J. For. Sci., 2006, 52(9):387-398 | DOI: 10.17221/4519-JFS

Forest topsoil organic carbon content in Southwest Bohemiaregion

E. Cienciala1, Z. Exnerová1, J. Macků2, V. Henľlík2
1 Institute of Forest Ecosystem Research (IFER), Jílové u Prahy, Czech Republic
2 Forest Management Institute, Brandýs nad Labem, Czech Republic

The aim of this study was to evaluate organic carbon content (SOC) in the surface layers of forest soils in the two Natural Forest Regions situated in Southwest Bohemia, namely Západočeská pahorkatina (NFR 6) and Český les (NFR 11). The study is based upon on two consecutive soil sampling campaigns during autumn 2003 and 2004. While the sampling of 2003 was inadequate to estimate bulk density, the consecutive campaign used a defined sample volume to permit an estimation of bulk density and quantification of soil organic carbon (SOC) for soil organic layers and the upper mineral horizon. The total sampling depth was 30 cm including both organic and mineral layer. SOC of organic horizon was on average 1.99 kg C/m2. It differed by stand site type ranging from 0.70 to 3.04 kg C/m2. The organic layer SOC was smallest under beech (1.03 kg C/m2), whereas it was higher under pine (2.19 kg C/m2) and spruce (2.09 kg C/m2). SOC in the mineral layer was in average 7.28 kg C/m2. SOC differed significantly by the major tree species and reached 10.6; 5.67 and 7.5 kg C/m2 for beech, pine and spruce sites, respectively. The average SOC for the total soil layer (0-30 cm) reached 9.33 kg C/m2. The methodological aspects of regional estimation of SOC and the potential of utilization of the national forest inventory program are also discussed.

Keywords: soil organic layer; mineral horizon; bulk density; soil carbon stock

Published: September 30, 2006  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Cienciala E, Exnerová Z, Macků J, Henľlík V. Forest topsoil organic carbon content in Southwest Bohemiaregion. J. For. Sci. 2006;52(9):387-398. doi: 10.17221/4519-JFS.
Download citation

References

  1. ADAMS W.A., 1973. The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. Journal of Soil Science, 24: 10-17. Go to original source...
  2. BARITZ R., VAN RANST E., SEUFERT G., 2005. Soil carbon default values relevant for evaluations of the carbon status of forest soils in Europe. WP3-D32-RUG (Final Report for Deliverable 3.2, CarboInvent, www.joanneum.at/CarboInvent/soils.php)
  3. BELLAMY P.H., LOVELAND P.J., BRADLEY R.I., LARK R.M., KIRK G.J.D., 2005. Carbon losses from all soils across England and Wales 1978-2003. Nature, 437: 245-248. Go to original source... Go to PubMed...
  4. Forest Act, 1995. Act of 3 November 1995 on Forests and Amendments to some Acts (the Forest Act), as amended (289/1995). [Zákon ze dne 3. listopadu 1995 o lesích a o změně a doplnění některých zákonů (lesní zákon) v platném znění.] Prague, Czech Republic.
  5. GARDINA C.P., RYAN M.G., 2000. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 404: 858-861. Go to original source... Go to PubMed...
  6. HOUSE J.I., PREN TIC E I.C., R A M ANKU T T Y N., HOUGHTON R.A., HEIMANN M., 2003. Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus Series B-Chemical and Physical Meteorology, 55: 345-363. Go to original source...
  7. Intergovernmental Panel on Climate Change (IPCC), 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry. In: PENMAN J., GYTARSKY M., HIRAISHI T., KRUG T., KRUGER D., PIPATTI R., BUENDIA L., MIWA K., NGARA T., TANABE K., WAGNER F. (eds.), IPCC/OECD/IEA/IGES. Hayama, Japan.
  8. JANZEN H.H., 2004. Carbon cycling in earth systems - a soil science perspective. Agriculture, Ecosystems and Environment, 104: 399-417. Go to original source...
  9. LETTENS S., 2005. Assessing sink-source behaviour of soil organic carbon pools in a spatially explicit bottom-up approach. [Dissertationes de Agricultura.] Doctoraatsproefschrift nr. 663 aan de Faculteit Bio-ingenieurswetenschappen van de K. U. Leuven: 187.
  10. LISKI J., ILVESNIEMI H., MAKELA A., WESTMAN C.J., 1999. CO2 emissions from soil in response to climatic warming are overestimated - the decomposition of old soil organic matter is tolerant of temperature. Ambio, 28: 171-174.
  11. LOOMIS R.S., GERAKIS P.A., 1975. Productivity of agricultural ecosystems. In: COOPER J.P. (ed.), Photosynthesis and Productivity in Different Environments. IBP 3. London, Cambridge University Press.
  12. LYMAN W.J., REEHL W.F., SOSENBLATT D.H., 1982. Handbook of Chemical Property Estimation Methods, Environmental Behaviour of Organic Compounds. New York, McGraw-Hill, Inc.
  13. MANN L.K., 1986. Changes in soil carbon after cultivation. Soil Science, 142: 279-288. Go to original source...
  14. PAUL K.I., POLGLASE P.J., NYAKUENGAMA J.G., KHANNA P.K., 2002. Change in soil carbon following afforestation. Forest Ecology and Management, 168: 241-257. Go to original source...
  15. POST W.M., KWON K.C., 2000. Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 6: 317-327. Go to original source...
  16. PRŮ©A E., 2001. Pěstování lesů na typologických základech. Kostelec nad Černými lesy, Lesnická práce: 592.
  17. RAWLS W.J., BRAKENSIEK D.L., 1985. Prediction of soil water properties for hydrologic modelling. Proceedings of the American Society of Civil Engineers Watershed Management in the Eighties Symposium. New York, American Society of Civil Engineers: 293-299.
  18. SCHIMEL D.S., BRASWELL B.H., HOLLAND E.A., McKEOWN R., OJIMA D.S., PAINTER T.H., PARTON W.J., TOWNSEND A.R., 1994. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles, 8: 279-293. Go to original source...
  19. STEVENSON F.J., COLE M.A., 1999. Cycles of Soils: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients. 2nd Ed. New York, Wiley.
  20. SYSTAT Software, Inc., 2004. SYSTAT 11 - Statistics (Computer program manual). Richmond, CA, USA, http://www.systat.com.
  21. ©TÍHEL Z., 2001. Laboratorní postupy. Brandýs nad Labem, Ústav pro hospodářskou úpravu lesů: 52.
  22. THÜRIG E., 2005. Carbon budget of Swiss forests: evaluation and application of empirical models for assessing future management impacts.[Dissertation ETHY No. 15872]. Swiss Federal Institute of Technology, Zurich.
  23. VEJRE H., CALLESEN I., VESTERDAL L., RAULUNDRASMUSSEN K., 2003. Carbon and nitrogen in Danish forest soils - contents and distribution determined by soil order. Soil Science Society of America Journal, 67: 335-343. Go to original source...
  24. WEINER E.R., 2000. Applications of Environmental Chemistry: A Practical Guide for Environmental Professionals. Boca Raton, CRC Press.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.