J. For. Sci., 2004, 50(5):199-210 | DOI: 10.17221/4616-JFS

Modifying the elastomechanics of the stem and the crown needle mass distribution to affect the diameter increment distribution: A field experiment on 20-year old Abies grandis trees

D. Gaffrey, B. Sloboda
University of Göttingen, Faculty of Forest Sciences and Forest Ecology, Institute of Forest Biometry and Informatics, Göttingen, Germany

In the spring of 2000, field experiments were begun on three 20-year old grand fir (Abies grandis) to influence the elasto-mechanical behavior of the stem, as well as the distribution of the assimilate crown production. The aim was to analyze, and then describe and model the expected resulting change in stem growth. Three stem sections of one fir were reinforced by rigidly attaching T-shaped steel bars to reduce bending stresses. Preliminary calculations with an elasto-mechanical tree and force model (that had been developed for a different tree, but was adapted by taking the size differences into account) gave first indications for the experimental design in regards to the necessary number of the bars and their dimensions required to guarantee that the stem rigidity would be highly increased. Furthermore, the simulations proposed no increased risk of stem breakage in the non-reinforced stem parts. The stability of the second tree was decreased by hanging sand bags with defined masses on the branches. Directly after loading, a significantly changed swaying behavior could be observed, which should cause correspondingly higher stress in the fibers. As for this load case, the simulated results prognosticate only a negligible increase in stress. The roughly-adapted model used, is seemingly invalid for this tree. In regards to the third tree, the bark at the base of all branches of the eastern half of the crown was removed to prevent any import of assimilates into the stem. The branches were not cut off because the mass distribution and thus, the mechanical behavior, of the tree was to be influenced as little as possible. The experiment will be concluded in the winter of 2003, after a four-year growth period. In addition to detailed stem analyses, the spatial crown structure with its needle and branch mass distribution, as well as the mechanical wood properties of the stem will be measured.

Keywords: Abies grandis; elastomechanics; field experiment; stress; strain; diameter increment distribution

Published: May 31, 2004  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Gaffrey D, Sloboda B. Modifying the elastomechanics of the stem and the crown needle mass distribution to affect the diameter increment distribution: A field experiment on 20-year old Abies grandis trees. J. For. Sci. 2004;50(5):199-210. doi: 10.17221/4616-JFS.
Download citation

References

  1. BLACKBURN G., 1997. The Growth and Mechanical Response of Trees to Wind Loading. [Ph.D. Thesis.] Univ. of Manchester, Faculty of Science: 216.
  2. BÜSGEN M., MÜNCH E., 1927. Bau und Leben unserer Waldbäume. 3. ed. Jena, G. Fischer Verlag: 426.
  3. CANCINO J., GOCKEL S., SABOROWSKI J., 2002. Randomized branch sampling - Varianten, Programm BRANCH und erste Analysen. Proc. Deutscher Verband Forstlicher Forschungsanstalten, Sektion Forstliche Biometrie und Informatik. 14. Tagung, Göttingen, 3.-5. April 2002: 76-87.
  4. DELEUZE C., HOULLIER F., 1995. Prediction of stem profile of Picea abies using a process-based tree growth model. Tree Physiol., 15: 113-120. Go to original source... Go to PubMed...
  5. DELEUZE C., HOULLIER F., 1997. A transport model for tree ring width. Silva Fenn., 31 (3): 239-250. Go to original source...
  6. DUFF G.H., NOLAN N.J., 1953. Growth and morphogenesis in the Canadian forest species. I. The controls of cambial and apical activity in Pinus resinosa Ait. Can. J. Bot., 31: 471-513. Go to original source...
  7. FAYLE D.C.F., MACIVER D.C., 1985. Growth layer analysis as a method of examining tree growth and development responses. In: SOLOMON D.S., BRANN T.B. (eds.), Environmental influences on tree and stand increment. Proc. of the Mensuration, Growth and Yield Instruments and Methods in Forest Mensuration Workshop, Durham, New Hampshire: 40-48.
  8. GAFFREY D., 1995. Polare Stammscheibenvermessung zur Optimierung der Flächen- bzw. Volumenzuwachsschätzung. In: KOTAR M., QUEDNAU H.-D. (eds.), Proc. Deutscher Verband Forstlicher Forschungsanstalten, Sektion Forstliche Biometrie und Informatik, 7. Tagung, Ljubljana/Grosuplje, 20.-24. September 1994: 13-36. [PDF file: www.uni.gaffrey.de]
  9. GAFFREY D., 2000. Simulated stress distribution in a stem of a 64-year old Douglas fir applying a 3D-tree and load model. In: SPATZ H-C., SPECK T. (eds.), Plant Biomechanics 2000. Proc. of the 3rd Plant Biomechanics Conference Freiburg - Badenweiler August 27th to September 2nd 2000: 425-431. [PDF file: www.uni.gaffrey.de]
  10. GAFFREY D., 2001. Last- und Spannungssimulation für eine 64-jährige Douglasie. Ein Beitrag zum Verständnis des elastomechanischen Verhaltens von Bäumen. Stadt und Grün, 50 (1): 48-57. [PDF file: www.uni.gaffrey.de]
  11. GAFFREY D., SABOROWSKI J., 1999. RBS, ein mehrstufiges Inventurverfahren zur Schätzung von Baummerkmalen. I. Schätzung von Nadel- und Asttrockenmassen bei 66-jährigen Douglasien. Allg. Forst- Jagdztg, 170: 177-183. [PDF file: www.uni.gaffrey.de]
  12. GAFFREY D., KNIEMEYER O., 2002. The elasto-mechanical behaviour of Douglas fir, its sensitivity to tree-specific properties, wind and snow loads, and implications for stability - a simulation study. J. For. Sci., 48: 49-69. [PDF file: www.uni.gaffrey.de] Go to original source...
  13. HÄCKEL H., 1993. Meteorologie. Stuttgart, Ulmer Verlag: 402.
  14. HARTIG R., 1870. Ueber das Dickenwachsthum der Waldbäume. Z. Forst- Jagdwes., 3: 66-104.
  15. JERONIMIDIS G., VINCENT J.F.V. (eds.), 1997a. Plant Biomechanics 1997. Conf. Proc. I: Papers. Centre for Biomimetics, The University of Reading: 379.
  16. JERONIMIDIS G., VINCENT J.F.V. (eds.), 1997b. Plant Biomechanics 1997. Conf. Proc. II: Posters. Centre for Biomimetics, The University of Reading: 100.
  17. JOST L., 1891. Ueber Dickenwachsthum und Jahrringbildung. Bot. Ztg., 49 (30): 485-496, 501-510, 525-531, 541-547, 557-563, 573-579, 589-596, 605-611, 625-630.
  18. METZGER C., 1893. Der Wind als maßgebender Faktor für das Wachsthum der Bäume. Mündener Forstliche Hefte, 5: 35-86.
  19. MATTHECK C., 1990. Why they grow, how they grow: The mechanics of trees. Arboric. J., 14: 1-17. Go to original source...
  20. MATTHECK C., 1993. Design in der Natur. Der Baum als Lehrmeister. Freiburg i. Br., Rombach: 242.
  21. MITCHELL K.J., 1975. Dynamics and simulated yield of Douglas-fir. Forest Sci. Monogr., 17: 39.
  22. MITCHELL C.A., MYERS P.N., 1995. Mechanical stress regulation of plant growth and development. Hort. Rev., 17: 1-42. Go to original source... Go to PubMed...
  23. NIKLAS K.J., 1992. Plant biomechanics. An engineering approach to plant form and function. Chicago, The University of Chicago Press: 607.
  24. NIKLAS K.J., 1999. Changes in the factor of safety within the superstructure of a dicot tree. Amer. J. Bot., 86 (5): 688-696. Go to original source...
  25. NIKLAS K.J., SPATZ H.C., 2000. Wind-induced stresses in cherry trees: evidence against the hypothesis of constant stress levels. Trees, 14: 230-237. Go to original source...
  26. ONAKA F., 1950a. The longitudinal distribution of radial increments in trees. (Jap., engl. abstract.) Bulletin of the Kyoto University Forests, 18: 1-53. (English translation: Department of the Secretary of State of Canada. Foreign Language Division. Bureau for Translations. No. 11177.)
  27. ONAKA F., 1950b. The effects of defoliation, disbudding, girdling and other treatments upon growth, especially radial growth in evergreen conifers. (Jap., engl. abstract.) Bulletin of the Kyoto University Forests, 18: 54-95.
  28. PREßLER M., 1865. Das Gesetz der Stammbildung. Leipzig: 153.
  29. PRYN M.L., EWERS F., TELEWSKI F.W., 2000. Thigmomorphogenesis: Changes in the morphology and mechanical properties of two Populus hybrids in response to mechanical perturbation. Tree Physiol., 20: 535-540. Go to original source... Go to PubMed...
  30. REFFYE DE P., HOULLIER F., BLAISE F., FOURCAUD T., 1997. Essai sur les relations entre l'architecture d'un arbre et la grosseur de ses axes végétatif. In: BOUCHON J., REFFYE DE P., BARTHELEMY D. (eds.), Modélisation et simulation de l'architecture des végétaux. Paris, Inst. Nat. de la Recherche Agronomique: 255-423.
  31. SABOROWSKI J., GAFFREY D., 1999. RBS, ein mehrstufiges Inventurverfahren zur Schätzung von Baummerkmalen. II. Modifizierte RBS-Verfahren. Allg. Forst- Jagdztg, 170: 223-227. [PDF file: www.uni.gaffrey.de]
  32. SCHWENDENER S., 1874. Das mechanische Princip im anatomischen Bau der Monocotylen mit vergleichenden Ausblicken auf die übrigen Pflanzenklassen. Leipzig, Wilhelm Engelmann: 179. Go to original source...
  33. SPATZ H.-C., SPECK T. (eds.), 2000. Plant Biomechanics 2000. Proc. 3rd Plant Biomechanics Conference Freiburg - Badenweiler, August 27th to September 2nd 2000. Stuttgart, Georg Thieme Verlag: 681.
  34. SPECK T., ROWE N.P., BRÜCHERT F., HABERER W., GALLENMÜLLER F., SPATZ H.-C., 1996. How plants adjust the "material properties" of their stems according to differing mechanical constraints during growth: an example of smart desing in nature. Proc. of the 1996 Engineering Systems Design and Analysis Conference, Vol. 5, Bioengineering. The American Society of Mechanical Engineers, PD-Vol. 77: 233-241.
  35. SLOBODA B., GAFFREY D., 1999. Dynamik der Stammorphologie. Final Report of the DFG project Sl 11/6-1: 95. [PDF file: www.uni.gaffrey.de]
  36. TELEWSKI F.W., 2000. The thigmomorphogenetic dose response of plants to mechanical flexure. In: SPATZ H-C., SPECK T. (eds.), Plant Biomechanics 2000. Proc. 3rd Plant Biomechanics Conference Freiburg - Badenweiler, August 27th to September 2nd 2000. Stuttgart, Georg Thieme Verlag: 668-673.
  37. TELEWSKI F.W., PRYN M.L., 1998. Thigmomorphogenesis: a dose response to flexing in Ulmus americana seedlings. Tree Physiol., 18: 65-68. Go to original source... Go to PubMed...
  38. THORNLEY J.H.M., 1972a. A model to describe the partitioning of photosynthates during vegetative plant growth. Ann. Bot., 36: 419-430. Go to original source...
  39. THORNLEY J.H.M., 1972b. A balanced quantitative model for root:shoot rations in vegetative plants. Ann. Bot., 36: 431-441. Go to original source...
  40. VINCENT J.F.V. (ed.), 1994a. Plant Biomechanics Congress, Montpellier, France, September 5-9, 1994. Special issue of Biomimetics, 2 (2): 77-192.
  41. VINCENT J.F.V. (ed.), 1994b. Plant Biomechanics Congress, Montpellier, France, September 5-9, 1994. Special issue of Biomimetics, 2 (3): 193-281.
  42. WILSON B.F., ARCHER R.R., 1979. Tree design: Some biological solutions to mechanical problems. Bioscience, 29 (5): 293-298. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.