J. For. Sci., 2012, 58(6):287-297 | DOI: 10.17221/86/2011-JFS

The use of hyperspectral remote sensing for mapping the age composition of forest stands

O. Skoupý1, L. Zejdová1, J. Hanuš2
1 Department of Geoinformation Technologies, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
2 Global Change Research Centre AS CR, Brno, Czech Republic

The paper deals with the issue of mapping the age composition of stand groups using hyperspectral imagery acquired by the AISA Eagle VNIR sensor in the Bílý Kříž locality in the Moravian-Silesian Beskids Mts. An object-oriented approach was employed through segmentation and subsequent classification by means of Nearest Neighbour (NN) algorithm in the environment of eCognition Developer 8 and artificial neural network (ANN) classification provided by ENVI 4.7 software. Because of the dominant occurrence of Norway spruce (Picea abies [L.] Karst.) monocultures in the studied locality the work focuses primarily on the distinguishability of two selected age classes of Norway spruce (10-20 years and 70-80 years). It studies possibilities of a more detailed age estimation of stand groups aged from 10 to 80 years based on the classification into the boundary classes, which shows similarity to dithering based on random algorithm. Comparison with the outline map of the Forest Management Plan shows a correlation (r2 = 0.83) between the spectral characteristics of Norway spruce stands and their age composition.

Keywords: age classification; forestry; hyperspectral; object oriented; segmentation; spruce

Published: June 30, 2012  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Skoupý O, Zejdová L, Hanuš J. The use of hyperspectral remote sensing for mapping the age composition of forest stands. J. For. Sci. 2012;58(6):287-297. doi: 10.17221/86/2011-JFS.
Download citation

References

  1. Baatz M., Benz U., Dehghani S., Heynen M., Höltje A. (2004): eCognition Elements 4.0 User Guide. München, Definiens Imaging: 71.
  2. Brandtberg T., Walter F. (1998): Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis. Machine Vision and Applications, 11: 64-73. Go to original source...
  3. Buddenbaum H., Schlerf M., Hill J. (2005): Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods. International Journal of Remote Sensing, 26: 5453-5465. Go to original source...
  4. Bunting P., Lucas R. (2006): The delineation of tree crowns in Australian mixed species forests using hyperspectral Compact Airborne Spectrographic Imager (CASI) data. Remote Sensing of Environment, 101: 230-248. Go to original source...
  5. Clark R.N., Swayze G.A., Livo K.E., Kokaly R.F., Sutley S.J., Dalton J.B., McDougal R.R., Gent C.A. (2003): Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. Journal of Geophysical Research, 108: 1-44. Go to original source...
  6. Clark M.L., Roberts D.A., Clark D.B. (2005): Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote sensing of environment, 96: 378-398. Go to original source...
  7. Cohen, W.B., Spies T.A., Fiorella M. (1995): Estimating the age and structure of forests in a multiownership landscape of western Oregon, USA. International Journal of Remote Sensing, 16: 721-746. Go to original source...
  8. Culvenor D.S. (2002): TIDA An algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery. Computers & Geosciences, 28: 33-44. Go to original source...
  9. Discepoli M., Gerace I. (2004): Inverse dithering through IMAP estimation. In: Lagana A., Gavrilova M.L., Kumar V., Mun Y., Tan J.K, Gervasi O. (eds): Proceedings, part IV of the Computational Science and Its Applications - ICCSA 2004. Assisi, 14.-17. May 2004. London, Springer: 379-388. Go to original source...
  10. De Wulf R.R., Gossens R.E., De Roover B.P., Borry F.C. (1991): Extraction of forest stand parameters from panchromatic and multispectral SPOT-1 data. International Journal of Remote Sensing, 11: 1571-1588. Go to original source...
  11. Elachi C., van Zyl J. (2006): Introduction to the Physics and Techniques of Remote Sensing. 2nd Ed. Hoboken, Wiley-Interscience: 552. Go to original source...
  12. Fiorella M., Ripple W. J. (1993): Determining the successional stage of temperate coniferous forest with landsat satellite data. Photogrammetric Engineering & Remote Sensing, 59: 239-246.
  13. Franklin S.E. (2001): Remote Sensing for Sustainable Forest Management. Boca Raton, Lewis: 407. Go to original source...
  14. Gemmell F.M. (1995): Effects of forest cover, terrain and scale on timber volume estimation with thematic mapper data in a rocky mountain site. Remote Sensing of Environment, 51: 291-305. Go to original source...
  15. Goetz A.F.H. (2009): Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sensing of Environment, 113(Supplement 1): 5-16. Go to original source...
  16. Gong P., Pu R., Yu B. (1997): Conifer species recognition: An exploratory analysis of in situ hyperspectral data. Remote sensing of environment, 62: 189-200. Go to original source...
  17. Lukeš P., Malenovský Z., Kaplan V., Hanuš J., Homolová L. (2010): Estimation of Norway spruce leaf chlorophyll content from CHRIS/PROBA satellite image data. In: Lacoste-Francis H. (ed.): Proceedings of the Hyperspectral workshop 2010. Frascati, 17.-19. March 2010. Noordwijk, ESA ESRIN: 1-4.
  18. Malenovský Z., Lukeš P., Kaplan V., Hanuš J., Homolová L. (2009): Multi-scale aproaches retrieving norway spruce leaf chlorophyll content from high spatial resolution air-/space borne spectral image data. In: Proceedings of the Workshop on the Retrieval of Geophysical Variables Using High Spatial Resolution Optical Imagery. Noordwijk, 14.-15. October 2009. Noordwijk, ESA/ESTEC: rozsah stran.
  19. Martin M., Aber J. (1997): High spectral resolution remote sensing of forest canopy lignin, nitrogen, and ecosystem processes. Ecological Applications, 7: 431-443. Go to original source...
  20. Pu R. (2009): Broadleaf species recognition with in situ hyperspectral data. International Journal of Remote Sensing, 30: 2759-2779. Go to original source...
  21. Rautiainen M., Heiskanen J., Eklundh L., Mottus M., Lukeš P., Stenberg P. (2010): Ecological applications of physically based remote sensing methods. Scandinavian Journal of Forest Research. 25: 325-339. Go to original source...
  22. RSI (2004): ENVI User's Guide, ENVI 4.1 September 2004 Edition. Boulder, Research Systems, Inc.: 1150
  23. Urban O., Janouš D., Acosta M., Czerný R., Marková I., Navrátil M., Pavelka M., Pokorný R., Šprtová M., Zhang R., Špunda V., Grace J., Marek M.V. (2007): Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Global Change Biology 13: 157-168. Go to original source...
  24. Aardt J.A.N. Van, Wynne R.H. (2007): Examining pine spectral separability using hyperspectral data from an airborne sensor: An extension of field-based results. International Journal of Remote Sensing, 28: 431-436. Go to original source...
  25. Meer F. Van der (1994): Extraction of mineral absorption features from high-spectral resolution data using nonparametric geostatistical techniques. International Journal of Remote Sensing, 15: 2193-2214. Go to original source...
  26. Velho L., Frery A.C., Gomes J. (2009): Image Processing for Computer Graphics and Vision. 2nd Ed. London, Springer-Verlag: 462. Go to original source...
  27. Wessman C.A., Aber J.D., Petersen D.L., Melillo J.M. (1988): Remote-sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems. Nature, 335: 154-156. Go to original source...
  28. Wulder M.A., Franklin S.E. (2003): Remote Sensing of Forest Environments: Concepts and Case Studies. Boston, Kluwer Academic Publishers: 519. Go to original source...
  29. Zagolski F.P., Pinel V., Romier J., Alcayde D., Fontanari J., Gastellu-Etchegorry J. P., Giordano G., Marty G., Mougin E., Joffre R. (1996): Forest canopy chemistry with high spectral resolution remote sensing. International Journal of Remote Sensing, 17: 1107-1128. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.