J. For. Sci., 2007, 53(2):41-46 | DOI: 10.17221/2136-JFS

Initial evaluation of half-sib progenies of Norway spruce using the best linear unbiased prediction

J. Klápště, M. Lstibůrek, J. Kobliha
Faculty of Forestry and Environment, Czech University of Life Sciences in Prague, Prague, Czech Republic

The present paper deals with data obtained from fifteen years old Norway spruce (Picea abies [L.] Karst.) progeny test established at three sites in the Sázava River region. Parameter under the evaluation was a tree height in 15 years following the establishment of the trial. Genetic parameters were estimated using the REML (Restricted Maximum Likelihood) procedure followed by the BLUP (Best Linear Unbiased Prediction). Genetic parameters estimates were used to predict genetic gain in three alternative selection strategies. The value of gain depends on target value of gene diversity. 10-15% gain is due to selecting breeding population composed of 50 individuals. Based on these quantitative findings, current and future research orientation is discussed.

Keywords: Norway spruce; BLUP analysis; progeny test; genetic gain

Published: February 28, 2007  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Klápště J, Lstibůrek M, Kobliha J. Initial evaluation of half-sib progenies of Norway spruce using the best linear unbiased prediction. J. For. Sci. 2007;53(2):41-46. doi: 10.17221/2136-JFS.
Download citation

References

  1. ANAND J., SADANA D.K., 1998. A comparison of heritability estimates obtained from least-squares ANOVA and REML methods. Indian Journal of Animal Science, 68: 942-945.
  2. BEZNOSKA K., 2004. Smrk ztepilý dřevina roku 2004. Lesu zdar, 10: 6-8.
  3. FALCONER D.S., MACKAY T.F.C., 1996. Introduction to Quantitative genetics. 4th ed. New York, Longman: 464.
  4. GILMOUR A.R., GOGEL B.J., CULLIS B.R., WELHAM S.J., THOMPSON R., 2002. ASReml User Guide Release 1.0 VSN International Ltd., Hemel Hempstead, HP1 1ES.
  5. HENDERSON C.R., 1988. Progress in statistical methods applied to quantitative genetics since 1976. In: WEIR B.S., EISEN E.J., GOODMAN M.M., NAMKOONG G. (eds.), Proceedings of the Second International Conference on Quantitative Genetics. Sinauer Associates, MA: 85-90.
  6. HYNEK V., MACHOVIČOVÁ M., DUDA J., 1992. Šlechtitelské programy pro smrk ztepilý a buk lesní z oblasti Jizerských hor. Lesnická práce, 71: 181-186. Go to original source... Go to PubMed...
  7. JOYCE D., FORD R., FU Y.B., 2002. Spatial patterns of tree height variations in a Black spruce farm-field progeny test and neighbors-adjusted estimations of genetic parameters. Silvae Genetica, 51: 13-18.
  8. LI B., McKEAND S., WEIR R., 1999. Tree improvement and sustainable forestry - impact of two cycles of loblolly pine breeding in the U.S.A. Forest Genetics, 6: 229-234.
  9. LINDGREN D., WERNER M., 1989. Gain generating efficiency of different Norway spruce seed orchard designs. Includes an appendix by Öje Danell. In: STENER L.G., WERNER M. (eds.), Norway Spruce: Provenances, Breeding and Genetic Conservation. Institutet for skogsforbättring, Rapport 11: 189-206.
  10. LYNCH M., WALSH B., 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Inc., MA: 971.
  11. LITTELL R.C., MILLIKEN G.A., STROUP W.W., WOLFINGER R.D., 1996. SAS© System for Mixed Models. Cary, NC: SAS Institute Inc.: 633.
  12. MRODE R.A., 1996. Linear Models for the Prediction of Animal Breeding Values. Wallingford, CAB International.
  13. NETER J., KUTNER M.H., WASSERMAN W., NACHTSHEIM CH.J., 1996. Applied Linear Statistical Models. 4th ed. McGraw-Hill, Irwin.
  14. ROSVALL O., 1999. Enhancing gain from long-term forest tree breeding while conserving genetic diversity. [Ph.D. Thesis.] Acta Universitatis Agriculturae Sueciae Silvestria, 109: 65.
  15. ZOBEL B., TALBERT J., 1984. Applied Forest Tree Improvement. New York, John Wiley & Sons Inc.: 505.
  16. ŽĎÁRSKÁ D., MACHEK J., 1978. Šlechtění smrku v Posázaví na základě výběru kvalitních jedinců. In: Sborník vědeckého lesnického ústavu VŠZ v Praze 21/1978. Praha, SZN.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.