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Abstract: The sustainable management of European forest ecosystems necessitates innovative mechanisation solutions
to address operational challenges in hilly, mountainous, and ecologically sensitive terrains. Hybrid-drive unmanned ve-
hicles (HDUVs) present a transformative potential by integrating fuel-electric powertrains with autonomous navigation
systems, enabling energy-efficient operations with minimal environmental impact. This review synthesises and criti-
cally analyses advancements in three critical domains: (i) dynamic modelling and chassis design for enhanced terrain
adaptability, (ii) hybrid powertrain optimisation for reduced emissions and extended operational range, and (iii) the
integration of unmanned systems for precision forestry tasks. By examining multi-body dynamics, power management
strategies, and Al-driven navigation algorithms, we elucidate the role of HDUVs in improving operational efficiency
while mitigating soil disturbance and carbon footprint. The review identifies prevailing research gaps and suggests that
future work should prioritise the development of standardised testing protocols and foster cross-disciplinary collabora-
tion to align HDUV development with EU biodiversity and climate objectives.
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In response to intensifying ecological impera-
tives, optimising resource allocation and reducing
operational costs in European forestry and grass-
land management have become strategic priorities.
This focus is formalised in initiatives such as the
European Forest Institute's research networks
and the EU Forest Strategy 2030, which explicitly
recognise forests as critical carbon sinks and vi-
tal economic resources (Muigg et al. 2020). These
policy frameworks underscore a dual commitment

to technological innovation and ecological pres-
ervation in sustainable land management. Tradi-
tional mechanised operations face compounded
challenges in Europe's fragmented terrains — nota-
bly steep slopes and densely vegetated landscapes
— where conventional tracked or wheeled vehicles
often contribute to soil compaction, habitat frag-
mentation, and operational inefficiencies, while
also struggling with limited accessibility (Dymov
et al. 2022; Mykhailenko et al. 2024).
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Hybrid-drive unmanned vehicles (HDUVs) rep-
resent a promising technological solution to these
limitations. By synergising internal combustion
engines (ICEs) for extended mobility with electric
propulsion for low-noise, high-precision tasks,
HDUVs achieve adaptive power distribution across
diverse forestry workflows. Empirical studies con-
firm their dual advantages: leveraging the endur-
ance of fuel-based systems alongside the efficiency
of electric drives to enhance energy conservation,
environmental compatibility, and terrain adapt-
ability (Dong et al. 2022). Crucially, HDUV power
systems can dynamically adjust energy allocation
in real-time, ensuring long-range transport capa-
bility via ICEs while enabling precise, low-impact
operations through electric drives, even on steep
and obstacle-rich terrain (Gao et al. 2025). This
architecture concurrently mitigates the range limi-
tations inherent in pure-electric systems under
heavy loads and reduces emissions from conven-
tional machinery (Redi et al. 2021), thereby align-
ing with the urgent demand for sustainable forestry
technologies.

The autonomous capabilities of HDUVs further
augment their operational value. Multi-sensor fu-
sion and artificial intelligence (AI) algorithms fa-
cilitate centimetre-level positioning and robust
path planning, while visual SLAM (Simultaneous
Localisation and Mapping) ensures reliable obsta-
cle avoidance and precision task execution in GPS-
denied environments, such as under dense canopy
cover (Guan et al. 2024). These features collectively
address labour shortages in remote operations and
minimise human exposure to hazardous working
conditions.

This paper aims to provide a comprehensive and
in-depth review of research progress on hybrid
unmanned vehicles for complex forest and grass-
land terrains, focusing on three interconnected
dimensions: dynamic characteristics, hybrid pow-
er systems, and unmanned system integration.
By synthesising the latest research findings, this
review elaborates on the technical features, key
challenges, and innovative solutions within each
dimension. Furthermore, it projects future de-
velopment trends for HDUVs, anticipating their
evolution towards greater intelligence and speciali-
sation based on technological trajectories and in-
dustrial needs. The literature search for this review
was conducted using major academic databases
(e.g. Web of Science, Scopus, IEEE Xplore) and fo-
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cused primarily on research from the past decade.
The selection criteria prioritised studies relevant
to vehicle dynamics, hybrid powertrains, and au-
tonomous navigation in unstructured forest and
grassland environments.

RESEARCH ON THE DYNAMICS
OF FORESTRY AND GRASSLAND
OPERATIONAL VEHICLES

Vehicles represent highly integrated systems
whose stability, manoeuvrability, and comfort de-
rive from the synergistic interaction of various sub-
systems, functioning as a unified operational entity
(Da Lio et al. 2020; Gillespie 2021). The chassis sub-
system exerts a particularly significant influence
on overall vehicle dynamics (Skrickij et al. 2024),
a critical consideration for European forestry and
grassland operations where vehicles encounter
complex terrains and multi-directional nonlinear
forces. These challenging conditions demand ex-
ceptional dynamic performance. Consequently, ve-
hicle design and research must:

(i) Characterise dynamic properties under opera-
tional stresses;

(i) Investigate chassis-subsystem interactions and
their collective impact on system dynamics;
(iii) Quantify nonlinear forces during operation
to ensure stable and efficient performance
in Europe's ecologically sensitive and topo-

graphically diverse landscapes.

Chassis design and analysis for European for-
estry applications. The evolution of European
forestry machinery began in the late 19" century
with the integration of mechanised elements into
timber production. Initial operations utilised sim-
ple wooden-track systems and manually propelled
vehicles (Zheng et al. 2021). Subsequent techno-
logical advancements and industrialisation drove
significant innovation, as evidenced by specialised
equipment from leading European manufacturers
(Figure 1). Representative systems include:

— All-terrain utility vehicles (Benatti et al. 2022);
— Brush-cutting and vegetation management sys-

tems (Abilzhanuly et al. 2025);

— Timber forwarders and harvesters (Zheng

et al. 2023);

— Forest surveillance and patrol platforms (Yu

et al. 2023);

— Multi-functional terrain-adaptive systems (Ra-

khra et al. 2020).
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United States Japan

Gator TX Lawn Vehicle 901XC Logging Machine
1200A Sand Rake 895 Timber Forwarder
6R — 2304 Tractor PW158 Excavator

Netherlands China
SR220Plus Mower YCF135FM Logging Machine
APH Series Tractor YC85 Crawler type Vehicle
1290 Baler E-Dismantling Machine

Figure 1. Types of typical forestry and grassland operational machinery

These vehicles face distinctive challenges in Eu-
rope's variable montane and forest ecosystems.
Particularly in Alpine, Carpathian, and other up-
land regions — where conventional infrastructure
coverage is limited — chassis systems require:

— Advanced dynamic response capabilities to han-
dle slope instability (typically > 30% gradients);
— Enhanced torque distribution for obstacle

negotiation;

— Minimised ground disturbance on sensitive soils

(Liu et al. 2025).

Structural divergence from road vehicles arises
from two fundamental factors (Wang 2020a):

() Terrain irregularity: Non-uniform load distribu-
tion on uncompacted, organically layered for-
est floors;

(ii) Operational specificity: Dynamic requirements
for simultaneous locomotion and task execu-
tion (e.g. skidding, processing).

The design of a vehicle chassis for complex for-
est and grassland terrain must consider three key
characteristics: (f) low ground pressure to prevent
sinking into soft ground (Kulju, Ala-Iloméki 2025);
(if) continuous contact between the wheels and
the ground to ensure consistent traction (Wiberg
et al. 2021); and (iii) good throughput, including

stable operation on uneven and obstacle-riddled
ground (Dong et al. 2025). To satisfy these require-
ments, wheeled chassis are often equipped with
large tyres or multi-wheeled structures, coupled
with highly flexible suspension systems to reduce
ground pressure and adapt to terrain variations.
Examples include John Deere's six-wheeled excava-
tors and Swedish ROTTNE's eight-wheeled forest
transporters, which utilise composite articulation
technology to enhance agility and manoeuvrability
(Arsenoaia et al. 2023). Furthermore, forestry ve-
hicles frequently employ special low-ratio systems
and transmissions to optimise engine power utili-
sation, particularly for soft terrain. Wheeled vehi-
cles typically feature four-wheel drive for enhanced
traction (Dymov et al. 2022), while two-wheel drive
may be utilised on flat surfaces to improve efficien-
cy and manoeuvrability (Grigorev et al. 2021).
Tracked chassis disperses pressure through wide
and long tracks to ensure continuous ground con-
tact, offering excellent obstacle-crossing and load-
carrying performance (Dobretsov et al. 2020). Sun
et al. (2021) designed the LY352] desert tracked
transporter, which demonstrated superior de-
sert passability and addressed the problem of sand
subsidence through simulation and field tests.
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Lv et al. (2024) developed an omni-directional at-
titude-adjustable tracked chassis for agricultural
machinery in hilly and mountainous areas, capable
of automatically adjusting its attitude to maintain
horizontal operation, thereby improving stability
and efficiency. However, the complex structural de-
sign, large size, and weight of tracked undercarriag-
es also introduce challenges such as high travelling
resistance, limited operating speed, and lower effi-
ciency, which can restrict their application in nar-
row spaces. To mitigate these issues, Caterpillar's
Challenger 75E tractor employs rubber tracks to re-
duce weight and enhance performance, while Case's
STX500 tractor utilises triangular rubber tracks and
folded-waist steering technology to improve ma-
noeuvrability and steering performance (Sun 2024).

The wheel-track combination chassis incorpo-
rates the advantages of both wheeled and tracked
vehicles, offering a balance of speed and adapt-
ability (Lin et al. 2024). In summary, these chassis
designs exhibit various advantages and limitations
in complex and variable forested terrain, and the
selection of a specific type primarily depends
on the operational objectives and specific applica-
tion requirements.

Unlike traditional wheeled and tracked chas-
sis, bionic chassis represents a newer type that
has emerged in recent years, inspired by in-depth
research on the locomotion methods of natural
organisms. Examples include the Big Dog robot
and SpouMini quadrupedal bionic robots (Shek
et al. 2024), which can navigate freely in complex
terrains such as hills and mountains, demonstrat-
ing strong balance and environmental adapt-
ability. Their performance depends on (i) the
number and layout of legs, (ii) joint flexibility and
strength, and (iii) drive system performance (Wei
et al. 2025a). In the future, with continuous techno-
logical development and the expansion of applica-
tion scenarios, bionic chassis are anticipated to find
broader development prospects in forest and grass-
land operational environments.

Vehicle dynamics modelling methods for for-
est and grassland operations. The complex terrain
of forests and grasslands presents unique chal-
lenges, characterised by rugged landscapes, vari-
able soil conditions, and dense vegetation cover, all
of which severely test vehicle dynamics. To enhance
the resilience and reliability of vehicles in these ex-
treme environments, it is essential to thoroughly
understand and accurately simulate their dynamic
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behaviour. Currently, fundamental theoretical re-
search specifically focused on forest and grassland
operational vehicles remains limited, with studies
on vehicle travelling dynamics under such complex
terrain being particularly scarce (Van, Tung 2024).

Dynamic models serve as core tools for studying
the motion laws of a system under external forces,
integrating multiple parameters such as force, en-
ergy, mass, inertia, and velocity, thereby provid-
ing a firm theoretical foundation for understanding
vehicle motion characteristics. In the field of vehi-
cle dynamics, vehicle motion is comprehensively
described by six fundamental degrees of freedom:
vertical, horizontal, and lateral translational mo-
tions, as well as rotational motions around the roll,
pitch, and yaw axes (Zhai 2020).

In simplified models, vehicles are often treated
as concentrated mass bodies with a centralised
centre of gravity. However, in more detailed dy-
namic analyses, vehicles are modelled as multi-
body systems, particularly by considering wheels
as independent unsprung masses. This approach
is crucial for accurately capturing vehicle dynamic
responses. The focus of vehicle dynamics re-
search lies in controlling these degrees of freedom
to achieve desired responses to operational inputs
and ground conditions. For instance, horizontal
forces directly influence the vehicle's acceleration/
deceleration performance and traction characteris-
tics, while vertical motion is closely related to ride
comfort and driving stability (Zhou et al. 2023).
Asillustrated in Figure 2, vehicle models can be cat-
egorised into various degrees-of-freedom systems,
such as two-degree-of-freedom (Chang 2022),
three-degree-of-freedom (Zhu et al. 2022a), and
seven-degree-of-freedom (Zhai et al. 2022) models.

Therefore, the study of dynamic characteristics
of forestry-grassland operational vehicles is a com-
plex yet essential topic. Research from related
fields, such as planetary rovers (Hu et al. 2024),
heavy all-terrain vehicles (Mo et al. 2025), and
all-terrain articulated tracked vehicles (Dong
et al. 2017), can provide valuable references for
the dynamic modelling and optimisation of forest-
ry-grassland operational vehicles. Future research
should further concentrate on the complex inter-
actions between vehicles and terrain, nonlinear
material properties of tyres, and the dynamic re-
sponse of suspension systems to foster continuous
advancement in forest and grassland operational
vehicle technology.
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Figure 2. Dynamic modelling of forestry-grassland operational vehiclesv

Numerous open-source software libraries
and commercial software packages are avail-
able for modelling multi-body dynamics.
Well-known open-source dynamics simula-
tion software includes ODE, Bullet, SIMBODY,
and RBDL, while the commercial field features
prominent products such as ADAMS, Recur-
Dyn, SIMPACK, and SAMCEF (Lai et al. 2023).
For example, Hu et al. (2020) proposed a wheel-
track composite all-terrain vehicle platform
and verified its ability to adapt to complex ter-
rain through finite element analysis and dynam-
ics simulation. Additionally, many laboratories
have developed specialised dynamics simulation
software for specific research topics. In the pro-
cess of dynamics modelling and solving, each
method demonstrates unique advantages, and
no single model is universally superior. Typi-
cally, researchers distinguish algorithms based
on modelling speed and solving efficiency. How-
ever, in practice, various modelling methods
are influenced by programming proficiency and
the programming language used, leading to dif-
ferences in computational efficiency. This vari-
ation in efficiency, which subsequently affects
solution time, has resulted in limited direct
evaluations of the efficiency of distinct modelling
methods in the literature.

HYBRID POWERTRAINS FOR FORESTRY
AND GRASSLAND OPERATION
VEHICLES

In recent years, continuous advancements in ve-
hicle electrification have led to remarkable im-
provements in emissions within the road transport
sector. However, concurrently, non-road mobile
machinery (NRMM) is increasingly recognised
as a significant source of pollution, and its emission
problems cannot be overlooked. Consequently,
many NRMM manufacturers are actively pursu-
ing innovative alternatives to standard combustion
engine drive systems. Hybrid-electric architectures
are garnering attention due to their significant ad-
vantages in enhancing overall machine efficiency.
By optimising the degree of hybridisation for spe-
cific work cycles, these architectures can reduce the
amount of pollutants produced per unit of work,
thereby achieving a better balance between envi-
ronmental protection and operational efficiency.

Hybrid powertrain types for forestry and
grassland operations vehicles. Powertrain design
is central to the development of hybrid chassis, as its
configuration and parameters directly influence the
overall performance of the hybrid logging machine.
Based on the power transmission mechanism, hy-
brid power systems are primarily categorised into
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series, parallel, and power-split (sometimes re-
ferred to as combined) types (Husain 2021).
Asshown in Figure 3A, the driving force in a series-
type system originates entirely from the electric mo-
tor. The system generates electrical energy by using
an engine to drive a generator, which in turn powers
the motor to output mechanical energy for vehicle
propulsion. Excess electrical energy can be stored
in a battery to extend the driving range. Since the
engine is not mechanically connected to the drive
wheels, this system is often considered suitable for
complex roads and large vehicles operating at mod-
erate speeds (Dong et al. 2022). The parallel-type
system, depicted in Figure 3B, allows both the en-
gine and the electric motor to provide power direct-
ly to the wheels. When the required driving power
is less than the engine output, or during vehicle de-
celeration and braking, the motor can act as a gen-
erator to recharge the battery. This system permits
the use of smaller, less powerful engines, aiding
in reducing vehicle size and cost (Yang et al. 2025).
The power-split or combined system, illustrated
in Figure 3C, incorporates characteristics of both
series and parallel systems. Its operating mode can
be flexibly adjusted based on vehicle operating con-

https://doi.org/10.17221/65/2025-JES

speeds and parallel mode at high speeds. The hybrid
system can leverage the advantages of both modes,
optimise working conditions, and improve energy
utilisation, but it tends to be structurally more com-
plex and costly, with relatively fewer current vehicle
applications (Zhu et al. 2022b).

Hybrid power structures are characterised
by their diverse forms, and their applicable condi-
tions and ranges vary significantly, as summarised
in Table 1. Among the three prevalent systems, the
series hybrid configuration offers several distinct
advantages:

(i) The series type can operate in pure electric mode
under most working conditions, which is more
challenging for parallel and power-split types,
and typically utilises a larger battery capacity.

(ii) During braking, series-type systems generally
allow for higher energy recovery efficiency due
to the direct connection between the drive mo-
tor and wheels.

(iii) The series type is often deemed more suitable
for complex road conditions and low-speed
operation of heavy vehicles, such as those op-
erating on steep forest and grassland terrain,
making its design particularly relevant for these

ditions, with series mode often dominating at low applications.
engine generator rectifier  inverter —motor
differential
(A) transmission
fuel tank battery  DC/DC
fuel tank engine
clutch transmission
(B) differential
clutch
torque
coupling
battery DC/DC inverter = motor
clutch
DC/DC
inverter
differential
©
clutch transmission
battery DC/DC inverter —motor

Figure 3. Hybrid power system
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Table 1. Comparative analysis of three hybrid electric propulsion topologies

Item Series type Parallel type Hybrid
Structural Direct connection The engine is connected Both parallel
. between engine to the generator and series systems
characteristics .
and generator. through a coupler. are available.
Greater freedom (space lay- Combines the
out advantage), zero-emission Low cost and advantages of both
Advantages . . . A .
operation, simple structure, high reliability. series and parallel
improved economy. systems.
Higher energy loss Difficult to arrange the entire High cost, complex
. icle, ility, hi ’ :
Disadvantages (multlple.energy vehicle, poor stabi 1'ty }.ngh str'ucture requires
conversions), voltage must be maintained high technology,

single structure.

Adapt to complex road
conditions, large vehicles,
such as heavy buses, trucks
and locomotives, etc.

Applicable conditions
and models

to improve efficiency.

difficult to control.

Suitable for small

and medium-sized

vehicles, highway
driving.

Suitable for complex road
conditions, light vehicles.
High cost makes them
less commonly used.

In the field of forestry and grassland operations,
the application of commercial hybrid products
remains relatively scarce. The development his-
tory and technological progression of hybrid ag-
ricultural and forestry tractors, as representative
products in this domain, have thus become a focus
of research attention. As early as 2009, a Belarusian
company pioneered the launch of the 3023 hybrid
tractor, a landmark product signifying an impor-
tant step in tractor electrification. This tractor uti-
lised a series hybrid architecture centred around
a 220 kW diesel engine driving a generator, which
subsequently supplied power to a 183 kW electric
motor and a 55 kW PTO (power take-off) motor.
Notably, this design lacked an energy storage de-
vice (battery), with all power derived directly from
the diesel engine. While this solution facilitated
electrification of power conversion, it left con-
siderable room for improvement in terms of en-
ergy use efficiency and operational flexibility (Hu
et al. 2022).

Subsequently, in 2013 and 2015, John Deere's
6210 RE tractor and CLAAS's ARION 650 Hybrid
tractor adopted similar series hybrid architectures,
further advancing the development of tractor
electrification technology (Mocera, Soma 2022).
The introduction of these products not only vali-
dated the feasibility of series hybrid architectures
in the tractor field but also provided valuable
practical experience for subsequent technological
innovations.

However, the limitations of series hybrid archi-
tectures gradually became apparent. In response,
the Italian company Carraro introduced the Car-
raro Ibrido hybrid tractor concept in 2018, a de-
sign employing a parallel architecture to achieve
greater flexibility and efficiency in the powertrain.
Equipped with a 55 kW diesel internal combustion
engine, a 20 kW electric motor, and a 25 kWh bat-
tery pack, the tractor could operate flexibly in three
modes: conventional engine-only, hybrid, and
purely electric. This innovation not only improved
the tractor's energy efficiency but also significantly
enhanced its adaptability across various operat-
ing environments, marking another important
advancement in tractor electrification technology
(Borghi 2023).

Caterpillar announced a breakthrough in its off-
road work vehicle program in 2024. The company
developed a hybrid heavy-duty diesel system incor-
porating a downsized diesel engine (30% less dis-
placement) with a front-end accessory drive, and
introduced advanced technologies such as high-
speed flywheel energy storage, SuperTurbo me-
chanical turbocharging, and an electric genset.
The design combines a downsized, heavy-duty
diesel engine with sophisticated combustion tech-
nology to effectively recycle and utilise exhaust gas
energy. Simultaneously, by integrating mechani-
cal and electrical energy recovery mechanisms,
the system is projected to reduce fuel consump-
tion by 15-20%, fully demonstrating the signifi-
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cant potential of hybrid technology to improve
energy efficiency and reduce emissions in off-road
applications.

In summary, the development of hybrid technolo-
gy in tractor electrification has undergone a transi-
tion from series to parallel architectures, achieving
notable improvements in energy efficiency, flex-
ibility, and adaptability. Future advancements are
expected to see hybrid vehicles playing an increas-
ingly vital role in the forestry and grassland opera-
tions sector, contributing to the goals of green and
sustainable machinery development.

Energy management methods for hybrid power
systems. Hybrid vehicles are complex electrome-
chanical-chemical systems whose potential for fuel
economy gains and emission reductions is heavily
dependent on the powertrain topology and the se-
lection of an effective Energy Management Strategy
(EMS). The primary goal of an EMS is to efficiently
distribute power from various sources within the
driveline by selecting appropriate operating modes.
These goals typically include improving fuel econ-
omy, reducing emissions, ensuring drivability, and
maintaining the state of charge (SOC) and longev-
ity of the energy storage system, all while adhering
to system constraints.

Over the past decade, numerous studies have been
published on EMS applications in hybrid vehicles.
While several classification schemes exist, a gen-
erally accepted categorisation distinguishes three
primary types: rule-based, optimisation-based, and
learning-based strategies, as outlined in Table 2.

Rule-based methods can be further subdivided
into deterministic rule-based EMS and fuzzy logic
EMS. These strategies operate based on a set of pre-
defined rules, typically formulated using engineer-
ing intuition and analysis, without requiring prior
knowledge of the entire driving cycle (Muthyala
et al. 2024). In contrast, optimisation-based meth-
ods are classified into global (offline) and real-time
(online) optimisation, depending on the extent
of driving condition information used (Saiteja,
Ashok 2022). Generally, optimisation-based meth-
ods have attracted significant research attention due
to their potential for higher efficiency. Among of-
fline optimisation methods, dynamic programming,
Pontryagin's Minimum Principle, and meta-heuris-
tics (e.g. genetic algorithms, particle swarm optimi-
sation) are extensively used for global optimisation
search (Ding et al. 2022). Meanwhile, Equivalent
Consumption Minimisation Strategy (ECMS) and
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Model Predictive Control (MPC) are widely em-
ployed as online optimisation methods. Learning-
based methods demonstrate considerable potential,
leveraging recent advances in machine learning and
artificial intelligence for network training using on-
line or historical data (Ganesh, Xu 2022). It is note-
worthy that a powerful EMS often combines various

techniques to form an integrated strategy for im-

proved overall fuel economy and performance.

In summary, the current research challenges for
hybrid power systems in forest and grassland op-
eration vehicles include:

(i) Multifunctional and adaptive design: A single
machine may encounter a wide variety of com-
plex and changing work scenarios during its
lifespan. Designing a versatile architecture that
efficiently meets all these diverse requirements
is extremely challenging (Hou 2024). The com-
plex terrain and varied duties in forest and
grassland environments make it particularly
difficult to design a hybrid vehicle that operates
efficiently and adapts robustly across all poten-
tial scenarios.

(ii) Cost-benefit considerations: While electric
technologies can demonstrate benefits in re-
ducing the total cost of ownership over the
machine's life, oversized electric components
(motors, batteries) can substantially increase
the initial machine cost. Manufacturers must
find the optimal trade-off between perfor-
mance, functionality, and economics, especially
in selecting the hybrid drivetrain configuration
and component sizing (Wang et al. 2025).

(iii) Energy management and charging efficiency:
Developing an efficient, reliable, and robust en-
ergy management system is crucial for hybrid
vehicles. However, designing control strate-
gies that maximise energy efficiency (including
charging efficiency, if applicable) and minimise
operational costs, while ensuring stable and re-
liable operation in complex and unpredictable
environments, remains a significant research
challenge.

Hybrid technology entails the integration of sev-
eral disciplines, including power electronics, bat-
tery management, and internal combustion engine
technology. Fostering innovation across these tech-
nical fields to simultaneously enhance performance
and reduce the cost of hybrid forest and grassland
operation vehicles is a crucial direction for current
and future research.


https://jfs.agriculturejournals.cz/
https://doi.org/10.17221/65/2025-JFS

Journal of Forest Science, 71, 2025 (11): 525-541

Review

https://doi.org/10.17221/65/2025-JFS

Table 2. Advantages and disadvantages of EMS control methods for forest-grass terrain

Type of methods Control strategy Advantages Challenges (forest-grass terrain)
Decision control — Simplicity (if-then structure) - lc);iallg(tvc\)l(f?;in;ulséi:ililtlieosnfsor
(Sun et al. 2025) (Zhou et al. 2020) comp 8
in forest and grass
Rule-based — Comparable to human reasoning — Control parameters required
wes as: — Use of linguistic models for different driving situations
approac Fuzzv control — Apply simple math to nonlinear, in- are difficult to calibrate
(Suhail};t al. 2021) tegrated or even complex systems — Exponentially increasing number
’ (Mazouzi et al. 2024) of rules with more fuzzy levels
— High precision — Difficult to maintain real-time
— Fast operation response
. . — Global optimisation — Difficult to obtain driving cycle
Dynamic planning . L . Lo
(offline) — Wide applicability information in advance
(Chen et al. 2023) — Suitable for dealing with complex — Curse of dimensionality, computa-
’ problems (Yin et al. 2025) tionally expensive
Game theor — Synthesise trade-offs for conflicting  — Curse of dimensionality, computa-
(offline) Y objectives tionally expensive
(Ch tal. 20200 Consider driving behaviour in EMS - Cannot cover the full range
eng etal (Li 2024) of scenarios
Optimisation-
based approach . - s
— Adaptive and predictive capability _ Requires preview of drivin
MPC (Wang, Song 2024) qires previs 5
. . . patterns, terrain/future driving
(online) — Solutions that approximate the

(Peicheng et al. 2022)

Sliding mode
control (online)
(Yang et al. 2024)

global optimum with less online
computation (Hu et al. 2025)

— Robust to parameter variations and
uncertainties (Wang et al. 2020)
— Fast system response

information
— Highly model-dependent

— Limitations on nonlinear systems
— Strong dependence on the para-
digm

Reinforcement
learning
(Du et al. 2022)

Learning based
approach

Neural networks
(Chen et al. 2022)

— No model control

— Some generalisation capability
(Cao et al. 2025)

— Suitable for complex dynamic
environments (Tang et al. 2025)

— Powerful nonlinear mapping capa-
bility (Zhang et al. 2025)

— Adaptive (Wu et al. 2024)

— Suitable for multi-input, multi-
output systems

— Data set preparation consumes
time

— Rewards signal delays and inac-
curacies

— Sensitive to external disturbance

— Requires large amount
of training data

— Long learning time

— Output results are difficult
to interpret

UNMANNED VEHICLE SYSTEM
FOR FOREST AND GRASS OPERATION

Currently, the vast majority of forest and grass-
land operation vehicles still rely on manual opera-
tion, which places extremely high demands on the
operator's skill and concentration. In complex and
dynamic forest environments, the operator must

continuously monitor the surroundings and make
rapid, accurate decisions to ensure driving preci-
sion and safety, a task that is undoubtedly chal-
lenging and prone to fatigue. Given the limitations
and stringent requirements of manual operation,
intelligent and unmanned equipment has gradually
emerged as a key enabler for modernising forest
and grassland machinery, indicating a future main-
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stream development direction towards unmanned
vehicles (Wang 2020b; Ruetz et al. 2024).

Unmanned vehicles integrate advanced technol-
ogies from disciplines such as artificial intelligence,
geographic information science, navigation tech-
nology, sensor systems, and communications, at-
tracting significant research interest in recent years
(Liu et al. 2021; Dinelli et al. 2023; Wei et al. 2025b).
This increased attention is driving the develop-
ment of more autonomous and intelligent vehicles
capable of operating in forest and grassland envi-
ronments, with the potential to substantially im-
prove operational efficiency and reduce resource
consumption.

Autonomous navigation is a fundamental prereq-
uisite for unmanned operational vehicles to per-
form various tasks in forest and grass environments
(Liu et al. 2021). An efficient navigation system lev-
erages environmental and positioning information
acquired by sensors to guide the vehicle accurately
along predefined paths or towards targets, enabling
precise task execution (Duan 2023). However, the
Complexity, unstructured nature, and inherent
disorder of forest and grassland environments,
coupled with prevalent noise sources and distur-
bances, make autonomous navigation particularly
challenging (Li et al. 2022). These challenges stem
from inconsistencies in environmental structure,
variations in vegetation shape and colour, terrain
surface unevenness, and fluctuating lighting con-
ditions (Yin 2023). Furthermore, hardware limita-
tions such as actuator and controller noise, finite
battery capacity, wheel slippage, and inaccuracies
in sensor measurements can further degrade navi-
gation performance (Nowakowski, Kurylo 2023).

Consequently, designing a navigation system
that is accurate, robust, and adaptable to complex
forest and grass environments is essential for au-
tomating forestry and grassland operations. To ad-
dress this need, researchers have rapidly developed
and proposed various navigation methodologies,
leveraging technologies including Global Naviga-
tion Satellite Systems (GNSS) (Lee et al. 2023),
Light Detection and Ranging (LiDAR) (Henrich
et al. 2024), Inertial Measurement Units (IMUs)
(Moghadam et al. 2023), Ultra-Wideband (UWB)
(Zheng et al. 2025), and vision-based sensors.

Among these, GNSS-based autonomous posi-
tioning has become one of the most widely used
solutions due to its global coverage and potential
for centimetre-level accuracy (with Real-Time Kin-
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ematic — RTK corrections). GNSS enables con-
tinuous position tracking of unmanned vehicles
in a global coordinate system, significantly enhanc-
ing operational resource scheduling and real-time
environment awareness in open grassland settings.
However, in unstructured forestry terrain, its po-
sitioning stability is constrained by multiple envi-
ronmental factors: satellite signals are susceptible
toattenuation and multipath effects caused by dense
canopy cover, as well as atmospheric disturbances,
leading to degraded accuracy or even temporary
signal loss (Mo 2020). Rybansky et al. (2023) in-
vestigated the accuracy of a GNSS receiver for
off-road vehicle navigation in a typical temperate
forest in Central Europe. They selected two loca-
tions and accurately marked reference elements
such as trees and vehicle routes using a rangefinder
to assess navigation accuracy. The study quantified
positioning accuracy and positional deviation (the
difference between the receiver's recorded position
and the actual measured position). Results indicat-
ed that GNSS devices performed reasonably well
for approximate vehicle localisation, particularly
in sparse woodland environments. However, ac-
curately determining the precise relative position
between the vehicle and trees in dense forest areas
proved more challenging.

In contrast, LIDAR sensors provide high-res-
olution, wide field-of-view ranging data, offer-
ing robust capabilities for target detection and
localisation (Wei, Chen 2024). By constructing
real-time 3D point cloud maps and employing Si-
multaneous Localisation and Mapping (SLAM)
algorithms, LiDAR can enable centimetre-level lo-
calisation for unmanned vehicles in GPS-denied,
unstructured forest environments. To evaluate
the utility of SLAM-assisted trunk mapping for
forest resource inventory, Tang et al. (2015) con-
ducted experiments using a small mobile LiDAR
system mounted on an FGI ROAMER R2 vehicle.
They traversed both open and dense forest areas,
comparing three navigation approaches: GNSS-
only, GNSS coupled with an IMU (GNSS + IMU),
and LiDAR SLAM coupled with an IMU (SLAM
+ IMU). The results demonstrated that in open
areas, the SLAM algorithm was less feasible due
to fewer detectable features and the higher reli-
ability of GNSS signals. However, in the dense
forest region, the SLAM + IMU technique pro-
vided 38% higher accuracy than the GNSS + IMU
approach.
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For autonomous navigation under heavy canopy
cover, Li et al. (2020) utilised a real-time localisa-
tion algorithm based on LiDAR Odometry and
Mapping (LOAM) for tree mapping. A schematic
of the LiDAR scanner's mounting on the Komat-
su Forest 931.1 harvester is provided in Figure 4,
including an overall view (A) and a close-up (B).
The algorithm constructs a unique 2D topological
map from point cloud data and establishes opti-
mal relationships between global and local topolo-
gies. Experimental results demonstrated that their
method achieved a localisation accuracy of approx-
imately 0.3 m (with a standard deviation of 12 cm)
at speeds up to 0.5 m-s—1 while maintaining real-
time data processing capability.

The AgRob V18 forest robot was developed for
forest biomass capture. Equipped with a modu-
lar sensor suite for perceiving its surroundings,
its tracked, diesel-engine-driven mobility system
caused significant vibration, adversely affecting
IMU data. Consequently, researchers investigated
several autonomous localisation and navigation
methods, including standard LOAM for structured
environments, A-LOAM (a C++ implementation
optimised for speed), and LeGO-LOAM (Light-
weight and Ground-Optimised LiDAR Odometry
and Mapping). Experimental results indicated that
LeGO-LOAM delivered the best performance
among the three methods under these challenging
conditions (Shan, Englot 2018).

Pierzchala et al. (2018) employed a Super-
droid 4WD IG52 DB robot in a semi-structured,
flat, sparsely vegetated forest in Norway. Using

(A)

a 3D graph-based SLAM method, they success-
fully identified tree trunks and estimated diam-
eter at breast height (DBH). Given the low density
of obstacles in the test environment, the proposed
method achieved an average DBH estimation er-
ror of 2 cm and an average tree localisation error
of 0.0476 m.

Despite its advantages, the high cost of high-
performance LiDAR sensors can limit their
large-scale deployment on forest and grassland
operation vehicles. Machine vision, as an au-
tonomous navigation and localisation method,
is emerging as a viable candidate to complement
or even replace LiDAR in some applications, ow-
ing to its relatively lower cost and continually im-
proving accuracy (Chen 2023; Yang et al. 2023).
Vision-based methods are characterised by high
intelligence, a wide detection range, non-contact
measurement, and rich informational content,
providing users with extensive data about the
vehicle's surroundings and enabling the acqui-
sition of features relevant to navigation (Zhu
et al. 2022c¢). As early as 1997, Gerrish's research
demonstrated the capability of monocular vi-
sion systems to achieve high navigation accu-
racy under varying light and speed conditions,
particularly for stable long-distance navigation
when approaching crop rows. By 2022, Ruangu-
rai et al. constructed a planter navigation system
using machine vision technology, achieving high-
precision control of row spacing and direction
by combining Hough transform and Principal
Component Analysis (PCA).

(B)

Figure 4. (A) Komatsu Forest 931.1 forest harvester (the LiDAR scanner is marked by a red circle in the front of the
windshield of the cabin); (B) a close-up of the LiDAR scanner (Li et al. 2020)
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In the context of forest and grassland terrain
perception, vision-based techniques are primarily
categorised into two main approaches: traditional
feature detection and machine learning-based
methods (Zeil 2023). Feature detection algorithms
identify drivable areas or obstacles based on fea-
tures like colour, texture, and edges within the
image. Common strategies include colour feature
segmentation, image segmentation combining
Otsu's method and Bayesian decision theory, and
moving obstacle detection using optical flow meth-
ods (Yu et al. 2025). However, these strategies can
be susceptible to interference from environmental
factors such as varying illumination, shadows, and
precipitation.

In contrast, machine learning algorithms can
automatically learn and adapt to environmental
features by training parameterised models, often
demonstrating greater robustness and environ-
mental adaptability. Common machine learning
approaches applied include superpixel segmenta-
tion combined with k-Nearest Neighbour (k-NN)
classification, multilayer perceptron models, Fully
Convolutional Network (FCN) for semantic seg-
mentation, and encoder-decoder architectures like
SegNet (Gao 2020; Zhang et al. 2023; Li et al. 2024).

At the technical challenge level, automatic navi-
gation for unmanned vehicles must contend with
the difficult problem of complex and highly vari-
able forest and grassland terrain. This includes
diverse and ill-defined drivable areas, undulating
slopes, and the presence of both dynamic and stat-
ic obstacles. Traditional feature detection meth-
ods are often prone to failure or inaccuracy under
challenging lighting and complex background
conditions. Meanwhile, machine learning-based
techniques, particularly deep learning, place higher
demands on computational resources, sensor qual-
ity, and the design of algorithmic models capable
of learning complex, high-level feature represen-
tations. Although data augmentation techniques
can help mitigate the negative impact of environ-
mental variations on model performance, most
current state-of-the-art models rely on supervised
learning paradigms, requiring substantial amounts
of manually labelled image data for training, which
is time-consuming and costly. Furthermore, while
visual sensors capture rich information, their per-
formance remains vulnerable to adverse lighting
conditions (e.g. low light, glare) and poor weather
(e.g. fog, rain, snow). Therefore, future research
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needs to focus on developing more robust and ef-
ficient deep learning models, potentially leveraging
semi-supervised or self-supervised learning to re-
duce dependency on large labelled datasets, and
effectively addressing the challenges of real-time
performance and generalisation in unstructured
outdoor environments.

CONCLUSION

Research on HDUVs for complex European for-
est and grassland terrain represents a cutting-
edge interdisciplinary frontier integrating critical
technological domains: vehicle dynamics, hybrid
propulsion systems, and autonomous navigation
(Figure 5). This field demands a systematic analysis
of intrinsic mechanisms and the resolution of piv-
otal scientific and technical challenges to achieve
efficient, stable, and intelligent HDUV operations
in Europe's ecologically sensitive and topographi-
cally demanding montane landscapes.

Regarding dynamics, research focuses on the
design of vehicle chassis structures and suspen-
sion systems tailored to the specific requirements
of complex European forest and grassland terrains,
aiming to enhance vehicle passability, stability, and
minimise soil impact. Concurrently, in-depth in-
vestigation into vehicle traction control, brake force
distribution, and other dynamic aspects is essential
to ensure safe and reliable operation in these chal-
lenging environments.

Hybrid power technology forms a foundational
element of HDUYV research. By optimising pow-
ertrain architecture design and developing so-
phisticated energy management strategies (EMS),
the fuel economy, operational range, and overall
efficiency of the vehicle can be substantially im-
proved. Particularly in forestry and grassland op-
erations, where HDUVs must frequently switch
between diverse terrains and working modes, re-
alising intelligent mode selection and efficient co-
ordination between power sources remains a key
challenge.

In the domain of unmanned system control, re-
search concentrates on enabling robust autono-
mous navigation, reliable obstacle avoidance,
and effective remote monitoring functionalities.
In complex forest and grassland terrain, unmanned
vehicles depend on high-fidelity environment per-
ception systems and advanced, real-time path plan-
ning algorithms to achieve autonomous navigation
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Figure 5. Hybrid electric unmanned system for forestry operations in vegetated complex terrain

RTK - Real-Time Kinematic; EMS — Energy Management Strategy

and safe obstacle avoidance. Simultaneously, re-
mote monitoring systems are crucial for provid-
ing operators with real-time data on vehicle status
and operational progress, enabling informed deci-
sion-making and oversight.

To synthesise the core findings of this review,
Table 3 summarises the key insights, prevailing
challenges, and recommended future research di-
rections for each critical technological domain.

In conclusion, the development of HDUVs for
complex forest and grassland terrains involves mul-
tiple intertwined technological areas, necessitating
strong interdisciplinary collaboration and innova-
tion. By conducting in-depth research on these key
technologies and addressing the associated scien-
tific challenges, the application and advancement
of HDUVs can be significantly accelerated. In the
future, with continuous technological progress and

Table 3. Synthesis of research findings, challenges, and future directions for HDUVs

Technological domain Key findings

Current challenges

Advanced chassis (articulated wheeled,
rubber-tracked, wheel-track composite)
are crucial for passability and low ground

Vehicle dynamics
& chassis design
pressure.

Series hybrids are suitable for complex, low-
speed operations; parallel/hybrid systems
offer flexibility. Optimisation-based EMSs

outperform rule-based ones.

Hybrid powertrains
& energy management

Unmanned systems
& autonomous

navigation
Ve tured patches.

Sensor fusion (LiDAR-SLAM, Vision) is es-
sential for reliable GPS-denied navigation,
achieving centimetre-level accuracy in struc-

Trade-offs between mobility, stability, speed,
and complexity persist. Accurate multi-body
dynamics modelling for nonlinear terrain
forces remains difficult.

Achieving multifunctional design adaptabil-
ity, cost-effectiveness, and robust EMS for
highly variable forestry duty cycles.

Ensuring robustness against environmental
variations (light, weather, canopy density),
high sensor costs, and data processing re-

quirements for real-time decision-making.

HDUYV - hybrid-drive unmanned vehicle; EMS — Energy Management Strategy

537


https://jfs.agriculturejournals.cz/
https://doi.org/10.17221/65/2025-JFS

Review

Journal of Forest Science, 71, 2025 (11): 525-541

innovation, hybrid unmanned vehicles are poised
to play an increasingly vital role in forestry and
grassland operations, providing powerful technical
support for the sustainable management and con-
servation of these vital natural resources.
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