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Abstract: Forests are atmospheric CO2 sinks, but their losses and degradation accelerate the emissions of carbon stored 
as a  sink. Deforestation and forest degradation are widespread in  Bangladesh, but their impact on  greenhouse gas 
(GHG) emissions is unknown. We assess land use and land cover (LULC) change and forest loss in this study by clas-
sifying different Landsat satellite imagery with a focus on forest cover loss from 1989 to 2020. Tier 1 standards were 
used to estimate the carbon removal and emissions from a small-scale tropical forest. Over the last three decades, the 
forest area has decreased by  2.40%, 3.74% and 7.52%, respectively. The primary causes of  forest loss are large-scale 
tea garden and homestead expansion, as well as increase in agricultural activities. Because of a reduction in the forest 
area, the annual gain of carbon in forest biomass has also decreased. Although overall carbon emission was a net gain 
for the Maulvibazar hill forest, it has decreased from 331.24 Gg·yr–1 in the first decade (1989 to 2000) to 307.7 Gg·yr–1 

in the most recent decade (2011 to 2020), which is an alarming trend. As a result, this research will contribute to leaders’ 
commitment to “halt and reverse forest loss and land degradation by 2030” at the 26th United Nations Climate Change 
Conference of  the Parties (COP 26) in 2021 to  improve carbon sequestration, combat climate change and conserve 
biodiversity.
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Climate change – the outcome of anthropogenic 
global warming – is  the single biggest environ-
mental crisis the Earth is  facing (Mal et  al. 2018). 
Carbon emissions from deforestation are the most 
significant source of  climate change, and they are 
the dominant driver of  global warming (Ahmed 
et al. 2017). But trees can also act as a carbon sink 

to combat the climate change. Terrestrial systems, 
predominantly plants, represent an important car-
bon store, estimated globally at  638 Gt, of  which 
44% is present in plant biomass (FAO 2015). Carbon 
stock varies across forest types. While an  average 
of 303 tons of carbon per ha are retained in tropical 
forests (Lü et al. 2010), 66 tons of carbon per ha and 
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44 tons of carbon per ha are retained in temperate 
and boreal forests, respectively (Thurner et al. 2014). 
Land cover change has significant effects on carbon 
emission. Roughly 1.1 Pg(C)·yr–1 was emitted due 
to  tropical land use change (Pan et  al. 2011). The 
vast majority of  forest losses is  the result of  agri-
cultural and habitation-related land-use changes 
(Akinyemi 2017) and human interventions (Ahmed 
et al. 2020). Forest land has deteriorated as a result 
of development and other anthropogenic activities, 
resulting in  biodiversity loss and increased CO2 
levels in  the atmosphere. As a  result, determining 
regional and national carbon stocks is  critical for 
developing policies and programs for reducing CO2 
emissions from the forest (Salunkhe et al. 2018).

Satellite data is  widely used to  analyze land use 
land cover (LULC) changes in a  given region over 
time (Alam et al. 2020). In Bangladesh, remote sens-
ing data can be used to assess the state of spatial de-
velopment, and developing appropriate policy plans 
may be a  cost-effective approach (Rahman et  al. 
2019). Besides, satellite remote sensing data and GIS 
techniques can be  used to  identify decadal trends 
in forest cover and the source of deforestation (Chen 
et  al. 2013; Vanonckelen et  al. 2015; Islam et  al. 
2021). Avoiding the forest loss and lowering carbon 
emissions are critical in  this era of  climate change. 
To  mitigate climate change, various frameworks 
such as the Reducing Emissions from Deforestation 
and Degradation (REDD+) and Clean Development 
Mechanism (CDM) may be more effectively imple-
mented (Sangermano et al. 2012; Potapov et al. 2014).

The countrys forest resources are heavily exploit-
ed, but their restoration efforts are limited. Between 
2000 and 2014, total tree canopy coverage increased 
slightly but natural forest acreage decreased dra-
matically (Potapov et  al. 2017). Otherwise, global 
greenhouse gas emissions will rise due to deforesta-
tion in developing countries, particularly in tropical 
and subtropical regions (Bustamante et  al. 2016). 
Natural hill forests are being destroyed as a  result 
of  illegal logging, shifting farming, and other land 
uses (Hansen et  al. 2013; Islam et  al. 2017). Al-
though remotely sensed imagery was used to stratify 
the  forest in  Bangladesh, the method used to  es-
timate forest carbon release was different. Hoque 
et al. (2019) used methods developed by Islam et al. 
(2011) and Turner et al. (1995) to estimate carbon 
release from the Teknaf and Rajapalong Hill Tracts 
in Cox’s Bazar and Khadimnagar in Sylhet. In  this 
work, changes in the carbon stock in forest biomass 

were quantified using the gain-loss approach in ac-
cordance with IPCC 2006 guideline. greenhouse 
gas (GHG) estimation is required for national-level 
carbon inventories. Taking these facts into account, 
the present study was conducted (i)  to correctly 
identify and quantify the magnitude of  land use 
land cover change from 1989 to 2020 in the Maul-
vibazar region as a proxy for the hill forest of Ban-
gladesh, and (ii) to quantify the amount of carbon 
removal and emission from forest biomass.

MATERIAL AND METHODS

Study area. The study area includes the entire 
Maulvibazar region composed of  seven upazilas: 
Barlekha, Juri, Kamalganj, Kulaura, Maulvi Bazar 
Sadar, Rajnagar, and Sreemangal (Figure 1). Maul-
vibazar District, located at 24.3095ºN latitude and 
91.7315ºE longitude, has a  land area of 2 799 km2. 
It  is bounded by  the Indian states of  Tripura and 
Assam in the south and east, and by the Bangladesh 
districts of  Habiganj and Sylhet in  the west and 
north. The temperature ranges from a low of 26.8 °C 
in February to a high of 36.1 °C in June. The average 
monthly humidity ranges from 74% in March to 89% 
in July (Kawsar et al. 2015). This area is divided into 
three agroecological zones: the Old Eastern Surma 
Kusiyara Floodplain, the Northern and Eastern 
Piedmont Plains, and the Northern and Eastern Hills 
(FAO 1988). This district is home to more than 70% 
of Bangladesh tea gardens. The most common forests 
in  Maulvibazar are Lawachara National Park, Ra-
jkandi Reserve Forest, Muraichara Eco Park, Mad- 
hovkundo Eco Park, and Lathitila Forest. Top tree 
species in  northeastern hill forests of  Bangladesh 
are Tectona grandis, Artocarpus chaplasha, Lager-
stromia speciosa, Chikrassia tabularis, Xylia dol-
abriformis etc.

Data acquisition. Four Landsat satellite images 
(1989, 2000, 2011, and 2020) were obtained from 
Earth Explorer (earthexplorer.usgs.gov) to  assess 
the land cover change of Maulvibazar over a 31-year 
period. Table 1 summarizes the Landsat data used 
in the study. The month of January was chosen for 
image selection because there was no cloud cover. 
The winter season in the area lasts from November 
to February. Because vegetation phenology occurs 
throughout the year, it was intended to collect im-
ages from the same month.

Image preprocessing and LULC classification. 
Layer-stacking multiband images were created us-
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ing QGIS software (QGIS 2021). All of  the multi-
band images were visualized using a  false-colour 
composite. The study area was clipped through 
using a shapefile. Following that, a training shape-
file was created. A  number of  65 training points 
for each (1989, 2000, 2011, and 2020) year and for 
each class were taken using QGIS to  ensure ap-
propriate classification. The R  statistical package 
(Version 4.2.1., 2021) and the “Random Forest” 
(RF) algorithm were employed to categorize spec-
tral images. For building decision trees, the RF al-
gorithm employs a  bootstrap approach (Pavanelli 
et al. 2018) and a non-parametric machine learning 
method frequently utilized in satellite image clas-
sification (Zhang et al. 2018). The RF classification 
was carried out in R  using the programs “raster”, 
“maptools”, “biomod2”, “rgdal”, “plyr” and “Ran-
dom Forest”. The training data and validation data 
were split into 0.75 : 0.25. The variables that went 
into the algorithm were band  1, band  2, band  3, 

band  4, band  5, band  6, band 7, band 8, band 9, 
NDVI (Normalised Difference Vegetation Index), 
NDWI  (Normalised Difference Water Index). The 
training data and validation data were split into 
0.75 : 0.25. The variables (covariates) were surface 
reflectance band 1, band 2, band 3, band 4, band 5, 
band  6, band  7, band  8, band  9, NDVI, NDWI. 
The area of  the LULC map was calculated using 
ArcGIS. In QGIS-SAGA, cross-tabulation was used 
to accomplish the change detection analysis. LULC 
is  classified into six groups (built-up, crop/fallow, 
forest, homestead, tea garden, and water), as shown 
in  Table 2. For an  extended period, cropland and 

Figure 1. Study area map 
of  Maulvibazar district 
of Bangladesh

Table 1. Characteristics of satellite images

Sensor Path/Row Image acquisition 
date Resolution

Landsat 4-5 TM

137/43

Jan 13, 1989

30 m
Landsat 4-5 TM Jan 12, 2000
Landsat 4-5 TM Jan 26, 2011
Landsat 8 OLI Jan 19, 2020

Table 2. Land use land cover classification scheme

Land use/cover types Description

Built-up industrial, residential, transportation, 
road, urban, commercial

Crop/fallow agriculture area, crop fields, 
vegetable lands, fallow lands

Homestead a home consists of a tree, 
pond/crop field

Forest

mainly Lawachara National Park, 
Madhabkundo Eco-park, Rajkandi 

Reserve Forest, Muraichara 
Eco-park etc.

Tea garden scattered shade trees with tea
Water river, permanent water, lakes, ponds

Maulvibazar district
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countries, forest inventories are scarce. Using the 
Gain-Loss Method, we estimate carbon discharges 
from changes in carbon stocks in a living biomass 
pool in  this study. The area of  the forest was ex-
tracted from classified satellite images. After the 
classification of  satellite images, the dark green 
colour represents the forest area (hill forest in the 
northeastern region was considered instead of  in-
dividual tree species) (Figure 3). The area of  for-
est  land and non-forest land was calculated using 
the land-use conversion matrix. We collected tim-
ber and fuelwood extraction data from the Forest 
Department and through review literature (GoB 
2019; FAO 2020). This calculation uses pre-deter-
mined default settings for the Tropical Forest. The 
carbon in  forest biomass was estimated using the 
formulas shown below [Equations (1–7)]:

ΔCB = ΔCG – ΔCL	 (1)

where:
∆CB	 – annual change in carbon stocks in biomass (the  
		  sum of aboveground and belowground biomass  
		  terms), considering the total area [tonnes(C)·yr–1];
∆CG	 – annual increase in carbon stocks due to biomass  
		  growth for each land subcategory, considering  
		  the total area [tonnes(C)·yr–1];
∆CL	 – annual decrease in carbon stocks due to biomass 
		   loss, considering the total area, [tonnes(C)·yr–1].

ΔCG = A × GTOTAL × CF	 (2)

where:
A	 – area of  land remaining in  the same land-use 
		   category (ha);
GTOTAL	– mean annual biomass growth
		  [tonnes dry matter (d.m.)·ha–1·yr–1];
CF	 – carbon fraction of dry matter
		  [tonnes(C)·(tonne d.m.)–1]

ΔCL = Lwood-removals + Lfuelwood + Ldisturbances	 (3)

where:
Lwood-removals	 – annual carbon loss due to  wood  
			       removals [tonnes(C)·yr–1];
Lfuelwood		  – annual biomass carbon loss due 
			       to fuelwood removals [tonnes(C)·yr–1];
Ldisturbance	 – annual biomass carbon losses due  
			       to disturbances [tonnes(C)·yr–1].

GTOTAL = [GW × (1 + R)]	 (4)

fallow land were put together since so much crop-
land had been fallow (awaiting harvest or  seed 
sowing), even though that area is  still cropland. 
Figure 2 displays all the methodologies used in the 
study in a single diagram.

Accuracy assessment. According to  the classi-
fication accuracy results, for 1989, 2000, 2011 and 
2020, the overall classification accuracy was 97%, 
93%, 88% and 94%, and overall kappa statistics were 
0.95, 0.90, 0.89 and 0.91, respectively (Table  3). 
These estimates indicate that the classification ac-
curacies were of  substantial agreement. This lev-
el of agreement is acceptable for the classification 
of land use and land cover changes.

Estimating emissions/removals of  carbon 
from forest biomass. Tiers 1–3 are three general 
methodologies for evaluating greenhouse emis-
sions and removals. The number of tiers represents 
the amount of  information required and the level 
of complexity. This study used Tier 1 of  the IPCC 
2006 methodology. Furthermore, in many tropical 

Table 3. Accuracy assessment for the classified images

Reference 
year Classified image

Overall 
classification 

accuracy

Overall 
kappa 

statistic

(%)
1989 Landsat 4-5 TM 97 0.95
2000 Landsat 4-5 TM 93 0.90
2011 Landsat 4-5 TM 88 0.89
2020 Landsat 8 OLI 94 0.91

Data 
collection 

Literature review 
and National 

statistics 

Satellite images 

AOI creation 

Image 
processing 

LULC 
classi�cation       IPCC guideline 

 

Production of 
LULC map  

Change matrix 
analysis  

Estimation of carbon 
removal and 

emission from forest 

Figure 2. Flow chart of the methodology
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where:
GW	 – average annual aboveground biomass growth  
		  (tonnes d.m.·ha–1·yr–1);
R	 – ratio of belowground biomass to aboveground  
		  biomass, in tonne d.m. belowground biomass 
		  (tonnes d.m. aboveground biomass)–1.

Lwood-removals = H × BCEFR × (1 + R) × CF	 (5)

where:
H		  – annual wood removals, roundwood (m3·yr–1);
BCEFR		 – biomass conversion and expansion factor  for  
		     the conversion of  removals in  merchantable  
		     volume to total biomass removals (including 
		    bark) [tonnes of  biomass removals·(m3  
		      of removals)–1].

Lfuelwood = [FGtrees × BCEFR × (1 + R) + FGpart × 
                × D] × CF	

(6)

where:
FGtrees	– annual volume of fuelwood removal of whole  
		  trees (m3·yr–1);

FGpart	 – annual volume of  fuelwood removal as  tree  
		  parts (m3·yr–1);
D	 – basic wood density (tonnes d.m.·m–3).

Ldisturbances = A × BW × (1 + R) × CF × fd	 (7)

where:
BW	 – average aboveground biomass of areas affected;
fd	 – fraction of biomass lost in disturbance.

RESULTS

Land use and land cover (LULC) changes
The map of LULC was created to properly iden-

tify and adjust different classes in the research area, 
with a  particular emphasis on  forest change. Six 
LULC classes (built-up, crop/fallow, forest, home-
stead, tea garden, and water) are pointed out in the 
LULC map (Figure 3) which was classified.

LULC change from 1989 to  2000. In  general, 
all of  the LULC categories in  Maulvibazar have 
changed. The transition matrix illustrates the 

1989

20202011

2000

Legend

water
tea garden
homestead
forest
crop/fallow
built-up

km12.5 250 50

Figure 3. Deacadal 
changes of LULC 
during 1989–2020 
periods

LULC – land use 
and land cover
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of  2.64%. The forest was reduced by  3.74%, with 
an annual decrease rate of 185.96 ha·yr–1, and the 
majority of the forest was transferred to a tea gar-
den. Between 2000 and 2011, homestead and tea 
gardens increased by 23.72% and 3.79%, respective-
ly. In the homestead case, most of the crop/fallow 
land was converted to homestead, followed by oth-
ers. Tea gardens also increased by  3.79%. Water 
bodies were retained at 5 272 ha between 2000 and 
2011 (Figure 4).

LULC change from 2011 to 2020. Between 2011 
and 2020, built-up, homestead, and tea garden in-
creased by 32.70%, 21.10%, and 12.96%, respective-
ly, compared to the previous decade (Table 4). The 
built-up area grew due to converting the maximum 
crop/fallow area to  built-up. The homestead was 
close to the built-up area, which has seen a signifi-
cant increase, with the largest intrusion of  crop/
fallow to  the homestead. Tea gardens expanded 
as  9  412  ha of  crop/fallow and 8  633  ha of  forest 
were converted to  tea gardens, followed by  oth-

processes and patterns of  land-use change (Fig-
ure 4). From 1989 to  2000, built-up, homestead, 
and tea garden increased, while crop/fallow, for-
est, and water decreased (Table 4). The built-up 
area increased by  26.80%, with most crop/fallow 
land converted to built-up. The permanent crop/
fallow land area was 125 340 ha, with the major-
ity of crop/fallow land transferred to homestead. 
Otherwise, the forest area shrank by 2.40%. In the 
homestead case, most crop/fallow (9  623  ha) 
area was converted to homestead, with 9 454 ha 
remaining. The tea garden was also increased 
by 8.57%, with the conversion of the most signifi-
cant areas of forest and crop/fallow land. The area 
of persistent water bodies was 4 527 ha between 
1989 to 2000.

LULC change from 2000 to 2011. Land use and 
land conversion have been ongoing since the early 
20th century. From 2000 to 2011, the built-up area 
grew by  9.30% (Table 4). The persistent crop/fal-
low area was 117 356 ha, and it decreased at a rate 

1989–2000

1989–20202011–2020

2000–2011

water

tea garden

homestead

forest

crop/fallow

built-up
125 340 117 356

110 938 114 314

42 219

16 528

7 062
6 843

4 572
4 438
2 504

9 454
9 623

7 414

3 761
8 370

40 645

18 240

6 746
6 226

5 272
2 605

11 943
12 144

6 269

5 939
7 284

34 357

13 435

11 023
10 164

3 621
3 694

7 624
9 179

15 209

3 858
7 293

35 250

16 133

9 412
8 633

4 427
3 275

6 172
10 980

14 398

7 534
8 232

5 595

3 604

5 099

6 659

5 479

Figure 4. Chord diagram showing land conversion due to land use land conver change of the study area in different 
years (in ha)
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ers (Figure 4). Crop/fallow, forest, and water all 
decreased by  3.84%, 7.52%, and 26.42% (Table 4). 
Instead, the annual water loss was 256.5  ha·yr–1, 
leaving 4 427 ha of water.

LULC change from 1989 to  2020. Significant 
changes have occurred over the last 31 years in the 
research area. The total built-up area has increased 
by  83.90%. The greatest amount of  crop/fallow 
land is  converted to  the built-up land. Between 
1989  and  2020, crop/fallow and forest declined 
by 11.24% and 13.10%, respectively (Table 4). The 
majority of the forest has been converted into a tea 
garden and homestead. Simultaneously, 15 209 ha 
of  crop/fallow land and 7  624 ha of  forest land 
were transferred to  the homestead. Even though 
water levels fluctuated over time, overall water lev-
els increased by  approximately 1.99%. From 1989 
to 2020, the figure depicts the temporal trend and 
relative variations in LULC in the Maulvi Bazar re-
gion (Figure 4).

Deacadal LULC changes. The built-up area 
was increased every year. It expanded from 0.90% 
in  1989 to  1.66% in  2020. The homestead area 
was also increased drastically from 8.14% in 1989 
to  13.47% in  2020. The increased size of  the tea 
garden was documented at  13.9% in  2020 com-
pared to 10.92% in 1989. Crop/fallow has dropped 
from 56.7% to  50.33% in  the last 20 years. Forest 
land showed a  decreasing trend. In  the last three 
decades, the trend of  changing of water has been 
inconsistent (Figure 5).

Change of forest biomass carbon stock
Nature’s carbon-removal machines, forests, are 

a precious natural resource. The benefits to society, 
economy, and climate they give cannot be avoided. 
The annual increase in biomass carbon stocks due 
to biomass growth from persistent forest land and 
the afforested area was 6.05  tonnes(C)·ha–1·yr–1. 
Removal of  wood and fuelwood resulted in  the 
total annual carbon loss of  105.69 tonnes(C)·yr–1. 
Other  disturbances  (insect/pest, landslide, over-
grazing, encroachment, etc.) were not considered. 
Finally, the net biomass carbon stocks were esti-
mated to be 331 242 tonnes(C)·yr–1 between 1989 
and 2000 (Table 5).

Between 2000 and 2011, the total amount of per-
sistent forest land and the afforested area was 
52  719  ha. Carbon stores in  biomass were docu-
mented at 318.83 Gg(C)·yr–1 after removing wood 
and fuelwood from the forest (Table 5). Carbon 
stock in  biomass was decreased by  around 3.74% 

Table 4. Changes in land use and land cover in Maulvibazar

Class
Change (%)

1989–2000 2000–2011 2011–2020 1989–2020
Built-up 26.80 9.30 32.70 83.90
Crop/fallow –5.19 –2.64 –3.84 –11.24
Forest –2.40 –3.74 –7.52 –13.10
Homestead 10.44 23.72 21.10 65.47
Tea garden 8.57 3.79 12.96 27.29
Water 60.21 –13.48 –26.42 1.99

water
tea garden
homestead
forest
crop/fallow
built-up

Class

1989 202020112000
Year

0

50 000

100 000

150 000

200 000

250 000

A
re

a 
(h

a)

Figure 5. Land use land cover change in Maulvibazar district in 1989 to 2020
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Glasgow Leaders’ Declaration on Forests and Land 
Use, which pledges to halt forest loss in  less than 
a decade (UN Climate Change UK 2021). As a re-
sult, the persistent forest land should be declared 
as protected area, as 71% of the world’s protected 
areas have contributed to the prevention of  forest 
loss (Yang et al. 2021).

Looking at  the intensity of  change at  the cate-
gorical level of  the six transformed land use/land 
cover categories, homestead, crop/fallow, and tea 
garden conversion to  forest land has contribut-
ed significantly to  major forest loss in  the north-
eastern region of  Bangladesh over the past three 
decades (Figure 4). Deforestation caused by  the 
permanent land use change is responsible for 27% 
of global forest loss (Curtis et al. 2018). Cropland 
expansion in South East Asia, such as conversions 
of coffee, tea, upland rice, and other commodities, 
was responsible for 88% of  total forest loss (Zeng 
et  al. 2018). Otherwise, large-scale land acquisi-
tions (LSLAs) are a significant contributor to forest 
loss in the Global South (Davis et al. 2020). Finally, 
the land-use change, primarily due to conventional 
agricultural expansion and deforestation, accounts 
for roughly 17% of  global greenhouse-gas emis-
sions (Barker et al. 2007).

The values for changes in biomass carbon stock 
are positive, indicating that there is a  biomass 

along with the decrease of  forest land compared 
to the previous decade.

From 2011 to 2020, the total annual carbon gain was 
estimated to be 6.3 tonnes(C)·ha–1·yr–1 from 48 757 ha 
of land. In the case of carbon losses, maximum carbon 
loss from wood removal [93.75  tonnes(C)·yr–1] was 
followed by fuelwood removal [13.16 tonnes(C)·yr–1]. 
Finally, the net annual biomass carbon stock was esti-
mated to be 307 704 tonnes(C)·yr–1 (Table 5).

DISCUSSION

The land cover change in Bangladesh Maulviba-
zar landscape was assessed using medium-resolu-
tion satellite data from 1989 to 2000, 2000 to 2011, 
and 2011 to  2020. A  loss in  forest cover was re-
vealed to be related to significant changes in  land 
use and land cover change. During the last three 
decades, the forest has shrunk by 13.10% (Table 4). 
Murshed et al. (2021) also reported greater defor-
estation in Bangladesh, which was linked to higher 
population growth rates and agricultural land ex-
pansion. This shift in  forest cover is  also closely 
tied to human activities and management on a lo-
cal scale (Ahammad et  al. 2019). South Asia also 
lost 29.62% of  its forest cover (Reddy et al. 2018). 
As the forest cover area shrinks day by day, this sce-
nario will face the immense challenge posed by the 

Table 5. Net carbon stock change in biomass from forest

Year Land use category
Area  ΔCG Lwood–removals Lfuelwood  ΔCL  ΔCB

(ha) [tonnes(C)·yr–1]

1989–2000

FL–FL 42 219 202 442 13.70 2.23 15.93 202 426
non FL–FL 12 546 128 906 74.41 15.35 89.76 128 816

total [t(C)·yr–1] 54 765 331 348 88.11 17.58 105.69 331 242
total [Gg(C)·yr–1] 54 765 331.35 0.08 0.01 0.11 331.24

2000–2011

FL–FL 40 645 194 894 17.12 3.12 20.24 194 874
non FL–FL 12 074 124 061 85.86 11.23 97.09 123 964

total [t(C)·yr–1] 52 719 318 955 102.98 14.35 117.33 318 838
total [Gg(C)·yr–1] 52 719 318.96 0.10 0.01 0.12 318.83

2011–2020

FL–FL 35 250 169 023 15.52 2.53 18.05 169 005
non FL–FL 13 507 138 788 78.23 10.63 88.86 138 699

total [t(C)·yr–1] 48 757 307 811 93.75 13.16 106.91 307 704
total [Gg(C)·yr–1] 48 757 307.81 0.09 0.01 0.11 307.70

FL–FL – forest land remaining forest land; non-FL – non-forest land (built-up, crop/fallow, homestead, tea garden, water); 
∆CB – annual change in carbon stocks in biomass; Lwood-removals – annual carbon loss due to biomass removals [tonnes(C)·yr–1]; 
Lfuelwood – annual carbon loss due to fuelwood removals [tonnes(C)·yr–1]; ∆CG – annual increase in carbon stocks due to bio-
mass growth; ∆CL – annual decrease in carbon stocks due to biomass loss
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gain in  the carbon stock of  Maulvibazar hill for-
est. However, the net gain has decreased from 
331.24  Gg(C) in  the first decade (1989 to  2000) 
to 307.7 Gg(C) in the recent decade (2011 to 2020) 
due to forest area loss (Table 5). Mukul et al. (2014) 
noticed 179.1 million Mg of  carbon in  forest bio-
mass in Bangladesh, whereas the tree carbon stock 
is  associated with anthropogenic disturbance and 
stand characteristics. According to  Saimun et  al. 
(2021), the carbon storage capacity of  tropical 
forest ecosystems is  gradually declining, which is 
a  major concern to  us because forest deteriora-
tion affects the structure, composition, and variety 
of forests and carbon stocks, functioning, and bio-
logical processes (Gao et al. 2020). As a result, the 
government of Bangladesh is taking steps to collect 
national carbon stock data and develop the REDD+ 
Readiness Roadmap.

Although annual carbon loss increased from 
the first decade to  the second decade (0.11  Gg 
to  0.12  Gg) due to  increased wood and fuelwood 
collection from logging activities, it then decreased 
to  0.11 Gg (Table  5). Gathering of  wood and fu-
elwood has a  long-term effect on  the deteriora-
tion of  forests (Ahammad et  al. 2019). According 
to  Pearson et  al. (2017), land use change, includ-
ing deforestation, emitted 1.3 ± 0.7 Gt(C)·yr–1, with 
timber collection accounting for 53%, fuelwood 
harvesting accounting for 30%, and forest fires 
accounting for 17%. Tropical deforestation is  ex-
pected to increase from 0.467 Pg·yr–1 in the 2010s 
to 0.628 Pg·yr–1 in the 2090s (+35%), making tropi-
cal forests a major carbon source in the 21st century 
(Vieilledent et al. 2022).

The most notable contribution to the global envi-
ronmental change is LULC change. The Maulviba-
zar region has grown in size over time. An increase 
in the population was a primary driver of built-up 
expansion, which had a negative impact on the ecol-
ogy, environment, and biodiversity in the surround-
ing area (Rahman et  al. 2019; Chakroborty et  al. 
2020). Crop/fallow land in  the research area was 
diminishing year after year. Because of agricultural 
land depletion, biodiversity and ecological services 
have suffered, and food insecurity has increased 
(Kafy et al. 2021). Homesteads in the Maulvibazar 
region grew rapidly, ranking second only to agricul-
ture in  terms of  national food supply and income 
while also preserving biodiversity (Mattsson et  al. 
2018). Many fallow lands were converted to  tea 
cultivation areas, and the government encouraged 

the development of  tea gardens rather than rub-
ber gardens in  the Sylhet Division of  Bangladesh, 
which produces 96% of the country’s tea. Maulviba-
zar produces 63% of the tea, while Sylhet and Habi-
ganj districts produce 33% (Islam, Al-Amin 2019).

CONCLUSION

We present a comprehensive assessment of LULC 
change with a  special focus on  the forest change, 
whereas the IPCC’s Tier 1 default parameters are 
used to calculate the annual change of carbon stock 
in forest biomass. The forest land area was shrink-
ing as  most forest land was converted to  home-
steads, tea gardens, and crop/fallow land. Although 
tropical forests have a  high capacity for carbon 
storage, forest degradation, such as wood and fu-
elwood collection, appears to contribute to carbon 
emissions into the atmosphere. Our findings high-
light the immediate risk of carbon stock depletion 
linked to  Bangladesh’s rapid deforestation, which 
will assist the forest department and legislators 
in making forest protection and conservation deci-
sions by determining the current state of forest car-
bon. It is also helpful in mapping the country’s hill 
forest areas for long-term development, biodiver-
sity conservation, and environmental protection.
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