J. For. Sci., 2025, 71(9):441-455 | DOI: 10.17221/49/2025-JFS

Additive volume-equation systems for Pinus ayacahuite and Pinus douglasiana in temperate forests of the Sierra Norte, Oaxaca, MexicoOriginal Paper

Wenceslao Santiago-García ORCID...1, Jonathan Ramírez-Arce ORCID...2, Agustín Ramírez-Martínez ORCID...3, Adan Nava-Nava ORCID...4, Juan Carlos Guzmán-Santiago ORCID...5, Elías Santiago-García ORCID...6
1 Postgraduate Division, Institute of Environmental Studies, University of the Sierra Juárez, Ixtlán de Juárez, Mexico
2 Independent researcher in forest engineering, Ixtlán de Juárez, Mexico
3 Santa María Jaltianguis Forest Technical Directorate, Ixtlán de Juárez, Mexico
4 Agropecuaria Santa Genoveva S.A.P.I. de C.V., San Francisco de Campeche, Campeche, Mexico
5 Postgraduate College, Forest Sciences, Montecillo Campus, Texcoco, Mexico
6 Forest Technical Directorate of the Community of Ixtlán de Juárez, Ixtlán de Juárez, Mexico

Volume models are essential tools for quantifying timber stocks and optimising forest utilisation. This study aimed to develop additive volume systems based on one- and two-entry simultaneous equations for Pinus ayacahuite Ehrenb. ex Schltdl. and Pinus douglasiana Martínez. Destructive sampling of 55 P. ayacahuite trees and 65 P. douglasiana trees was conducted in the communal forest of Ixtlán de Juárez, Oaxaca, southern Mexico. The additive systems were fitted using non-linear seemingly unrelated regression to estimate tree-volume components: stem and branch volumes, with whole-tree volume being the sum of both. The systems were evaluated using the relative ranking method, considering statistical indicators of accuracy, variability, and relative errors. Additionally, the predictive capacity of the equations was assessed through linear regression between observed and predicted values for each volume component, and the biological consistency was verified. The results indicate that two-entry additive systems provide greater accuracy in estimating stem, branch, and whole-tree volumes for both species. These equations are based on the Schumacher-Hall model, and their recommended range of application for both species is for diameter at breast height (DBH) between 9 cm and 75 cm, and for total height (H) between 9 m and 34 m. Therefore, their application is recommended for forest inventories and the planning of sustainable forest management.

Keywords: forest inventory; forestry; regression; simultaneous fitting; volume tables; whole-tree volume

Received: June 21, 2025; Revised: September 1, 2025; Accepted: September 1, 2025; Prepublished online: September 25, 2025; Published: September 30, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Santiago-García W, Ramírez-Arce J, Ramírez-Martínez A, Nava-Nava A, Guzmán-Santiago JC, Santiago-García E. Additive volume-equation systems for Pinus ayacahuite and Pinus douglasiana in temperate forests of the Sierra Norte, Oaxaca, Mexico. J. For. Sci. 2025;71(9):441-455. doi: 10.17221/49/2025-JFS.
Download citation

References

  1. Avery T.E., Burkhart H.E. (2002): Forest Measurements. 5th Ed. New York, McGraw-Hill: 456.
  2. Balboa-Murias M.A., Rodríguez-Soalleiro R., Merino A., Álvarez-González J.G. (2006): Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. Forest Ecology and Management, 237: 29-38. Go to original source...
  3. Behling A., David H.C., Demétrio C.G.B., Sanquetta C.R., Corte A.P.D., Woycikievicz A.P.F. (2019): Additivity of volume components of tree boles. Floresta, 50: 905-914. Go to original source...
  4. Bornand A., Rehush N., Morsdorf F., Thürig E., Abegg M. (2023): Individual tree volume estimation with terrestrial laser scanning: Evaluating reconstructive and allometric approaches. Agricultural and Forest Meteorology, 341: 109654. Go to original source...
  5. Brandesis T.J., Delaney M., Parresol B.R., Royer L. (2006): Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume. Forest Ecology and Management, 233: 133-142. Go to original source...
  6. Burkhart H.E., Tomé M. (2012): Modelling Forest Trees and Stands. Dordecht, Springer Science & Business Media: 458. Go to original source...
  7. Clutter J.L., Forston J.C., Pienaar L.V., Brister G.H., Bailey R.L. (1983): Timber Management: A Quantitative Approach. New York, John Wiley & Sons: 333.
  8. Corral-Rivas J.J., Vega-Nieva D.J., Rodríguez-Soalleiro R., López-Sánchez C.A., Wehenkel C., Vargas-Larreta B., Álvarez-González J.G., Ruiz-González A.D. (2017): Compatible system for predicting total and merchantable stem volume over and under bark, branch volume and whole-tree volume of pine species. Forests, 8: 417. Go to original source...
  9. Dama¹evièius R., Mozgeris G., Kurti A., Maskeliūnas R. (2024): Digital transformation of the future of forestry: An exploration of key concepts in the principles behind Forest 4.0. Frontiers in Forests and Global Change, 7: 1424327. Go to original source...
  10. De Lima R.B., Ferreira R.L.C., da Silva J.A.A., Alves Júnior F.T., de Oliveira C.P. (2020): Estimating tree volume of dry tropical forest in the Brazilian semi-arid region: A comparison between regression and artificial neural networks. Journal of Sustainable Forestry, 40: 281-299. Go to original source...
  11. De Souza Y.F., Miguel E.P., Lima A.J.N., de Souza Á.N., Matricardi E.A.T., Rezende A.V., de Freitas J.V., de Souza H.J., Oliveira K.N., de Brito Lima M. de F., Biali L.J. (2024): Generic and specific models for volume estimation in forest and savanna phytophysiognomies in Brazilian Cerrado. Plants, 13: 2769. Go to original source... Go to PubMed...
  12. Diéguez A.U., Barrio A.M., Castedo D.F., Ruíz G.A.D., Álvarez T.M.F., Álvarez G.J.G., Rojo A.A. (2003): Dendrometría. Madrid, Ediciones Mundi-Prensa: 327. (in Spanish)
  13. Dong L., Zhang L., Li F. (2014): A compatible system of biomass equations for three conifer species in Northeast China. Forest Ecology and Management, 329: 306-317. Go to original source...
  14. Dong L., Zhang L., Li F. (2015): A three-step proportional weighting system of nonlinear biomass equations. Forest Science, 61: 35-45. Go to original source...
  15. García E. (1987): Modificaciones al Sistema de Clasificación Climática de Kóppen (para adaptarlo a las condiciones de la República Mexicana). México, Instituto de Geografía, UNAM: 217. (in Spanish)
  16. Guzmán-Santiago J.C., Aguirre-Calderón O.A., Jiménez-Pérez J., Vargas-Larreta B. (2020): Estimación de volumen de Abies religiosa (Kunth) Schltdl. & Cham. en diferentes entidades federativas de México. Colombia Forestal, 23: 99-113. (in Spanish) Go to original source...
  17. Harvey A.C. (1976): Estimating regression models with multiplicative heteroscedasticity. Econometrica: Journal of the Econometric Society, 461-465. Go to original source...
  18. He P., Jiang L., Li F. (2022): Evaluation of parametric and non-parametric stem taper modeling approaches: A case study for Betula platyphylla in Northeast China. Forest Ecology and Management, 525: 120535. Go to original source...
  19. Huy B., Truong N.Q., Khiem N.Q., Poudel K.P., Temesgen H. (2022): Deep learning models for improved reliability of tree aboveground biomass prediction in the tropical evergreen broadleaf forests. Forest Ecology and Management, 508: 120031. Go to original source...
  20. Jha S., Yang S.I., Brandeis T.J., Kuegler O., Marcano-Vega H. (2023): Evaluation of regression methods and competition indices in characterizing height-diameter relationships for temperate and pantropical tree species. Frontiers in Forests and Global Change, 6: 1282297. Go to original source...
  21. Lee D., Seo Y., Choi J. (2017): Estimation and validation of stem volume equations for Pinus densiflora, Pinus koraiensis, and Larix kaempferi in South Korea. Forest Science and Technology, 13: 77-82. Go to original source...
  22. Liu J., Quan Y., Wang B., Shi J., Ming L., Li M. (2023): Estimation of forest stock volume combining airborne LiDAR sampling approaches with multi-sensor imagery. Forests, 14: 2453. Go to original source...
  23. López-Villegas M.F., Santiago-García W., Quiñonez-Barraza G., Suárez-Mota M.E., Santiago-Juárez W., Santiago-García E. (2017): Ecuaciones globales y locales de altura-diámetro de 12 especies de interés comercial en bosques manejados. Revista Mexicana de Agroecosistemas, 4: 113-126. (in Spanish)
  24. Melchor M.J.I., Romero. H.A.E., Rodríguez A.M., Salazar J.G. (2010): Tabla de volumen para Pinus chiapensis. INIFAP. Folleto técnico Numero 50. México, Centro regional Golfo Centro Veracruz: 23. (in Spanish)
  25. Monárrez-González J.C., Márquez-Linares M.A., López-Hernández J.A., Pérez-Verdín G., Quiñonez-Barraza G., García-Cuevas X. (2024): Ecuaciones de volumen fustal-total y ahusamiento para especies maderables del ecosistema templado en Puebla, México. Revista Mexicana de Ciencias Forestales, 15: 4-28. (in Spanish) Go to original source...
  26. Ogana F.N., Ercanli I. (2022): Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm. Journal of Forestry Research, 33: 883-898. Go to original source...
  27. Ordóñez-Prado C., Tamarit-Urias J.C., Nava-Nava A., Rodríguez-Acosta M. (2024): Additive equations system to estimate aboveground biomass by structural component and total of three giant bamboo species in Mexico. CERNE, 30: e-103267. Go to original source...
  28. Özçelik R., Karatepe Y., Gürlevik N, Cañellas I., Crecente-Campo F. (2016): Development of ecoregion-based merchantable volume systems for Pinus brutia Ten. and Pinus nigra Arnold. in southern Turkey. Journal of Forestry Research, 27: 101-117. Go to original source...
  29. Parresol B.R. (2001): Additivity of nonlinear biomass equations. Canadian Journal of Forest Research, 31: 865-878. Go to original source...
  30. Piñeiro G., Perelman S., Guerschman J.P., Paruelo J.M. (2008): How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecological Modelling, 216: 316-322. Go to original source...
  31. Poudel K.P., Cao Q.V. (2013): Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. Forest Science, 59: 243-252. Go to original source...
  32. Pretzsch H. (2009): Forest Dynamics, Growth and Yield: From Measurement to Model. Berlin, Springer: 664. Go to original source...
  33. Quiñonez-Barraza G., de los Santos-Posadas H.M., Álvarez-Gonzáles J.G., Velázquez-Martínez A. (2014): Compatible taper and merchantable volume system for major pine species in Durango, Mexico. Agrociencia, 48: 553-567.
  34. Ramírez-Martínez A., Santiago-García W., Quiñonez-Barraza G., Ruiz-Aquino F., Antúnez P. (2018): Taper and total volume model for Pinus ayacahuite Ehren. Madera y Bosques, 24: e2421496. Go to original source...
  35. Ramírez-Martínez A., Santiago-García W., Quiñonez-Barraza G., Ruiz-Aquino F., Martínez-Antúnez P. (2016): Stem volume models for Pinus ayacahuite Ehren. Revista Mexicana de Agroecosistemas, 3: 61-74.
  36. Santiago-García W. (2025): Regression analysis and artificial neural networks for predicting pine species volume in community forests. Ecological Informatics, 89: 103203. Go to original source...
  37. Santiago-García W., Ángeles-Pérez G., Quiñonez-Barraza G., de los Santos-Posadas H.M., Rodríguez-Ortiz G. (2020a). Advances and perspectives in modeling applied to forest planning in Mexico. Madera y Bosques, 26: e2622004. Go to original source...
  38. Santiago-García W., Bautista-Pérez L., Rodríguez-Ortiz G., Quiñonez-Barraza G., Ruiz-Aquino F., Suárez-Mota M.E., Santiago-García E., Leyva-Pablo T., Cortés-Pérez M., González-Guillén M. de J. (2022): Comparative analysis of three forest management plans in southern Mexico. Forests, 13: 393. Go to original source...
  39. Santiago-García W., Jacinto-Salinas A.H., Rodríguez-Ortiz G., Nava-Nava A., Santiago-García E., Ángeles-Pérez G., Enríquez-del Valle J.R. (2020b): Generalized height-diameter models for five pine species at Southern Mexico. Forest Science and Technology, 16: 49-55. Go to original source...
  40. SAS (2013): SAS/STAT® User's Guide. Version 9.4 for Windows. Cary, Statistical Analysis System Institute: 556.
  41. Seely H., Coops N.C., White J.C., Montwé D., Ragab A. (2025): Forest aboveground biomass estimation using deep learning data fusion of ALS, multispectral, and topographic data. International Journal of Remote Sensing, 46: 3874-3912. Go to original source...
  42. Shapiro S.S., Wilk M.B. (1965): An analysis of variance test for normality (complete samples). Biometrika, 52: 591-611. Go to original source...
  43. Tabacchi G., Di Cosmo L., Gasparini P. (2011): Aboveground tree volume and phytomass prediction equations for forest species in Italy. European Journal of Forest Research, 130: 911-934. Go to original source...
  44. Torres R.J.M., Magaña T.O.S. (2001): Evaluación de Plantaciones Forestales. Editorial. Limusa. México, Grupo Noriega Editores: 472. (in Spanish)
  45. Vallet P., Dhôte J.F., Le Moguédec G., Ravart M., Pignard G. (2006): Development of total aboveground volume equations for seven important forest tree species in France. Forest Ecology and Management, 229: 98-110. Go to original source...
  46. Vargas-Larreta B., Corral-Rivas J.J., Aguirre-Calderón O.A., López-Martínez J.O., de los Santos-Posadas H.M., Zamudio-Sánchez F.J., Treviño-Garza E.J., Martínez-Salvador M., Aguirre-Calderón C.G. (2017): SiBiFor: Forest biometric system for forest management in Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23: 437-455. Go to original source...
  47. Wang S., Feng Z., Wang Z., Hu L., Ma T., Yang X., Fu H., Li J. (2024): Construction of additive allometric biomass models for young trees of two dominate species in Beijing, China. Forests, 15: 991. Go to original source...
  48. White H. (1980): A heteroskedasticity-consistent covariance matrix and direct test for heteroskedasticity. Econometrica, 48: 817-838. Go to original source...
  49. Zellner A. (1962): An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association, 57: 348-368. Go to original source...
  50. Zeng W., Zhang L., Chen X., Cheng Z., Ma K., Li Z. (2017): Construction of Compatible and Additive Individual-Tree Biomass Models for Pinus Tabulaeformis in China. Canadian Journal of Forest Research, 47: 467-475. Go to original source...
  51. Zhao D., Kane M. (2017): New variable-top merchantable volume and weight equations derived directly from cumulative relative profiles for loblolly pine. Forest Science, 63: 261-269. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.