonia.] In: Proceedings of Primer Congreso Nacional de Sistemas Silvopastoriles. Posadas, 14.-16. May 2009. Buenos Aires, INTA: 245-250.
  13. Ivancich H., Martínez Pastur G., Peri P.L. (2011): Modelos forzados y no forzados para el cálculo del índice de sitio en bosques de Nothofagus antarctica en Patagonia. [Constrained and non-constrained models for site index estimation in Nothofagus antarctica forests of Southern Patagonia.] Revista Bosque, 32: 135-145. Go to original source...
  14. Kariuki M., Rolfe M., Smith R., Vanclay J.K., Kooyman R.M. (2006): Diameter growth performance varies with species functional-group and habitat characteristics in subtropical rainforests. Forest, Ecology and Management, 225: 1-14. Go to original source...
  15. Khamis A., Zuhaimy I., Khalid H. (2005): Nonlinear growth models for modeling oil palm yield growth. Journal of Mathematics and Statistics, 1: 225-233. Go to original source...
  16. Klepac D. (1976): Crecimiento e incremento de árboles y masas forestales. [Growth and Increment of Trees and Forests.] Ciudad de México, Universidad Autónoma de Chapingo: 367.
  17. Koak A. (1997): Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Canadian Journal of Forest Research, 27: 619-629. Go to original source...
  18. Lei Y.C., Zhang S.Y. (2004): Features and partial derivatives if Bertalanff y-Richards growth model in forestry. Non-linear Analysis: Modelling and Control, 9: 65-73. Go to original source...
  19. Lencinas M.V., Martínez Pastur G., Cellini J.M., Vukasovic R., Peri P.L., Fernández C. (2002): Incorporación de la altura dominante y la calidad de sitio a ecuaciones estándar de volumen para Nothofagus antarctica (Forster f.) Oersted. [Incorporation of dominant height and site class in standard volume models for Nothofagus antarctica (Forster f.) Oersted.] Revista Bosque, 23: 5-17. Go to original source...
  20. Lessard V.C., Mcroberts R.E., Holdway M.R. (2001): Diameter growth models using Minnesota forest inventory and analysis data. Forest Science, 47: 301-310. Go to original source...
  21. Lhotka J.M., Loewenstein E.F. (2011): An individual-tree diameter growth model for managed uneven-aged oakshortleaf pine stand in the Ozark Highlands of Missouri, USA. Forest, Ecology and Management, 261: 770-778. Go to original source...
  22. Martínez Pastur G., Fernández C. (1997): Crecimiento diamétrico de Nothofagus antarctica en Tierra del Fuego para diferentes sitios y status de competición. [Diameter growth of Nothofagus antarctica in Tierra del Fuego for different site quality and crown classes.] Interciencia, 22: 87-91.
  23. Martínez Pastur G., Peri P.L., Vukasovic R., Vaccaro S., Piriz Carrillo V. (1997): Site index equation for Nothofagus pumilio forests. Phyton, 6: 55-60.
  24. Martinez Pastur G., Cellini J.M., Peri P.L., Capiel I. (2005): Ecuación estándar de crecimiento diamétrico individual para árboles de Nothofagus pumilio. [Standard equation of individual diameter growth for Nothofagus pumilio trees.] Revista de la Asociación Forestal Argentina, 59: 17-24.
  25. Martínez Pastur G., Cellini J.M., Lencinas M.V., Peri P.L. (2008): Stand growth model using volume increment/ basal area ratios. Journal of Forest Science, 54: 102-108. Go to original source...
  26. Payandeh B., Wang Y. (1994): Modified site index equations for major Canadian timber species. Forest, Ecology and Management, 64: 97-101. Go to original source...
  27. Peri P.L., Martínez Pastur G. (1996): Crecimiento diamétrico de Nothofagus pumilio para dos condiciones de copa en un sitio de calidad media en Santa Cruz, Argentina. [Diameter growth of Nothofagus pumilio for two crown classes at a middle site quality stand in Santa Cruz, Argentina.] Investigación Agraria: Sistemas y Recursos Forestales, 5: 201-212. Go to original source...
  28. Peri P.L., Gargaglione V., Martínez Pastur G., Lencinas M.V. (2010): Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. Forest, Ecology and Management, 260: 229-237. Go to original source...
  29. Piterbarg R. (1965): Inventario y ordenación de un bosque de lenga (Nothofagus pumilio) en Tierra del Fuego, y primeros resultados de su explotación. [Forest ordination and inventory of lenga (Nothofagus pumilio) forest at Tierra del Fuego, and first outputs of their harvesting.] Revista Forestal Argentina, 9: 105-113.
  30. Pretzsch H. (2009): Forest Dynamics, Growth and Yield: from Measurement to Model. Berlin, Springer: 664. Go to original source...
  31. Ramírez C., Correa M., Figueroa H., San Martin J. (1985): Variación del hábito y hábitat de Nothofagus antarctica en el sur de Chile. [Habitat variation and habitat of Nothofagus antarctica at the Southern Chile.] Revista Bosque, 6: 55-73. Go to original source...
  32. Rayner M. (1991): Site index and dominant height curves for re-growth karri (Eucalyptus diversicolor F. Muell.) in south-western Australia. Forest, Ecology and Management, 44: 261-283. Go to original source...
  33. Richards J.F. (1959): A flexible growth functions for empirical use. Journal of Experimental Botany, 10: 290-300. Go to original source...
  34. Subedi N., Sharma M. (2011): Individual-tree diameter growth models for black spruce and jack pine plantations in northern Ontario. Forest, Ecology and Management, 261: 2140-2148. Go to original source...
  35. Trasobares A., Tomé M., Miina J. (2004): Growth and yield model for Pinus halepensis Mill. in Catalonia, NorthEast Spain. Forest, Ecology and Management, 203: 49-62. Go to original source...
  36. Vanclay J. (1991): Aggregating tree species to develop diameter increment equations for tropical rainforests. Forest, Ecology and Management, 42: 143-168. Go to original source...
  37. Vanclay J. (1994): Modeling Forest Growth and Yield: Applications to Mixed Tropical Forests. Wallingford, CAB International: 312.
  38. Vanclay J. (1995): Growth models for tropical forests: A synthesis of models and methods. Forest Science, 41: 7-42. Go to original source...
  39. Vanclay J. (2010): Robust relationships for simple plantation growth models based on sparse data. Forest, Ecology and Management, 259: 1050-1054. Go to original source...
  40. Wang Y., Payandeh B. (1994): A bi-segmental curve fitting approach to improve the accuracy of site index equations. Forest, Ecology and Management, 67: 35-38. Go to original source...
  41. Weiskittel A.R., Garber S.M., Johnson G.P., Maguire D.A., Monserud R.A. (2007): Annualized diameter and height growth equations for Pacific Northwest plantationgrown Douglas-fir, western hemlock, and red alder. Forest, Ecology and Management, 250: 266-278. Go to original source...
  42. Zeide B. (1978): Standardization of growth curves. Forestry, 76: 289-292. Go to original source...
  43. Zeide B. (1993): Analysis of growth equations. Forest Science, 39: 594-616. Go to original source...
  44. Zhao D., Borders B., Wilson M. (2004): Individual tree diameter growth and mortality models for bottomland mixed-species hardwood stands in the lower Mississippi alluvial valley. Forest, Ecology and Management, 199: 307-322. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.