J. For. Sci., 2010, 56(3):112-120 | DOI: 10.17221/74/2009-JFS

Application of digital elevation model for mapping vegetation tiers

D. Volařík
Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic

The aim of this paper is to explore possibilities of application of digital elevation model for mapping vegetation tiers (altitudinal vegetation zones). Linear models were used to investigate the relationship between vegetation tiers and variables derived from a digital elevation model - elevation and potential global radiation. The model was based on a sample of 138 plots located from the 2nd to the 5th vegetation tier. Potential global radiation was computed in r.sun module in geographic information system GRASS. The final model explained 84% of data variability and employed variables were found to be sufficient for modelling vegetation tiers in the study area. Applied methodology could be used to increase the accuracy and efficiency of mapping vegetation tiers, especially in areas where such task is considered difficult (e.g. agricultural landscape).

Keywords: altitudinal vegetation zones; digital elevation model; linear models; vegetation tiers

Published: March 31, 2010  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Volařík D. Application of digital elevation model for mapping vegetation tiers. J. For. Sci. 2010;56(3):112-120. doi: 10.17221/74/2009-JFS.
Download citation

References

  1. Ambros Z., Štykar J. (2001): Geobiocoenology I. Brno, MZLU v Brně. (in Czech)
  2. Antonic O., Hatic D., Pernar R. (2001): DEM-based depth in sink as an environmental estimator. Ecological Modelling, 138: 247-254. Go to original source...
  3. Austin M.P. (1980): Searching for a model for use in vegetation analysis. Vegetatio, 42: 11-21. Go to original source...
  4. Austin M.P., Belbin L., Meyers J., Doherty M., Luoto M. (2006): Evaluation of statistical models used for predicting plant species distributions: Role of artificial data and theory. Ecological Modelling, 199: 197-216. Go to original source...
  5. Buček A., Lacina J. (2007): Geobiocoenology II. Geobiocoenological Typology of the Czech Republic Landscape. Brno, MZLU v Brně: 251. (in Czech)
  6. Buček A., Lacina J., Culek M., Grulich V. (2005): Characteristics of vegetation tiers. In: culek M. (ed.): Biogeographic division of the Czech Republic, Volume 2. Praha, Agentura ochrany přírody a krajiny ČR: 23-60. (in Czech)
  7. Campbell J.B. (2002): Introduction to Remote Sensing. New York, Guilford Press: 621.
  8. Czech Geological Survey (2003): GEOČR50, geoscience GIS layers geodatabase of geological maps at a scale of 1:50,000) Available at http://nts5.cgu.cz/website/geoinfo (accessed September 10, 2007)
  9. Del Barrio G., Alvera B., Puigdefabregas J., Diez C. (1997): Response of high mountain landscape to topographic variables: Central Pyrenees. Landscape Ecology, 12: 95-115. Go to original source...
  10. Ellenberg H. (1986): Vegetation Ecology of Central Europe. Cambridge, Cambridge University Press.
  11. Forest Management Institute Brandýs nad Labem (2003): regional plans of forest development. Available at http://www.uhul.cz/en/oprl/index.php (wms server: http://geoportal2.uhul.cz/wms_oprl?SERVICE=WMS) (accessed October 6, 2009)
  12. Gottfried M., Pauli H., Grabherr G. (1998): Prediction of vegetation patterns at the limits of plant life: a new view of the Alpine-nival ecotone. Arctic and Alpine Research, 30: 207-221. Go to original source...
  13. GRASS Development Team (2009): Geographic Resources Analysis Support System (GRASS GIS) Software ITC-irst, Trento, Italy. Available at http://grass.itc.it (accessed May 5, 2009)
  14. Grulich V., Culek M. (2005): Remarks to vegetation tiers. In: Culek M. (ed.): Biogeographic Division of the Czech Republic, Volume 2. Praha, Agentura ochrany přírody a krajiny ČR: 21. (in Czech)
  15. Guisan A., Zimmermann N.E. (2000): Predictive habitat distribution models in ecology. Ecological Modelling, 135: 147-186. Go to original source...
  16. Guisan A., Theurillat J.P., Kienast F. (1998): Predicting the potential distribution of plant species in an alpine environment. Journal of Vegetation Science, 9: 65-74. Go to original source...
  17. Hegazy A.K., El-Demerdash M.A., Hosni H.A. (1998): Vegetation, species diversity and floristic relations along an altitudinal gradient in south-west Saudi Arabia. Journal of Arid Environments, 38: 3-13. Go to original source...
  18. Hemp A. (2006): Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecology, 184: 27-42. Go to original source...
  19. Hennekens S.M., Schaminee J.H.J. (2001): TURBOVEG, a comprehensive database management system for vegetation data. Journal of Vegetation Science, 12: 589-591. Go to original source...
  20. Hofierka J., Šúri M. (2002): The solar radiation model for Open source GIS: implementation and applications. In: Ciolli M., Zatelli P. (eds): Proceedings of the Open source GIS - GRASS users conference 2002. Trento, Italy, 2002, 11-13 September 2002. Available at http://www.ing.unitn.it/~grass/conferences/GRASS2002/home.html (accessed March 20, 2009)
  21. Holuša O., Holuša J. (2008): Characteristics of 3rd (Quercifageta s. lat.) and 4th (Fageta (abietis) s. lat.) vegetation tiers of north-eastern Moravia and Silesia (Czech Republic). Journal of Forest Science, 54: 439-451. Go to original source...
  22. Huggett R., Cheesman J. (2002): Topography and the Environment. Prentice Hall, Pearson Education: 274.
  23. Chlupáč I. (2002): Geological History of the Czech Republic. Praha, Academia. (in Czech)
  24. Klimánek M. (2006): Optimization of digital terrain model for its application in forestry. Journal of Forest Science, 52: 233-241. Go to original source...
  25. McCune B., Keon D. (2002): Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science, 13: 603-606. Go to original source...
  26. Mikeska M. (2000): Proposal of formation and classification of outlines of geographically zonal vegetation tiers. In: Viewegh J. (ed.): The Questions of Forest Typology II. Kostelec nad Černými lesy, 11.-12. 1. 2000. Praha, ČZU, FLE: 19-21. (in Czech)
  27. Neteler M., Mitasova H. (2008): Open Source GIS: A GRASS GIS Approach. 3rd Ed. New York, Springer: 406. Go to original source...
  28. Pierce K.B. Jr., Lookingbill T., Urban D. (2005): A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecology, 20: 137-147. Go to original source...
  29. Plíva K., Žlábek I. (1986): Natural Forest Areas in Czechoslovakia. Praha, Státní pedagogické nakladatelství: 313. (in Czech)
  30. Randuška D., Vorel J., Plíva K. (1986): Phytosociology and forest typology. Bratislava, Príroda: 339. (in Slovak)
  31. Šúri M., Hofierka J. (2004): A new GIS-based solar radiation model and its application to photovoltaic assessments. Transactions in GIS, 8: 175-190. Go to original source...
  32. Tichý L. (2002): JUICE, software for vegetation classification. Journal of Vegetation Science, 13: 451-453. Go to original source...
  33. Tolasz R. (2007): Climate Atlas of Czechia. Praha, Olomouc, Český hydrometeorologický ústav, Univerzita Palackého v Olomouci: 255. (in Czech)
  34. Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 85-93. Go to original source...
  35. Zhang B.P., Wu H.Z., Xiao F., Xu J., Zhu Y.H. (2006): Integration of data on Chinese Mountains into a digital altitudinal belt system. Mountain Research and Development, 26: 163-171. Go to original source...
  36. Zlatník A. (1963): Die Vegetationstufen und deren Indikation durch Pflanzenarten am Beispiel der Wälder der ČSSR. Preslia, 35: 31-51.
  37. Zlatník A. (1976a): Overview of groups of geobiocoene types originally wooded or shrubed. Zprávy Geografického ústavu ČSAV v Brně, 13: 55-56. (in Czech)
  38. Zlatník A. (1976b): Forest Phytosociology. Praha, Státní zemědělské nakladatelství: 495. (in Czech)

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.