J. For. Sci., 2007, 53(10):452-461 | DOI: 10.17221/2086-JFS

Root system development and health condition of sycamore maple (Acer pseudoplatanus L.) in the air-polluted region of Krušné hory Mts.

O. Mauer, M. Pop, E. Palátová
Faculty of Forestry and Wood Technology, Mendel University of Agriculture and Forestry Brno, Brno, Czech Republic

The paper presents results from a study of sycamore maple development, health condition and growth in forest altitudinal vegetation zones (FAVZ) 6 and 7 occurring in pollution damage zones A and B in the air-polluted region of Krušné hory Mts. as compared with the trees of identical height in FAVZ 4 and 5 occurring in pollution damage zone D in the Bohemian-Moravian Upland. Sycamore maple develops a fully diversified root system. On spread mounds it creates only a superficial root system and its growth is retarded. The growth of sycamore maple is limited by the layer of humus horizons. If the layer thickness is over 20 cm, the sycamore roots would grow into mineral horizons.

Keywords: sycamore maple; root system; humus; afforestation; mounds

Published: October 31, 2007  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Mauer O, Pop M, Palátová E. Root system development and health condition of sycamore maple (Acer pseudoplatanus L.) in the air-polluted region of Krušné hory Mts. J. For. Sci. 2007;53(10):452-461. doi: 10.17221/2086-JFS.
Download citation

References

  1. Amann G., 1967. Bäume und Sträucher des Waldes. Melsungen, Verlag J. Neumann - Neudamm: 231.
  2. Biebelriether H., 1966. Die Bewurzelung einigen Baumartern in Abhängigkeit von Bodeneigenschaften. Allgemeine Forstzeitschrift, 47: 3-7.
  3. Joslin J.D., Henderson G.S., 1984. The determination of percentages of living tissue in woody fine root samples using triphenyltetrazolium chloride. Forest Science, 30: 965-970.
  4. KAVKA B., 1995. Sadovnická dendrologie I. Listnaté dřeviny. Brno, Eden, s. r. o.: 203.
  5. KOZlovski T.T., Pallardy S.G., 1997. Physiology of Woody Plants. San Diego, Academic Press: 411.
  6. Köstler J.N., Brückner E., Biebelriether H., 1968. Die Wurzeln der Waldbäume. Hamburg und Berlin, Verlag Paul Parey: 284.
  7. LYR H., POLSTER H., FIEDLER H.J., 1967. Gehölzphysiologie. Jena, VEB Gustav Fischer: 444.
  8. Mauer O., 1989. Vliv antropogenní činnosti na vývoj kořenového systému smrku ztepilého (Picea abies /L./ Karsten). [Doktorská dizertační práce.] Brno, VŠZ, LF: 322.
  9. Meyer F.H., 1991. Mykorrhiza der Bäume. Schweizerische Beiträge zur Dendrologie, 41: 163-170.
  10. Mössmer E.M., Ammer U., 1994. Pioniereigenschaften von Gehölzen in Schnee-gleitgefährderten Schutzwaldlagen im montanen und Subalpinen Bereich der Bayerischen Kalkalpen. München, Forstliche Forschungsberichte, No. 140: 120.
  11. Plassard C.S., Mousain D.G., Salsac L.E., 1982. Estimation of mycelial growth of Basidiomycetes by means of chitin determination. Phytochemistry, 21: 345-348. Go to original source...
  12. Polomski J., Kuhn N., 1998. Wurzelsysteme. Bern, Stuttgart, Wien, Verlag Paul Haupt: 290.
  13. Svoboda P., 1955. Lesní dřeviny a jejich porosty. Část II. Praha, SZN: 573.
  14. Úradníček L., Maděra P. et al., 2001. Dřeviny České republiky. Písek, Matice lesnická: 333.
  15. Vignon C., Plaassard C.S., Mousain D.G., Salsac L.E., 1986. Assay of fungal chitin and estimation of mycorrhizal infection. Physiologie végétale, 24: 201-207.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.