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Abstract: Tree volume is a characteristic used in many cases, such as determining fertility, habitat quality, growth size,
allowable harvesting, and the principles of forest trade. It is imperative to develop methods that predict forest stand
volume to obtain this extensive information quickly and cost-effectively. This study used supervised self-organising map
(SSOM), multi-layer perceptron (MLP), and radial basis function (RBF) neural networks to predict forest stand vol-
ume based on physiography, topography, soil, and human factors. A sensitivity analysis method called the importance
of prediction was used to determine how input variables influenced network output. First, the map of homogeneous
units was prepared with ArcMap (Version 10.3.1, 2015) by combining digital layers to measure the tree's volume per
hectare. Then, separate tree species in different diameter classes were measured in a circular grid of 200 m x 150 m,
0.1 ha of coverage, 3.3% sampling intensity, and a diameter at breast height (DBH) greater than 7.5 cm using systematic
sampling on a homogeneous unit map in a regular random method. The neural network modelling results showed that
SSOM, MLP, and RBF predicted forest stand volume most accurately according to physiography, topography, soil, and
human factors. Furthermore, the sensitivity analysis results found that altitude above sea level, soil depth, and slope
are the most influential input variables. In contrast, soil texture variables are the least effective at predicting forest
stand volume.

Keywords: best matching unit; error back-propagation; importance of prediction neighbour function; spread; super-
vised learning

Forest habitats in the Hyrcanian or Caspian for-
ests of Iran have different production capacities
and a variety of trees and shrubs. This is due to the
special geographical, climatic, and soil conditions
(Mohammadi et al. 2010). Forest stand volume, one
of the most critical characteristics of forest stands,
is essential for planning and sustainable forest
management. It determines fertility, habitat quality,

growth size, allowable harvesting, and forest trade
principles (Gebreslasie et al. 2010). It is imperative
to develop methods that predict forest stand vol-
ume to obtain this extensive information quickly
and cost-effectively (Boncina, Cavlovi¢ 2009). Ar-
tificial Neural Networks (ANNs) as a problem-
solving, decision-making, and planning method
in natural resource and forest management was first
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proposed by Coulson et al. (1987). ANNs (a subset
of artificial intelligence) are a mathematical sys-
tem with nonlinear learning and with parallel dis-
tributed processors called neurons (Haykin 1999).
They help solve problems with large data sets that
linear statistical methods cannot address (Liu
et al. 2018). Learning is the main work of an artifi-
cial neural network, which involves adjusting neu-
rons' weights and deviations. Keras, PyTorch, and
TensorFlow stand as three influential deep-learn-
ing frameworks that have catalysed significant
advancements in artificial intelligence. Each frame-
work provides distinct features and advantages,
rendering them suitable for diverse tasks and user
preferences. Keras, functioning as a high-level neu-
ral networks application programming interface
(API) scripted in Python, offers a user-friendly in-
terface for constructing and training deep learning
models. Renowned for its simplicity and accessibil-
ity, Keras serves as an optimal choice, particularly
for novices, facilitating rapid prototyping without
delving into intricate low-level programming in-
tricacies. Conversely, PyTorch, a dynamic deep
learning framework originating from Facebook's
Al Research lab, prioritises flexibility and swift-
ness via its imperative programming paradigm.
By enabling users to define computational graphs
dynamically, PyTorch facilitates more efficient
debugging and experimentation, thereby enhanc-
ing agility and adaptability in model development
(Abadi et al. 2016; Dinghofer, Hartung 2020).
There are two types of learning: unsupervised and
supervised (Peng, Wen 1999). The feed-forward
multi-layer perceptron (MLP) and radial basis
function (RBF) are considered neural networks
with supervised learning, whereas self-organising
mappings (SOM) are considered neural networks
with unsupervised learning (Stiumer et al. 2010).
Hu et al. (2020) studied forest volume prediction
based on remote sensing and ground data using
machine learning methods [such as Random Forest
(RF), Support Vector Machine (SVM), and ANN]
and kriging methods. Machine learning plays
a crucial role in remote sensing, particularly in the
analysis of satellite images. These algorithms pos-
sess the capability to automatically categorise vari-
ous land cover types — ranging from forests, water
bodies, and urban areas to agricultural land — with-
in these images. They significantly aid in tasks such
as identifying deforestation or shifts in land usage
patterns, facilitating interventions and the for-
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mulation of effective policies (Chen, Zhang 2014;
Belgiu, Driagut 2016). Furthermore, these machine
learning algorithms are instrumental in detecting
alterations in sensing data by comparing images
captured at different points in time. This capa-
bility enables precise measurement of landscape
transformations, encompassing expansions, de-
forestation, or responses to natural disasters. Such
precision proves essential in responding to emer-
gencies, tracking trends in climate change, and
strategically planning infrastructure initiatives
(Pokhariyal et al. 2023). Lacerda et al. (2017) ex-
amined the performance of MLP neural networks
and regression models in predicting tree volume
in Brazilian savannas. Their findings showed that
artificial neural networks and regression mod-
els efficiently predict tree volume. A study pre-
sented an overview of the SOM neural network
as an unsupervised learning algorithm for water
resources research by Kalteh et al. (2008). Klobu-
car and Subasic (2012) used the SOM neural net-
work to analyse forest stand statistics. SOM neural
network consists of neurons arranged in a hex-
agonal or rectangular structure in a one- or two-
dimensional network. There are two layers to the
SOM neural network: an input layer and an out-
put layer (competitive layer or Kohonen), where all
output layer neurons are connected to the weight
vectors of the neurons in the input layer (Kalteh,
Hjorth 2008). There is a more developed version
of the SOM neural network called a supervised
self-organising map (SSOM), which can predict
data by applying specific changes and differs only
in weight dimensions and estimation algorithms
from the SOM neural network (Keller et al. 2018).
SSOM neural networks have not been studied
in forest sciences; therefore, this study aimed to in-
vestigate their capacities for predicting forest stand
volumes using topographical, physiographic, soil,
and human factors. The model was also compared
to MLP and RBF neural networks for forecast-
ing forest stand volumes. The sensitivity analysis
method was then used to determine which vari-
ables significantly impact forest stand volume.

MATERIAL AND METHODS

Study area. District 2, Kacha, with a total area
of 2 399 ha, is located in the Saravan forest, north-
ern Iran (Figure 1). The study area is bounded
by 49°32"24"E to 49°3529"E on the east longitudes
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Figure 1. Geographical location of the District 2, Kacha, Guilan province, Iran

and 37°02'30"N and 37°05'42"N north latitudes.
The elevation of the area is between 120 m a.s.l. and
785 m a.s.l. According to Dumarten's climate clas-
sification method, the average annual precipitation
is about 1 255.7 mm, and the annual temperature
of the research area is 16 °C. The climate of the
study area is very humid. The study area is cov-
ered by broad-leaved tree species: Fagus orienta-
lis Lipsky, Carpinus betulus L., Diospyros lotus L.,
Alnus subcordata C.A.M., and Parrotia persica
(D.C.) C.A.M. District 2, Kacha forest management
plan started in 1993, while local people previously
used the forest mainly for fuel wood, construction,
and human needs before.

Preparing homogeneous unit map. First, the
map of homogeneous units was prepared with
ArcMap (Version 10.3.1, 2015) by combining digi-
tal layers to measure the trees' volume per hec-
tare. A digital elevation layer above sea level was
created based on topographic maps with a scale
of 1:25 000 and contour lines of 50 m. Then, it was
classified into four height classes of 120—-200 m,
200-400 m, 400-600 m, and 600-785 m, using the
Reclassify tool. After that, the slope and aspect

were obtained with the digital elevation layer.
The aspect and slope map was classified with the
Reclassify tool in terms of degree and percent-
age in four main directions and five layers: 0-25,
25-35, 35-45, 45-55, and 55-60, and the land
unit map was obtained by overlaying them. Next,
an environmental unit map-1 was created by com-
bining the land unit map with the soil raster map
in the geographic information system (GIS) envi-
ronment. The regional soil type map is divided into
four land sub-units based on essential soil charac-
teristics such as bedrock, soil texture, and depth
(Table 1). In the following step, the environmental
unit map-2 was obtained by combining the envi-
ronmental unit map-1 with the raster map of the
distance from the road. All these steps were re-
peated to prepare a map of the distance from the
stream. Eventually, the final environmental unit
map with 124 homogeneous units was obtained
(Natural Resources and Watershed Management
Organization 2008).

Sampling of forest stand volume. Preliminary
sampling was conducted randomly with 30 circu-
lar sample plots (), covering 0.1 ha in the region.

Table 1. Soil type map classified following the United States Department of Agriculture (USDA) method

Composition of soil (%)

Codes - Classification  Soil depth (cm) pH
clay silt sand

2-2-1 21-33 31-37 36-42 clay loam 50-55 6.8-7.2

2-1-2 25-35 33-40 22-42 clay loam 55-75 5.7-5.9

2-2-2 46-60 32-40 8-14 clay 75-90 7.3-7.4

3-2-3 28-49 21-38 28-34 clay 90-100 5.6—-6.5
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This was done to determine the number of required
sample plots. The following Equation (1) was then
used to determine the number of sample plots
(Zobeiry 2005; Table 2):

£* x SD%*
N = —E%2 (1)

where:

N — number of sample plots required;
t — Student's ¢-test;

SD%
E%  — percentage of statistical error.

— standard deviation percentage;

In each sample plot, the diameter at breast height
(DBH) species in different diameter classes was
measured greater than 7.5 cm. Then, the forest
stand volume was calculated based on the table
of a single agent's local volume per hectare.

Forest stand volume modelling using artificial
neural networks. Neural networks have emerged
as fundamental components within the realm
of artificial intelligence and machine learning.
Notably, Radial Basis Function (RBF), Supervised
Self-Organising Map (SSOM), and Multi-Layer
Perceptron (MLP) networks stand out among the
diverse neural network types, finding extensive
applications across various domains. The activa-
tion function within a neuron serves as a pivotal
element dictating its output, computed from
the weighted sum of inputs. RBF networks com-
monly employ a Gaussian function as their acti-
vation function, enabling the network to model
nonlinear relationships inherent in the data effec-
tively. On the other hand, SSOM networks utilise
a competitive activation function, activating the
neuron with the closest weight vector to the in-
put data. This mechanism enables SSOMs to au-
tonomously organise and represent the topological
relationships within the input data. Meanwhile,
MLP neural networks, a form of feedforward neu-
ral network, employ multiple interconnected lay-
ers of nodes to process data. These networks use

https://doi.org/10.17221/111/2023-JES

diverse activation functions, including sigmoid,
tanh, ReLU, or softmax functions, enabling intri-
cate data processing and feature extraction within
various network layers. Distinguishing between
RBF, SSOM, and MLP networks lies in their learn-
ing algorithms and diverse applications within neu-
ral networks. RBF networks specialise in function
approximation and pattern classification, while
SSOM networks demonstrate capabilities in both
classification and regression tasks. Meanwhile, the
multi-layer architecture and adaptable activation
functions of MLP networks allow for their appli-
cation across a broad spectrum of tasks, encom-
passing classification, regression, and time-series
prediction. Despite their strengths, these neural
network types share a unified objective: learning
from data to formulate predictions or decisions.
Their methodologies involve forward propagation
where input data traverses the network to gener-
ate output and backward propagation, facilitating
learning from errors and parameter adjustments
to enhance performance. Selecting a suitable neu-
ral network depends on the nature of the problem
at hand and the specific characteristics of the data.
RBF neural networks prove effective for function
approximation and pattern recognition, while
MLP networks excel in addressing classification
and regression challenges. SSOM neural networks,
however, exhibit versatility, catering to both su-
pervised and unsupervised learning tasks and
accommodating labelled as well as unlabelled
data sources (Kalteh, Hjorth 2008; Sharif Ahma-
dian 2015; Riese et al. 2020). In this study, the
modelling of forest stand volume utilised SSOM,
RBF, and MLP neural networks. The models were
constructed based on input variables such as phys-
iography (stream distance), topography (elevation,
slope, aspect), soil properties (soil depth, silt, sand,
clay, and pH), and human-related factors (road dis-
tance), with forest stand volume serving as the out-
put variable (Figures 2—4).

The data must be normalised according to Equa-
tion (2) and placed between 0 and 1 to increase the

Table 2. Preliminary sampling with 30 random circular samples

v SD SD% E

E% t n N

10.57 3.687 34.891 0.264

2.5 2 30 779

v — mean of characteristic of the study; SD — standard deviation, SD% — standard deviation percentage; E — standard er-
ror; E% — percentage of statistical error; £ — Student's ¢-test; # — number of circular sample plots; N — number of sample

plots required; the ¢-student table was also used to obtain ¢ based on the number of sample plots and the probability level
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Figure 2. SOM (self-organising map) neural network with the structure (5 x 5; Kohonen 1982)

d; — smallest distance from the input pattern; w; — weight value between input vector i and neuron j in the Kohonen layer;
m — number of input variables; # — number of neurons in the Kohonen layer; N(f) — Gaussian neighbourhood function
of winner neuron j* in iteration t; 82 — radius of the neighbourhood in iteration ;

neuron and the neighbour neuron; n(¢) — learning rate in iteration ¢

e — 1; " — distance between the winner

speed and accuracy of neural network processes After data normalisation, 70% and 30% of them
(Kalteh, Hjorth 2008): were assigned to the train data set (89 homogene-
ous units) and test data (35 homogeneous units),
7= Xi = X ) respectively (Keller et al. 2018). After data preproc-
Xoox = Xoin essing, the best artificial neural network structure
can be adjusted with parameters such as the num-
where: ber of neurons in the Kohonen layer, the number
VA — normalised data; of input variables, and the evaluation criteria in the
X, — used data; neural network. The test stage was determined
Xpaxs Ximin — maximum and minimum values for each by the coefficient of determination (R?), adjusted
variable, respectively. R squared (R}y), root mean squared error (RMSE),
elevation
=
aspect Y;=f o8
. soil depth !
% clay
75, - sand @—» output layer !
£ silt Zpk = ZY/‘ Wi
pH Jj=1
stream distance
road distance
- hidden layer

Figure 3. RBF (radial basis function) neural network with the structure (10-5-1; Fernando, Jayawardena 1998)

¢ — Gaussian function; Y; — response for the p™ input pattern X?; ||X r_u }" — Euclidean norm; U; - centre of the /* radial basis
function; 8 — spread of the neural network containing that radial basis function; Z,, — each node in the output layer produces a linear

weighted sum of the hidden layer responses; W}; — weight of the connection between neurons in the hidden and output layers

213


https://jfs.agriculturejournals.cz/

Original Paper

Journal of Forest Science, 70, 2024 (5): 209-222

elevation
slope
aspect
soil depth
clay

sand
silt
pH

stream distance

input layer

road distance
—

hidden layer

https://doi.org/10.17221/111/2023-JES

net;= 2w x;+ b;

®—> output layer

-
—(net)

l+e

yj= f(netj) =

Figure 4. MLP (multi-layer perceptron) neural network with the structure (10-5-1; ASCE 2000)

Each neuron receives the weighted outputs of the neurons in the previous layer, the sum of these outputs forms the net

input to neuron j (net)); net; — stimulus level of neuron j or net input to neuron j; w;; — connection weight between nodes i;

x; — input to neuron i; b; — bias of neuron j; y; — Perceptron output

percent root mean squared error (RMSE%), mean
absolute error (MAE), bias (bias) and percentage
bias (bias%).

Sensitivity analysis. Sensitivity analysis is a tool
used to understand how input variables affect
a model's output. To conduct sensitivity analysis,
it is essential to choose an appropriate procedure
that accurately captures the interactions among
variables. Reducing one input variable at a time
is a common approach that simplifies the analysis
and provides valuable insights into the individual
effects of each variable. While this method may in-
troduce additional complexity, it allows for a clear-
er understanding of how changes in each variable
impact the output (Saltelli et al. 2004). Researchers
utilise sensitivity analysis methods, such as pre-
dictive importance (PI), to gauge the degree of in-
fluence exerted by input data on network output.
The prediction importance method involves sys-
tematically excluding an input variable and meas-
uring the resultant change in root mean square
error (RMSE) within the neural network. The ob-
served increase in RMSE reflects the magnitude
by which the network's error amplifies upon the

Table 3. Descriptive statistics of the forest stand volume

removal of a specific variable. This change in error
serves as a quantifiable indicator of the input vari-
able's significance in shaping the network's output
(De et al. 1997).

RESULTS

Descriptive statistics of the forest stand vol-
ume. As a result of analysing the volume of a sin-
gle agent and calculating the volume of the
forest stand by species per hectare, it was de-
termined that the forest stand volume studied
was 229.10 m3-ha™!, with Fagus orientalis Lipsky,
Carpinus betulus L., and Alnus subcordata C.A.M.
representing 43.36%, 23.26%, and 22.79%, respec-
tively. Descriptive statistics of forest stand volume
are shown in Table 3.

Figure 5 shows the average forest stand volume
in homogeneous units. According to this figure,
the average volume is between 200 silve-ha ! and
300 silve-ha™! in most units.

The statistics of mean, standard deviation, stand-
ard error, percentage of statistical error, and coeffi-
cient of variation were calculated for the forest stand

Fagus Carpinus

Diospyros

Parrotia Alnus Other

Characteristic orientalis  betulus lotus persica  subcordata  species Total
Forest stand volume (silve-ha™?) 99.348 53.310 12.950 7.870 52.330 3.363 229.100
Frequency (%) 43.360 23.260 5.650 3.430 22.790 1.466 100.000
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Figure 5. Average forest stand volume in homogeneous units

volume in the sampling. The results showed an av-
erage forest stand volume of 229.10 silve-ha™! with
a4.28% statistical error. Table 4 indicates other sta-
tistics results.

Investigating the factors affecting forest stand
volume. The correlation between physiographic,
topographic, soil, and human variables with for-
est stand volume characteristics was analysed
using Pearson's correlation coefficient. The re-
sults showed the highest correlation between the
height above sea level and the slope and the vol-
ume of forest stands. This is so that forest stand
volume increases with these factors increasing.
It was, however, found that forest stand volume
did not correlate significantly with slope direc-
tion and soil acidity. In contrast, soil factors such
as soil texture (percentage of clay, silt, and sand)
and soil depth significantly affect forest stand
volume, and the intensity of correlation between
them is at the lowest level. There is also an inverse
relationship between forest stands and the dis-
tance from the stream and roads. Hence, the
longer distance from roads (due to destructive ef-

Table 4. The results of the forest stand volume inventory
statistics (silve-ha™!)

Characteristic v SD E E%

Forest stand
volume
(silve-ha™!)

229.10 13.70 0.49 4.28

fects) has better vegetation conditions (Wyman,
Stein 2010). Table 5 displays Pearson's correlation
coeflicient results.

Forecasting forest stand volume with artificial
neural networks. A training of SSOM, RBF, and
MLP neural networks was conducted using eight
input variables (elevation above sea level, slope,
soil depth, clay, silt, sand, and distance from road
and the stream) and one output variable (forest
stand volume) and then compared with their per-
formance evaluation criteria (Table 6).

In the comparative evaluation of artificial neural
networks during the test phase, it became evident
that the (4 x 4) structured SSOM neural network
outperformed both the RBF and MLP neural net-

Table 5. Pearson's correlation coefficient

Independent Dependent variable
variables forest stand volume (silve-ha™!)
Elevation (m) 0.684**

Slope (%) 0.672*
Aspect (°) 0.390NS

Soil depth (m) 0.790%*

Sand (%) 0.441%*

Clay (%) —0.551**

Silt (%) 0.167*

pH 0.780NS
Stream distance (m) —0.595%*

Road distance (m) 0.576%*

v — mean of characteristic of the study; SD — standard devia-

tion; E — standard error; E% — percentage of statistical error

*Significance at 95% probability level; ** significance at 99%

probability level; ¥ insignificance of correlation
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Table 6. The performance of SSOM, RBF, and MLP neural networks in predicting the volume of forest stand (silve-ha™?)

with eight input variables

Neural Evaluation criteria
Structure
networks stages R? Ry MAE RMSE RMSE% bias bias%
training 0.9082 0.8788 11.38 27.85 4.85 11.38 3.89
SSOM 4 x 4
test 0.9541 0.9437 15.25 29.56 7.99 15.25 5.73
training 0.9164 0.8974 9.31 31.98 5.57 9.31 3.18
RBF 8-21-1
test 0.9118 0.9890 18.94 32.67 8.83 18.94 7.13
training 0.8606 0.8332 12.56 40.87 7.10 12.56 3.43
MLP 8-15-1
test 0.9137 0.9086 29.61 41.60 11.24 29.61 11.14

2

R? — coefficient of determination; R3; — adjusted R-squared; MAE — mean absolute error; RMSE — root mean squared

error; RMSE% — percentage of root mean squared error; bias% — percentage bias; 4 x 4 — number of Kohonen layer neu-

rons in the SSOM neural network; 8-21-1 — number of neurons of input-hidden-output layers in the RBF neural network;

8-15-1 — number of neurons of input-hidden-output layers in the MLP neural network; SSOM - supervised self-organising

map; RBF — radial basis function; MLP — multi-layer perceptron

works in terms of accuracy and error metrics.
Remarkably, the SSOM network achieved an im-
pressive R* value of 0.9541, indicating a robust
correlation between predicted and actual values.
Furthermore, it exhibited superior performance
by showcasing a notably lower RMSE percentage
(7.99%) and bias (15.25%) compared to its coun-
terparts. Conversely, the RBF network, compris-
ing 8 neurons in the input layer, 21 neurons in the
hidden layer, and 1 neuron in the output layer,
achieved an R? value of 0.9118. Its corresponding
RMSE% was 8.83%, with a bias of 7.13%. Similar-
ly, the MLP network, configured with 8 neurons
in the input layer, 15 neurons in the hidden layer,
and 1 neuron in the output layer, demonstrat-
ed an R? value of 0.9137, along with an RMSE%
of 11.24% and a bias of 11.14%. The findings un-
derscored the superiority of the SSOM neural net-
work, specifically structured as (4 x 4), within this
dataset or problem domain. Notably, employing
a smaller network structure with fewer neurons
exhibited higher accuracy and reduced error when
contrasted against larger, more complex struc-
tures (Table 6).

The adaptation of observed and predicted forest
stand volume values in SSOM, RBF, and MLP neu-
ral networks is shown in Figure 6. The SSOM neural
network's observed and predicted values are pri-
marily similar and slightly different, according
to the above figure. However, there is a difference
between the observed and predicted values in the
MLP and RBF neural networks.

216

Predictive importance. RMSE values of neural
networks were determined by comparing the error
values for each model with their base errors (when
all input variables are included) after removing one
input variable (increase or decrease). Table 7 shows
the status of the dropped variable. Table 8 also
shows how artificial neural networks perform si-
multaneously with removing an input variable
in two training and test stages.

Table 7 delineates the iterative process of elim-
inating input variables from a pool of eight fac-
tors [stream distance, road distance, elevation,
slope, soil depth, clay (%), silt (%), and sand (%)].
Sequentially, in each step, one input variable
is excluded, and the neural network is trained us-
ing the remaining variables. For instance, in Sta-
tus 1, the road distance variable is omitted, and
the neural network is then trained to utilise the
remaining seven variables. This systematic proce-
dure was iterated across all statuses, wherein each
status designates the specific input variable omit-
ted during training.

The analysis presented in Table 8 explores the
consequences of removing individual input varia-
bles from the total input factors on the performance
of SSOM, RBF, and MLP neural networks through-
out both the training and test phases. The study
findings underscore that the exclusion of an input
variable from a neural network can elicit distinct
effects on its performance across various scenar-
ios. For instance, in Status 6 of the SSOM neural
network, wherein the variable representing the
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Figure 6. Comparison of the observed and predicted volume of forest stand (silve-ha™!) with artificial neural net-
works: (A) Supervised self-organising map (SSOM); (B) radial basis function (RBF); (C) multi-layer perceptron (MLP)

Table 7. Status of dropped variable

Status
1 2 3 4 5 6 7 8
\]irr(zgll))lid diii)aar?ce dsitsrt(;??e elevation slope soil depth clay (%) silt (%) sand (%)
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Table 8. The results related to the performance of neural networks while removing one variable from all the in-
put variables

Status Stages R? Ry MAE RMSE RMSE% bias bias%
training 99.46 99.37 2.04 11.63 2.02 2.04 0.70
SSOM
test 98.27 99.01 291 12.38 3.34 291 1.09
1 RBE training 98.40 96.60 4.57 18.41 3.20 4.57 1.56
test 96.24 97.51 8.47 19.66 5.31 8.47 3.18
MLP training 95.40 94.69 5.30 23.00 4.00 5.30 1.81
test 93.89 95.88 10.41 25.28 6.83 10.41 3.92
training 98.26 97.94 3.85 14.31 2.49 3.85 1.31
SSOM
test 97.47 98.38 5.41 15.38 4.27 5.41 2.03
5 RBE training 96.35 95.70 5.21 20.69 2.46 5.21 1.78
test 94.90 96.81 7.50 22.26 6.01 7.50 2.82
MLP training 94.43 93.26 7.62 25.92 3.08 7.62 2.61
test 91.69 94.77 10.83 28.50 8.14 10.83 4.07
SSOM training 94.05 92.66 8.46 27.05 3.22 8.46 2.89
test 89.83 93.63 11.94 31.46 8.99 11.94 4.49
3 RBE training 90.61 88.33 10.15 34.11 4.06 10.15 3.47
test 87.15 91.98 13.05 35.29 10.08 13.05 4.91
MLP training 86.51 83.93 11.72 40.03 4.76 13.53 4.63
test 79.95 87.87 13.61 43.95 12.55 15.55 5.85
training 91.90 90.25 8.59 31.17 3.17 8.59 2.94
SSOM
test 88.50 93.01 10.69 32.96 9.41 10.69 4.02
4 RBE training 90.57 88.82 10.15 33.38 3.97 10.15 3.47
test 86.02 91.42 12.63 36.52 10.43 12.63 4.75
MLP training 84.93 82.34 11.96 41.97 4.99 11.96 4.09
test 81.21 88.36 15.13 42.53 12.15 15.13 5.69
training 92.25 94.25 6.98 23.94 2.85 6.98 2.39
SSOM
test 93.35 95.88 8.75 30.28 7.22 8.75 3.29
s RBE training 90.63 89.31 10.84 32.64 3.88 10.84 3.71
test 87.66 92.36 12.36 34.45 9.84 12.36 4.65
MLP training 86.82 87.60 12.40 35.16 4.18 12.04 4.12
test 85.27 90.84 13.75 42.02 10.77 13.75 5.17
training 99.37 99.27 1.80 8.48 1.00 1.80 0.61
SSOM
test 99.14 99.46 2.77 9.12 2.60 2.77 1.04
6 RBE training 98.79 98.67 2.65 11.47 1.36 2.65 0.90
test 98.33 98.99 1.38 12.36 3.53 1.38 0.52
MLP training 98.59 98.43 2.89 12.49 1.48 2.89 0.98
test 98.04 98.82 4.44 13.54 3.86 4.44 1.67
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Table 8. To be continued
Status Stages R? R3y; MAE RMSE RMSE% bias bias%
training 98.98 98.92 2.40 10.82 1.28 2.40 0.82
SSOM
test 98.65 99.17 3.88 11.09 3.22 3.88 1.46
; RBE training 98.05 97.76 3.01 14.93 1.77 3.01 1.03
test 97.67 98.53 5.55 15.09 4.31 5.55 2.09
MLP training 99.03 98.91 1.56 10.41 1.24 1.56 0.53
test 98.45 98.01 4.72 12.36 3.53 4.72 1.77
training 99.34 99.25 1.32 8.62 1.02 1.32 0.45
SSOM
test 99.09 99.06 3.77 12.01 3.43 3.77 1.40
3 RBE training 99.21 99.14 1.68 9.23 1.09 1.68 0.57
test 98.07 98.02 3.33 10.27 2.93 3.33 1.25
MLP training 97.55 97.59 3.25 15.49 1.84 3.25 1.11
test 97.00 98.17 5.55 16.83 4.80 5.55 2.09

R? — coefficient of determination; R} — adjusted R-squared; MAE — mean absolute error; RMSE — root mean squared er-

ror; RMSE% — percentage of root mean squared error; bias% — percentage bias; SSOM — supervised self-organising map;

RBF - radial basis function; MLP — multi-layer perceptron

percentage of clay was eliminated, a noteworthy
increase in both R? and adjusted R? values was ob-
served during the test phase. Simultaneously, a de-
cline in the RMSE and bias percentage was noted,
indicating a marginal impact of removing the clay
percentage variable on this particular neural net-
work configuration. Contrarily, in Status 4 of the
SSOM neural network, upon removal of the slope
variable, a substantial decrease in both R?* and ad-
justed R? values was evident compared to other
scenarios. Additionally, there was a significant rise
in RMSE and bias percentage during the test phase,
signifying a considerable impact of excluding the
slope variable on the performance of this specific
neural network configuration. Similarly, in Sta-
tus 8 of the RBF neural network, the exclusion
of the sand percentage variable led to amplified
R? and adjusted R* values, coupled with reduced
root mean square error and bias percentage dur-
ing the test phase when compared to alternative
configurations. This observation implies a favoura-
ble impact of eliminating this specific input vari-
able on the performance of this particular neural
network mode. Conversely, Status 4 exhibited
analogous trends in both SSOM and MLP neu-
ral networks, demonstrating a significant decline
in both R* and adjusted R? values. This coincided
with an escalation in RMSE and bias percentage

during the test phase in comparison to alterna-
tive configurations. These findings underscore the
pronounced effect of removing the slope variable
on the performance of these particular neural net-
work models. Overall, the order of artificial neural
network error, from highest to lowest, is general-
ised as follows. Additional findings relevant to the
performance metrics of artificial neural networks
are detailed in Table 8.

SSOM 6 > SSOM 7 > SSOM 8 > SSOM 1 > SSOM 2
>SSOM 5 > SSOM 3 > SSOM 4

RBF 4 > RBF 3 > RBF 5 > RBF 2 > RBF 1 > RBF 7
> RBF 6 > RBF 8

MLP 6 > MLP 8 > MLP 7 > MLP 1 > MLP 2 > MLP 5
> MLP 4 > MLP 3

As compared to the base error, the neural net-
work error of SSOM 4 (RMSE = 32.96; R*> = 88.5),
RBF 4 (RMSE = 36.52; R* = 86.02), and MLP 3
(RMSE = 43.95; R? = 79.95) increased by 3.4, 3.85,
and 2.35, respectively. SSOM 6 (RMSE = 9.12;
R2 = 14.99), MLP 6 (RMSE = 13.54; R> = 98.04), and
RBF 8 (RMSE = 10.27; R?* = 98.87) neural network
errors have also decreased by 20.44, 19.13, and
31.37, respectively (Figure 7).
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Figure 7. Sensitivity analysis

SSOM - supervised self-organising map; RBF — radial basis function; MLP — multi-layer perceptron

DISCUSSION

In natural ecosystems, frequent evaluations and
timely information collection through field opera-
tions are complicated, exhausting, time-consuming,
and expensive owing to the dynamic nature of the
ecosystem (Kilpelanen, Tokola 1999). Forest man-
agers are increasingly using low-cost methods (Na-
seri 2003). It has been demonstrated that artificial
neural networks can be used to predict and estimate
forest stand volume, as shown by Bayat et al. (2016),
Ozcelik et al. (2017), Ercanl et al. (2018), Ronoud
et al. (2019) and Bayat et al. (2020). Artificial neural
networks, with their training, generalizability, and
noise tolerance, can find hidden layers of depend-
ent and independent variables with nonlinear, mul-
tivariate, and complex relationships (Ferraz Filho
et al. 2018). Compared with evaluation criteria,
this study used SSOM, MLP, and RBF neural net-
work performance to predict forest stand volume
by physiography, topography, soil, and human fac-
tors. The sensitivity analysis method was used to de-
termine the effect of input variables on forest stand
volume. While techniques like Principal Compo-
nent Analysis (PCA) can provide dimensionality
reduction, they may not be suitable for sensitiv-
ity analysis as they do not explicitly consider how
changes in individual variables affect the output.
Reducing one variable at a time can be a simpler
and more effective approach for sensitivity analysis,
providing valuable insights into individual effects
without compromising accuracy or complexity.
The choice of method depends on the specific goals
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and requirements of each analysis task (Saltelli
et al. 2008). Pearson correlation coefficients were
used to check whether the first input variables had
a significant relationship before training the neural
networks. The model was constructed using vari-
ables that had a significant relationship between
them. Based on this study, the input variables sig-
nificantly affect forest stand volume except for ge-
ography and soil acidity. Several studies have shown
that environmental factors, such as height above
sea level, slope, and geographical direction, play
a substantial role in the development and formation
of communities and vegetation, including Zhang
et al. (2013) and Daghestani et al. (2017). The in-
direct effects of these factors affect trees' quantita-
tive and qualitative characteristics, including their
diameter at the breast, percentage of canopy cov-
er, volume, and density of trees. As demonstrated
by the results of Marvie Mohadjer (2006), Klippel
et al. (2017), and Sefidi et al. (2018), forest stand
volume is directly correlated with height above sea
level. Hence, as height above sea level increases due
to human interference and lack of access, the vol-
ume of tree stands increases, which confirms the
present study's findings. Modelling was conducted
in this study using variables such as height above
sea level, slope, soil depth, percentage of clay, sand,
and silt, and stream distance and road distance. Ac-
cording to the results, SSOM, RBF, and MLP neural
networks predict forest stand volume based on the
input variables. Based on the results of predictive
importance, it was found that the neural networks
SSOM 4 and RBF 4 by the slope variable and the
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neural network MLP 3 by the height above sea
level variable had a greater impact. Also, the vari-
able of clay percentage on the neural networks
SSOM 6 and MLP 6 and sand percentage on the
neural network RBF 8 had less effect. In this regard,
Bayat et al. (2016) used the MLP neural network
to estimate tree stand volume in the Grazin region.
The results showed that the MLP neural network
had the highest accuracy and lowest error than the
regression model. Hu et al. (2020) used RF algo-
rithms, SVM, and regression models to estimate
forest reserves using Sentinel-2 satellite data. Their
results indicated that the random forest algorithm
had the highest performance among the other
two models.

CONCLUSION

Based on the results of this study, the SSOM neu-
ral network performs better than the MLP and
RBF neural networks when predicting forest
stand volume by eliminating an input variable,
as it has a low error rate and the highest adjust-
ed coefficient of determination. Therefore, it can
be selected as a suitable approach. According
to Gil and Johnsson (2010), the SSOM neural net-
work is similar to the RBF neural network in that
it automatically determines how many RBFs need
to be included in the hidden layer, and due to its
increased accuracy and faster learning ability than
the MLP neural network, it has a great deal of im-
portance in resolving problems involving large
data sets with a lot of features, which is supported
by our findings. This statement highlights the po-
tential significance of the research in guiding future
studies on forest stand volume prediction in simi-
lar districts. By utilising the findings of this study,
researchers can better understand the factors that
impact forest stand volume and develop more ac-
curate predictions for future forestry management.
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