Distribution of genetic variability in mature and progeny populations of *Abies alba* Mill. from the Polish Western and Eastern Carpathians

 $MARCIN ZAREK^{1}$, $MARTA KEMPF^{2*}$

¹Department of Forest Ecosystem Protection, Faculty of Forestry, University of Agriculture in Krakow, Krakow, Poland

²Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, Krakow, Poland

*Corresponding author: m.kempf@ur.krakow.pl

Citation: Zarek M., Kempf M. (2023): Distribution of genetic variability in mature and progeny populations of *Abies alba* Mill. from the Polish Western and Eastern Carpathians. J. For. Sci., 69: 144–157.

Abstract: This study aimed to compare patterns in the genetic structure of 27 mature stands and the natural regeneration of A. alba in the Eastern and Western Carpathians within the introgression zone of two refugial lineages from the Apennine and Balkan peninsulas. The distribution of the genetic diversity of fir stands was analysed using paternally inherited chloroplast DNA and five nuclear dominant inter simple sequence repeat markers (ISSRs). The study showed that the Balkan haplotype prevailed in both parental and progeny populations, and this haplotype was found in many mature Eastern Carpathian stands. Relatively high levels of genetic diversity were found in the mature stands (effective number of alleles Ne = 1.517, Shannon index I = 0.436, expected heterozygosity He = 0.295) and progeny (Ne = 1.515, I = 0.436 and He = 0.294) of silver fir. The analysis of molecular variance (AMOVA) revealed slight differences among the mature fir stands from the Western and Eastern Carpathians, with a value of 1.1%. According to principal coordinates analysis (PCoA) and STRUCTURE analyses, the populations, including stands of mature and progeny trees, were genetically separated into two groups. Slight genetic differences between the mature and progeny populations in the Polish Carpathians indicate sound gene pool transmission, which is essential for creating new selection and breeding programmes.

Keywords: chloroplast DNA; genetic diversity; genetic lineages; silver fir; simple sequence repeat markers (ISSR)

The current range of occurrence and the associated richness of the gene pool of tree species are the results of both demographic and evolutionary processes (Nosil, Feder 2013) and human influence (Hewitt 1999). In the future, the species composition of forests will depend on the scale, pace, and effects of the forecasted climate changes, including the response of individual species to those changes (Hamrick 2004; Kremer et al. 2012). To maintain

the sustainability of future stands, there is a need to protect the genetic diversity of forest reproductive material (FRM) (Labra et al. 2006; Vinceti et al. 2020). To ensure the continuous development of forests, one of the essential tasks is to renew forests artificially or promote natural regeneration. In either case, the key element determining the value of new stands is the level of genetic variability in the parental population and the transfer of this

© The authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

variability to the progeny generations. The mating patterns are influenced by the management history, stand size or tree density. It is necessary to understand the genetic variability and diversity of forest species populations and the efficiency of the gene pool transmission between generations, especially for predicting the direction of spread and potential changes in the range of occurrence in the future.

At the European scale, a shift in the range of tree species occurrences towards the northeast is predicted (Bellard et al. 2012; Bréda, Peiffer 2014). Moreover, the mountain taxa are predicted to migrate to higher altitudes to compensate for climate change (Loarie et al. 2009). The resulting change scenarios are significant in the case of species such as silver fir (*Abies alba* Mill.), which forms the major component of mountain stands of central and southern Europe (Mauri et al. 2016). The presence of European silver fir will ensure the stability of mountain stands during future climate change (Tinner et al. 2013).

Some of the main factors shaping the population structure and distribution of genetic variation of different species in Europe are the recent glaciations and post-glacial migration to the northern areas (Bosela et al. 2016). The process of post-glacial colonisation of Europe by silver fir was found to involve migration from the Apennine and Balkan peninsulas (Liepelt et al. 2002, 2009; Gömöry et al. 2004, 2012). Willis and Van Andel (2004) indicated the Czech Republic and southern Poland as potential refuges of fir 42 000 and 20 000 years ago, respectively. Populations representing the western and eastern refugial lineages may have met in Croatia, Bosnia, and the Ukrainian Carpathians (Gömöry et al. 2004, 2012; Liepelt et al. 2009). The Polish gene pool of fir is the mixture of individuals derived from two distinct refugia located in the Apennine and Balkan Peninsulas (Litkowiec et al. 2016). The Western and Eastern Carpathians are an interesting region for assessing the genetic variation in A. alba populations, which remain under the influence of genetic pools originating from both refugial areas (Gömöry et al. 2004, 2012; Liepelt et al. 2009; Kempf et al. 2020).

A wide range of markers has been used to assess the variability in population structure, gene flow, and phylogenetic relationships of silver fir. The abundance of genetic resources of this species was estimated using isoenzymes (Konnert, Bergmann 1995), microsatellite analyses of chloroplast (Parducci et al. 2001; Awad et al. 2014), and mitochondrial (Liepelt et al. 2002; Gömöry et al. 2012, 2004) and nuclear (Cremer et al. 2006, 2012; Cvrčková et al. 2015) DNA loci. A useful but less frequently used method is the inter-simple sequence repeat (ISSR) analysis (Zietkiewicz et al. 1994), which can detect DNA variability at different levels. This method combines the simplicity of the RAPD (random amplification of polymorphic DNA) approach with the advantages of markers, such as SSRs (simple sequence repeats) or AFLPs (amplified fragment length polymorphisms) (Woo et al. 2008).

This study aimed to compare patterns in the genetic structure of 27 mature stands and the natural regeneration of A. alba in the Eastern and Western Carpathians, as well as the area located close to the introgression zone of two refugial lineages of this species in the Carpathians, as indicated in the literature (Gömöry et al. 2004, 2012; Liepelt et al. 2009). This study covered the area constituting an essential base for acquiring FRM of fir. The distribution of haplotype diversity was analysed using paternally inherited plastid DNA (chloroplast DNA), while the level of variability was estimated using ISSR markers. The objective of this research was to expand and supplement the current knowledge about the genetic variability in fir populations located in a region considered strategic in terms of the adaptation and evolutionary processes of this species in the Carpathians.

MATERIAL AND METHODS

The plant material used for the genetic analyses was collected from 27 fir stands in the Polish Carpathians (Table 1, Figure 1). At each location, the material was collected from 30 individuals from the parental generation and 30 naturally regenerating individuals. The collection process is described in detail in a paper by Paluch et al. (2019). A total of 1 620 samples were collected for the analysis. The needles were lyophilised for 120 h in a LabconcoFreeZone 2.5 lyophiliser (Labconco, USA) and ground into a powder using a Retsch MM400 mill (Retsch, Germany). Genomic DNA was extracted from the obtained powder using a CTAB (cetyltrimethylammonium bromide) (Dumoulin et al. 1995). The extracted DNA pellets were dissolved in 50 ml TE buffer and diluted 10× with ddH₂O. DNA concentrations were detected with a Synergy™ 2 multi-detection microplate

Table 1. Location of the sampled *Abies alba* populations with the samples divided into populations from the Western Carpathians (w1–w18) and Eastern Carpathians (e1–e9)

No.	Name	Code	Carpathians region	Longitude (E)	Latitude (N)	Altitude (m a.s.l.)
1	Ustron 61	w1		18.7937	49.6927	661
2	Ustron 5	w2		18.8363	49.7276	504
3	Ustron 74	w3		18.9771	49.7111	661
4	W. Górka 22 Ficońka	w4		19.1869	49.5852	655
5	W. Górka Lipowa	w5		19.2185	49.5898	862
6	Korbielów	w6		19.3659	49.5461	797
7	Jeleśnia Dolna	w7		19.3679	49.6971	663
8	Jeleśnia Górna	w8		19.3775	49.6970	703
9	Limanowa 69	w9	Western	20.1975	49.7142	880
10	Limanowa Łopień 58C	w10	western	20.2558	49.6979	764
11	Limanowa Skalne 112C	w11		20.2831	49.6229	637
12	Limanowa 219	w12		20.2894	49.6603	888
13	Łabowiec	w13		20.8242	49.4752	877
14	Leśny Zakład Doświadczalny 120	w14		20.9240	49.3510	650
15	Leśny Zakład Doświadczalny 52	w15		20.9251	49.3913	743
16	Leśny Zakład Doświadczalny 21	w16		20.9534	49.4447	739
17	Leśny Zakład Doświadczalny 107	w17		21.0016	49.4072	764
18	Leśny Zakład Doświadczalny 96	w18		21.0350	49.4298	711
19	Komańcza	e1		22.0513	49.2713	616
20	Baligród	e2		22.1980	49.3220	644
21	Lutowiska 52	e3		22.6029	49.3130	582
22	Lutowiska 50	e4		22.6233	49.3050	671
23	Lutowiska 69	e5	Eastern	22.6597	49.2581	662
24	Lutowiska 68	e6		22.6647	49.2461	698
25	Stuposiany 218	e7		22.7155	49.1335	781
26	Stuposiany 40	e8		22.7217	49.1625	630
27	Stuposiany 54	e9		22.7331	49.1634	687

reader (BioTek Instruments, USA). The prepared samples were used as matrix DNA in polymerase chain reactions (PCRs).

cpDNA analysis. This study used the parentally inherited chloroplast DNA marker (cpDNA) described by Liepelt et al. (2002). The cpDNA haplotype is a polymorphic form of a restriction site in the CP43 protein gene belonging to photosystem II (psbC).

Amplification was conducted in a total volume of 10 μ L that contained 15–20 ng of DNA template, 10× concentrated reaction buffer (Thermo Scientific 10× Dream Taq $^{\infty}$ Green Buffer), 20 mM MgCl $_2$, 0.2 mM dNTP, 0.1 μ M of each primer (primer sequences: F-5'-GGTCGTGACCAAGAAACCAC-3' (Demesure et al. 1995); R-5'-GGACAGGTTC-

GAAATCACGA-3' (Wakasugi et al. 1994) and 0.5 U polymerase (Thermo Scientific DreamTaq DNA Polymerase). The PCR started with the predenaturation of the DNA at 95 °C, which lasted for 5 min. In the next step, the primers were attached at 57 °C for 45 s, followed by elongation at 72 °C for 150 s. Then, 36 cycles of fragmentation for 60 s at 95 °C, primer annealing for 45 s at 57 °C, and elongation for 150 s at 72 °C were carried out. The final chain elongation was performed at 72 °C for 8 min. The PCR products obtained were digested with Hae III (BsuRI) enzyme (Thermo Fisher Scientific Inc, Waltham, MA, USA) in the presence of R buffer at 37 °C for 16 h followed by enzyme inactivation for 20 min at 80 °C. The digestion

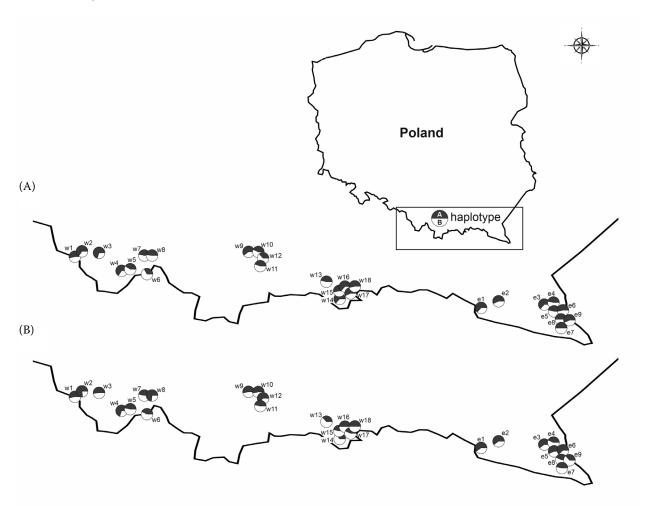


Figure 1. Locations of the 27 populations of *Abies alba* used in this study with the distribution of haplotypes in the chloroplast psbC marker in the (A) mature and (B) young stands; for population codes and the frequency distribution of chloroplast haplotypes A (Balkan refugium) and B (Apenine refugium) see in Table 1

products were stained with Midori Green Advance DNA Stain (Nippon Genetics, Europe GmbH, Duren, Germany) and separated by electrophoresis on 1.5% agarose gel (Agarose Basica LE, Prona, Burgos, Spain). The results were visualised under UV light, archived, and then read using Bio1D++

(Vilber Lourmat, France). A 100 bp Plus size marker (Thermo Fisher Scientific Inc, USA) was used as the length standard.

ISSR analysis. ISSR analysis was carried out using five primers (Table 2). DNA amplification was performed in a 10 μ l mixture containing 5–20 ng

Table 2. ISSR primer information

No.	Primer name	Sequence (5'-3')	Fragment size range (bp)	Number of amplified loci	Polymorphism (%)
1	UBC815	CTC TCT CTC TCT CTC TG	500-3 000	17	100
2	UBC840	GAG AGA GAG AGA GAG AYT	370-1 870	15	100
3	UBC844	CTC TCT CTC TCT CTC TRC	400-3 000	21	100
4	UBC845	CTC TCT CTC TCT CTC TRG	290-3 000	18	100
5	UBC854	TCT CTC TCT CTC TCT CRG	580-3 000	13	100
Total				84	100

DNA template, water, 10× concentrated reaction buffer (ThermoScientific 10× DreamTaq™ Green Buffer), 20 mM MgCl₂, 0.2 mM dNTP and 0.5 µM primer, 0.25 U polymerase (Thermo Scientific DreamTaq DNA Polymerase). The PCR was initiated by DNA predenaturation at 95 °C, lasting 5 min. Subsequently, 36 cycles of denaturation for 60 s at 95 °C, primer annealing for 45 s at 40 °C, and chain elongation for 150 s at 72 °C were performed. The final chain elongation was carried out at 72 °C for 480 s. The resulting PCR products were then stained with Midori Green Advance DNA Stain (Nippon Genetics, Europe GmbH, Germany) and separated by electrophoresis in 1.5% agarose gel (Agarose Basica LE, Prona, Spain). The results were visualised under UV light, archived, and then read using Bio1D++ (VilberLourmat, France). A 100-bp Plus size marker (Thermo Fisher Scientific Inc, USA) was used as the length standard. The amplified fragments were evaluated as present (1) or absent (0) at homologous bands and then transformed into a binary matrix.

Based on the binary ISSR data, the frequency of individual alleles, the percentage of polymorphic loci (P), the mean (Na) and effective (Ne) number of alleles in the locus, the expected heterozygosity (He) and the Shannon index (I) were calculated using GenAlEx 6.5 (Peakall, Smouse 2012). The total genetic diversity (Ht), intrapopulation genetic diversity (Ht), interpopulation genetic diversity (Ht), and gene flow Ht0.5 × [Ht1.7 (Ht2.7 (Ht3.7 and gene flow Ht3.7 (Ht4.8 were also calculated using PopGene32 v. 1.31. (Yeh et al. 1999).

To determine the difference in the observed variability between the populations of two different age groups and from two regions, an analysis of molecular variance (AMOVA) was performed. The significance of the genetic diversity was tested using 9 999 permutations. The genetic diversity between and within the populations was estimated using GenAl-Ex v. 6.5. The genetic distance (Nei 1972) between individuals was calculated using PopGene32v. 1.31. A dendrogram was constructed with the unweighted pair-group method of averages (UPGMA) using Statistica (Version 12, 2014). A principal coordinates analysis (PCoA) was carried out using GenAlEx v.6.5. Structure 2.3.4 (Pritchard et al. 2000), based on a Bayesian model, was used to analyse the population structure and assign individuals to populations according to ISSR genotypes. The number of reconstructed panmictic populations was estimated by testing K (logarithmic probability) = 1-10 for all the trees, assuming they are of unknown origin. Thirty independent runs were conducted for each K. The Markov Chain Monte Carlo (MCMC) sampling scheme was run for 200 000 iterations with a 150 000 burn-in period.

The admixture model was used in all the runs to estimate the number of clusters. Structure Harvester (Earl, von Holdt 2012), which implements the method of Evanno et al. (2005), was then used to estimate the most probable K value.

Pearson's correlation analysis used to inferrelationships between geographic information about stands (i.e. latitude, longitude and altitude) and frequency of occurrence of haplotypes A and B of cpDNA in studied populations were conducted using Statistica.

RESULTS AND DISCUSSION

cpDNA. Two haplotypes were identified in the cpDNA analysis: A (eastern - Balkan type) and B (western - Apennine type) identified by Liepelt et al. (2002) and Litkowiec et al. (2016) (Figure 1). A slightly higher type A percentage was found in the parental and progeny generations (53.0% and 52.2%, respectively; Table 3). In the analysed populations, the frequency of haplotype A ranged from 33.3% (w6) to 70.0% (w3) in the mature populations and from 35.7% (w14) to 76.7% (w2) in the progeny populations. A slightly higher type A frequency was recorded in the Eastern Carpathians' parental stands than in the Western Carpathians' populations, with mean values of 54.1% and 52.5%, respectively. The study showed that the Balkan haplotype prevailed in parental and progeny populations. This haplotype was found in many mature Eastern Carpathians stands, possibly due to the proximity to the introgression zone. In a study by Litkowiec et al. (2016) on 81 fir populations throughout the range of firs in Poland, the frequency of this haplotype was observed to be very similar and amounted to 53%. The percentage of haplotypes changes along a cline from east to west, a characteristic identified by Liepelt et al. (2002) and Litkowiec et al. (2016). However, in the present study, no such correlation was observed, perhaps due to the smaller spatial scale of the analysed populations. It is worth noting that the frequency of haplotype A in some progeny populations from the Western Carpathians was as high as 70% (populations w2 and w8). This can

Table 3. The distribution of the frequency (%) of chloroplast haplotypes A (Balkan refugium) and B (Apennine refugium) among *Abies alba* populations

Ma	Code	Carpathians	s A ([%)	В (%)
No.	Code	region	mature	young	mature	young
1	w1		53.3	53.3	46.7	46.7
2	w2		65.5	76.7	34.5	23.3
3	w3		70.0	51.7	30.0	48.3
4	w4		65.5	70.0	34.5	30.0
5	w5		41.4	46.7	58.6	53.3
6	w6		33.3	42.9	66.7	57.1
7	w7		46.7	46.7	53.3	53.3
8	w8		48.3	73.3	51.7	26.7
9	w9	Western	60.0	53.3	40.0	46.7
10	w10	western	43.3	53.3	56.7	46.7
11	w11		44.8	46.7	55.2	53.3
12	w12		36.7	63.3	63.3	36.7
13	w13		46.7	36.7	53.3	63.3
14	w14		63.3	35.7	36.7	64.3
15	w15		53.3	46.7	46.7	53.3
16	w16		63.3	50,0	36.7	50,0
17	w17		56.7	43.3	43.3	56.7
18	w18		53.3	50.0	46.7	50.0
19	e1		63.3	60.0	36.7	40.0
20	e2		56.7	60.0	43.3	40.0
21	e3		63.3	60.0	36.7	40.0
22	e4		46.7	43.3	53.3	56.7
23	e5	Eastern	46.7	56.7	53.3	43.3
24	e6		53.3	62.1	46.7	37.9
25	e7		50.0	46.7	50.0	53.3
26	e8		50.0	43.3	50.0	56.7
27	e9		56.7	36.7	43.3	63.3
	ν	Vestern	52.5	52.2	47.5	47.8
Averag	ge E	Eastern	54.1	52.1	45.9	47.9
		Total	53.0	52.2	47.0	47.8

be a result of the high volatility of pollen grains. Although the pollen grains of A. alba are quite large and heavy (a weight of ca. 251.1×10^{-6} g per $1\,000$ grains) and have a fast sedimentation velocity of ca. $0.12\,\mathrm{m\cdot s^{-1}}$ (Pidek et al. 2013; Szczepanek et al. 2017), their range of influence could be much larger than seeds dispersal (Poska, Pidek 2010; Amm et al. 2012). Analysis of maternally inherited mitochondrial DNA completes the picture of fir genetic variation in the Carpathians. Investigations of Liepelt et al. (2002) and Gömöry et al. (2004, 2012) showed

that in the modern range of *A. alba* in Europe, there are two highly conservative haplotypes, which were assigned to two glacial refugial areas, but only one western haplotype occurred in Poland (Pawlaczyk et al. 2013; Litkowiec et al. 2016; Kempf et al. 2020).

ISSR. The analysis of the selected ISSR markers showed a total of 84 alleles, and the polymorphism ratio was 100% (Table 2). The mean number of alleles per population in the mature and progeny trees was 72.18 and 72.11, respectively. The range of the number of alleles was similar in both groups (67-79 and 66-79; Table 4). The scope of extreme values was slightly lower in the parental population (64.29% for w17; 90.48% for w12) than in the progeny population (70.24% for w16; 91.67% for w10). The percentage of polymorphic loci was slightly higher in the Western Carpathians group of stands (82.67% and 82.47%) than in the Eastern Carpathians group of stands (80.42%). Similar percentages of polymorphic loci, exceeding 80% on average, were found in Abies holophylla using the same markers (P = 85.6%) (Kim et al. 2014) and Abies nephrolepis (P = 80.21%) (Woo et al. 2008). However, it should be remembered that due to their nature, ISSR markers generally give higher polymorphism values than other markers (Pradeep Reddy et al. 2002).

The mean (Na) and effective (Ne) number of alleles in the locus were estimated to be similar in the mature and progeny populations and the populations from the Eastern and Western Carpathians. The highest average number of alleles (Na) was observed in population w15 (1.821), which belongs to the mature stands, and population e9 (1.881), which belongs to the progeny populations. The highest average effective (Ne) number of alleles in the locus was observed in population w9 (1.603) (mature stands) and population w6 (1.605) (progeny generation). Similar results were reported in a study by Masternak et al. (2015). The same level of genetic diversity (indicated by the Shannon index) was observed in both the mature and progeny generations (0.436). Lower values were found in other species of the Pinaceae family. For A. nephrolepis, the Shannon index ranged from 0.336 to 0.396 (Woo et al. 2008); for Pinus squamata it was 0.03 (Zhang et al. 2005); and for Pinus sylvestris it ranged from 0.0857 to 0.2006 (Hui-yu et al. 2005). Higher values were recorded for Taxus wallichiana var. mairei (0.515) (Zhang et al. 2009).

The mean expected heterozygosity (He) in the mature stands was 0.295 (0.283 in the Eastern

Table 4. Genetic diversity of 27 Abies alba populations in the Polish Carpathians based on the ISSR method

	<i>C</i> 1	Carpathian	No. o	f allels	%	óΡ	Λ	Ia	Λ	 Ve		I	I	
No.	Code	region	old	young	old	young	old	young	old	young	old	young	old	young
1	w1		76	76	85.71	85.71	1.762	1.762	1.561	1.543	0.466	0.463	0.317	0.312
2	w2		74	73	84.52	86.90	1.726	1.738	1.506	1.554	0.433	0.467	0.291	0.316
3	w3		76	76	89.29	85.71	1.798	1.762	1.524	1.585	0.455	0.478	0.304	0.327
4	w4		70	70	80.95	82.14	1.643	1.655	1.507	1.482	0.418	0.414	0.284	0.278
5	w5		74	70	88.10	83.33	1.762	1.667	1.535	1.515	0.456	0.431	0.306	0.291
6	w6		68	73	78.57	86.90	1.595	1.738	1.534	1.605	0.441	0.506	0.301	0.345
7	w7		68	69	80.95	82.14	1.619	1.643	1.516	1.546	0.427	0.454	0.290	0.309
8	w8		74	69	88.10	82.14	1.762	1.643	1.544	1.541	0.464	0.455	0.312	0.309
9	w9	W	75	71	89.29	82.14	1.786	1.667	1.603	1.551	0.484	0.444	0.332	0.304
10	w10	W	71	77	83.33	91.67	1.679	1.833	1.519	1.550	0.442	0.479	0.298	0.321
11	w11		70	69	83.33	82.14	1.667	1.643	1.600	1.586	0.478	0.474	0.330	0.326
12	w12		76	77	90.48	90.48	1.810	1.821	1.602	1.541	0.488	0.466	0.334	0.313
13	w13		71	72	82.14	79.76	1.667	1.655	1.534	1.475	0.444	0.407	0.301	0.273
14	w14		76	77	83.33	85.71	1.738	1.774	1.531	1.556	0.453	0.467	0.306	0.317
15	w15		79	70	88.10	71.43	1.821	1.548	1.532	1.428	0.461	0.368	0.309	0.248
16	w16		68	70	69.05	70.24	1.500	1.536	1.431	1.418	0.366	0.360	0.247	0.242
17	w17		67	76	64.29	78.57	1.440	1.690	1.444	1.467	0.362	0.406	0.248	0.272
18	w18		68	66	78.57	77.38	1.595	1.560	1.530	1.481	0.436	0.413	0.298	0.278
19	e1		73	72	71.43	77.38	1.583	1.631	1.459	1.486	0.384	0.418	0.261	0.281
20	e2		74	72	86.90	82.14	1.750	1.679	1.563	1.521	0.472	0.437	0.321	0.296
21	e3		73	72	77.38	77.38	1.643	1.631	1.495	1.516	0.412	0.421	0.280	0.287
22	e4		73	69	83.33	73.81	1.702	1.560	1.490	1.443	0.422	0.378	0.283	0.255
23	e5	E	73	70	79.76	80.95	1.667	1.643	1.458	1.532	0.403	0.448	0.268	0.304
24	e6		72	77	82.14	85.71	1.679	1.774	1.549	1.505	0.456	0.446	0.311	0.298
25	e 7		75	69	85.71	73.81	1.750	1.560	1.461	1.404	0.414	0.364	0.273	0.240
26	e8		68	66	78.57	78.57	1.595	1.571	1.473	1.477	0.410	0.410	0.275	0.275
27	e9		67	79	78.57	94.05	1.583	1.881	1.481	1.604	0.413	0.503	0.278	0.341
Weste	ern		72.3	72.3	82.67	82.47	1.687	1.685	1.531	1.524	0.443	0.442	0.300	0.299
Easter	rn		72	71.8	80.42	80.42	1.661	1.658	1.492	1.498	0.420	0.424	0.283	0.286
Total			72.18	72.11	81.92	81.79	1.678	1.676	1.517	1.515	0.436	0.436	0.295	0.294

%P – percentage of polymorphic loci; Na – mean number of alleles per locus; Ne – effective number of alleles per locus; I – Shannon's diversity index; He – expected heterozygosity; W – Western Carpathians; E – Eastern Carpathians

Table 5. Results of the AMOVA (analysis of molecular variance) for 27 parental and progeny *Abies alba* populations in the Polish Western (W) and Eastern (E) Carpathians

Source	Group	df	SS	MS	Est. var.	%
Among regions W and E		1	251.9	251.9	0.192	1.10***
Among populations	mature	25	4 567.9	182.7	5.707	32.78***
Within populations		783	9 012.1	11.5	11.510	66.11***
Among regions W and E		1	191.4	191.4	0.028	0.16***
Among populations	progeny	25	4 536.8	181.5	5.667	33.01***
Within populations		783	8 981.5	11.5	11.471	66.83***

^{***}P < 0.001; SS – sum of squares; MS – mean squares; est. var. – estimated variance

Carpathians and 0.300 in the Western Carpathians), and the values of *He* ranged from 0.247 (w16) to 0.334 (w12). In the progeny populations, the

mean He was 0.294, and the values varied from 0.240 (e7) to 0.345 (w6). A slightly higher value of expected heterozygosity (He = 0.396) was ob-

Table 6. Results of the AMOVA (analysis of molecular variance) for 27 paternal and progeny Abies alba populations

Source	df	SS	MS	Est. var.	%
Among mature and progeny	1	53.8	53.8	0.000	0
Among populations	52	9 548.0	183.6	5.737	33.3***
Within populations	1 566	17 993.7	11.5	11.490	66.7***

^{***}P < 0.001; SS – sum of squares; MS – mean squares; est. var. – estimated variance

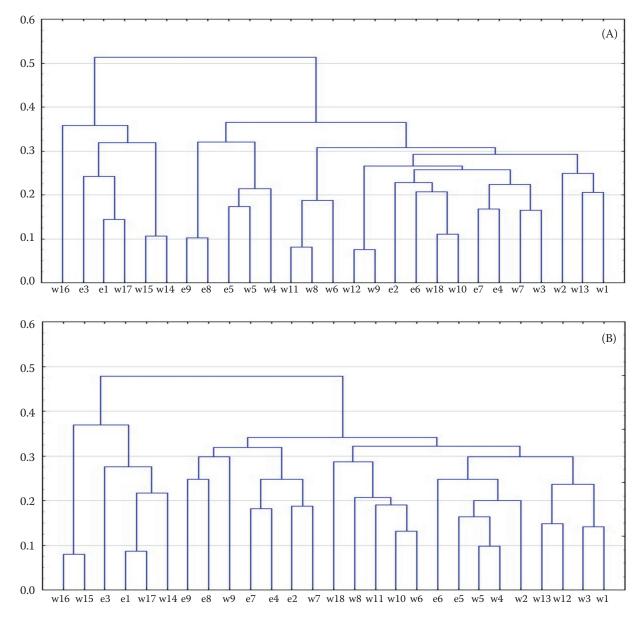


Figure 2. UPGMA dendrogram based on Nei's genetic distance of (A) mature and (B) progeny *Abies alba* populations in the Polish Carpathians; for population names see Table 1

UPGMA - unweighted pair-group method of averages

served for *A. alba* by Masternak et al. (2015), and a similar value (He = 0.288) was observed for *A. holophylla* by Kim et al. (2014). Studies on other species using ISSR markers showed slightly lower values of this parameter (Meloni et al. 2006; Woo et al. 2008; Rubio-Moraga et al. 2012).

Ht, Hs, Dst and Gst were 0.395, 0.295, 0.101, and 0.255, respectively. The genetic differentiation among the populations demonstrated that the genetic diversity levels were low among populations (39.53%) and that variations mainly emerged within populations (60.47%). The average value of gene flow (Nm) among the populations was 1.464, in-

dicating that a certain level of gene flow can lead to slight genetic differences among the populations.

In the parental stands, the AMOVA (Table 5) revealed the highest level of variability residues between the individuals within a population (66.1%), moderate variability between the populations (32.8%), and slight variability between the populations from the Eastern and Western Carpathians (1.1%). In the progeny trees, the variability between and within populations concerning age group and regions of occurrence was similar (66.8%, 33.0%, and 0.16%, respectively). All the comparisons were statistically significant (P < 0.001). No sig-

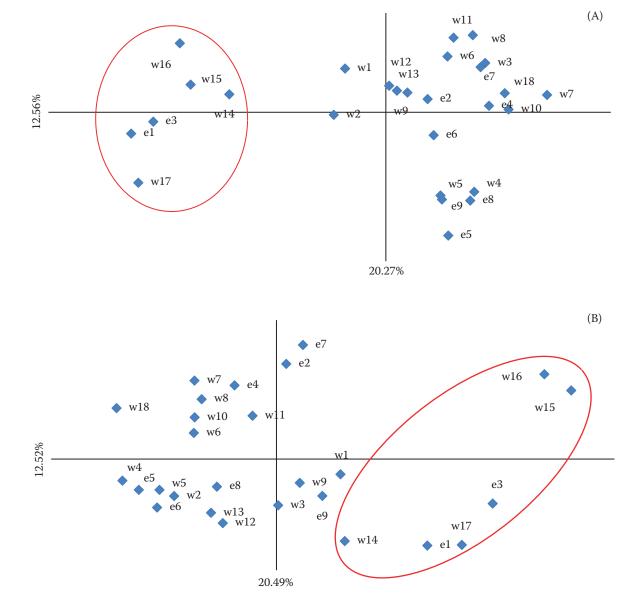


Figure 3. Biplot of a principal coordinates analysis (PCoA) of (A) mature and (B) progeny *Abies alba* populations in the Carpathian Mountains; for population names see Table 1

nificant differences in the variability in individuals were found between the mature and progeny populations (Table 6). The interpopulation variability remained at 33.3%, and the intrapopulation variability remained at 66.7% (in both cases, P < 0.001). High genetic similarity was also found between the parental and progeny populations in *Picea asperata* by Wang et al. (2010), in *Picea abies* by Nowakowska et al. (2014) and *Pinus silvestris* by Kosinska et al. (2007).

The UPGMA tree revealed that populations w14–w17, e1 and e3 clustered in separate groups in the mature and progeny populations of *A. alba* from the Carpathian Mountains (Figure 2). Comparable results were obtained in the PCoA analysis, which clearly distinguished the same mature stands. The result was the same in the progeny gen-

eration, except that population w14 was separated from the other populations (Figure 3).

The Structure analysis showed the existence of two clusters (K=2) in both the parental and progeny populations (Figure 4). The average membership of cluster 1 (blue) was similar in both groups and amounted to 0.654 and 0.688, while cluster 2 (orange) membership was 0.346 and 0.312, respectively. The average membership of cluster 1 was 0.614 and 0.707, and that of cluster 2 was 0.386 and 0.293, respectively, in the parental and progeny populations from the Western Carpathians, while for the Eastern Carpathians, the share of cluster 1 was 0.733 and 0.650, and that of cluster 2 was 0.267 and 0.350, respectively. A significant share of cluster 2, exceeding 90%, was observed in the parental generation in pop-

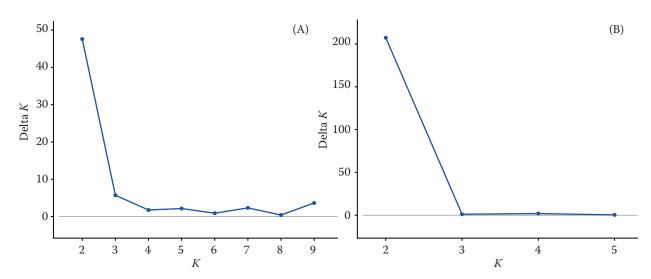


Figure 4. Delta K for the (A) mature and (B) young populations of *Abies alba* in the Carpathian Mountains K – number of clusters

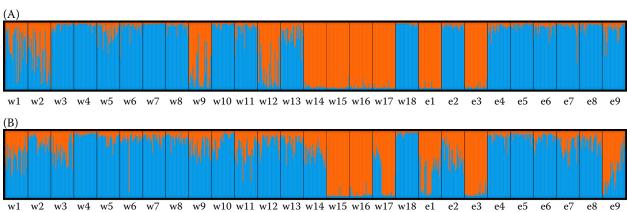


Figure 5. STRUCTURE bar plots for (A) mature and (B) young individuals (K = 2); for location names see Table 1. Vertical bars – individuals; blue – cluster 1; orange – cluster 2; K - 1 number of clusters

ulations w14, w15, w16, w17, e1, and e3. In the progeny generation, the distribution of the two distinguished clusters was similar, while a high share of the second cluster, over 90%, was recorded in populations w15, w16, and e3 (Figure 5).

The correlation analysis showed a statistically significant relationship between the occurrence of haplotype B in the mature stands and altitude above sea level ($r^2 = 0.2769$, P = 0.0048). A similar relationship was observed in the progeny generation, but it was less clear and statistically insignificant ($r^2 = 0.11$, P = 0.09). No significant correlations were found between the haplotype frequency and the longitude or latitude in the mature or progeny populations. The analysis of the correlation between the ISSR clusters distinguished in the Structure analysis and cpDNA haplotypes showed a significant relationship between the share of cluster 1 and haplotype B cpDNA and the share of cluster 2 and haplotype A cpDNA in the mature stands ($r^2 = 0.1583$, P = 0.0399).

CONCLUSION

Molecular markers are considered important in plant breeding and protection programmes (Nybom, Bartish 2000; Grover, Sharma 2016). Studying the genetic diversity of tree populations can help create appropriate strategies for managing and conserving various species.

In this study, we indicated the influence of post-glacial expansion on the distribution of fir genetic variability. The analysis of cpDNA inherited through the paternal line showed that in the studied fir stands in the Carpathians, there was a mixing of two genealogical lineages, i.e. those from the Apennine and Balkan Peninsulas. In addition, the significant positive correlation between altitude above sea level and the percentage of haplotype B (Apennine) may result from differential selection regimes between low-elevated and high-elevated populations. Major et al. (2021) indicated that elevation and, to a lesser extent, post-glacial colonisation history were the best predictors of fine-scale spatial genetic structure across populations.

The low level of interpopulation differentiation observed in this study is consistent with other findings for woody species with large geographic ranges, outcrossing systems, and wind-dispersed seeds (Loveless, Hamrick 1984; Kosinska et al. 2007). These species have greater genetic diver-

sity within species and populations but less variation among populations than other plant species. (Hamrick et al. 1992).

The study showed no differences between the groups of mature and progeny trees. The high genetic similarity between the parental and progeny populations may be proof of their durability and good adaptation to the environmental conditions in which they grow. The results of the present study indicate that the genetic structure of fir tree stands in the Carpathian Mountains has been preserved. This understanding is crucial for predicting responses to climate change and acquiring FRM. The analysis also showed that the region of origin had almost no impact on the variability in the stands; location contributed only 1.1% of the variability in the mature stands and 0.16% in the progeny stands.

The analysis distinguished six populations, namely, w14–w17, e1, and e3, which formed separate clusters in the analysis of both the mature and progeny generations. All these populations (except for the w14 population) were characterised by a very high share of cluster 1. Moreover, w16 and w17 populations were associated with deficient levels of genetic variability, as determined by the ISSR markers in both age groups. These populations are near the border between the Eastern and Western Carpathians.

The obtained results are an important expansion to the current knowledge about the variability of fir in the Carpathians. It is essential in creating new conservation and silvicultural strategies because decision-making under future climate warming scenarios should consider different phylogenetic origins (Vinceti et al. 2020).

REFERENCES

Amm A., Pichot C., Dreyfus P., Davi H., Fady B. (2012): Improving the estimation of landscape scale seed dispersal by integrating seedling recruitment. Annals of Forest Science, 69: 845–856.

Awad L., Fady B., Khater C., Roig A., Cheddadi R. (2014): Genetic structure and diversity of the endangered fir tree of Lebanon (*Abies cilicica* Carr.): Implications for conservation. PLOS One, 9: e90086.

Bellard C., Bertelsmeier C., Leadley P., Thuiller W., Courchamp F. (2012): Impacts of climate change on the future of biodiversity. Ecology Letters, 15: 365–377.

Bosela M., Popa I., Gömöry D., Longauer R., Tobin B., Kyncl J., Kyncl T., Nechita C., Petráš R., Sidor C.G., Šebeň V., Bünt-

- gen U. (2016): Effects of post-glacial phylogeny and genetic diversity on the growth variability and climate sensitivity of European silver fir. Journal of Ecology, 104: 716–724.
- Bréda N., Peiffer M. (2014): Vulnerability to forest decline in a context of climate changes: New prospects about an old question in forest ecology. Annals of Forest Science, 71: 627–631.
- Cremer E., Liepelt S., Sebastiani F., Buonamici A., Michalczyk I.M., Ziegenhagen B., Vendramin G.G. (2006): Identification and characterisation of nuclear microsatellite loci in *Abies alba* Mill. Molecular Ecology Notes, 6: 374–376.
- Cremer E., Ziegenhagen B., Schulerowitz K., Mengel C., Donges K., Bialozyt R., Hussendörfer E., Liepelt S. (2012): Local seed dispersal in European silver fir (*Abies alba* Mill.): Lessons learned from a seed trap experiment. Trees, 26: 987–996.
- Cvrčková H., Máchová P., Malá J. (2015): Use of nuclear microsatellite loci for evaluating genetic diversity among selected populations of *Abies alba* Mill. in the Czech Republic. Journal of Forest Science, 61: 345–351.
- Demesure B., Sodzi N., Pettit R.J. (1995): A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology, 4: 129–134.
- Dumoulin S., Demesure B., Petit R.J. (1995): Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics, 91: 1253–1256.
- Earl D.A., von Holdt B.M. (2012): STRUCTURE HARVEST-ER: A website and program for visualising STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4: 359–361.
- Evanno G., Regnaut S., Goudet J. (2005): Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14: 2611–2620.
- Gömöry D., Longauer R., Liepelt S., Ballian D., Brus R., Kraigher H., Parpanara V.I., Parpan T.V., Paule L., Stupar V.I., Ziegenhagen B. (2004): Variation patterns of mitochondrial DNA of *Abies alba* Mill. in suture zones of post-glacial migration in Europe. Acta Societatis Botanicorum Poloniae, 73: 203–206.
- Gömöry D., Paule L., Krajmerová D., Romšáková I., Longauer R. (2012): Admixture of genetic lineages of different glacial origin: A case study of *Abies alba* Mill. in the Carpathians. Plant Systematics and Evolution, 298: 703–712.
- Grover A., Sharma P.C. (2016): Development and use of molecular markers: Past and present. Critical Reviews in Biotechnology, 36: 290–302.
- Hamrick J.L. (2004): Response of forest trees to global environmental changes. Forest Ecology and Management, 197: 323–335.

- Hamrick J.L., Godt M.J.W., Sherman-Broyles S.L. (1992): Factors influencing levels of genetic diversity in woody plant species. New Forests, 6: 95–124.
- Hewitt G.M. (1999): Post-glacial re-colonisation of European biota. Biological Journal of the Linnean Society, 68: 87–112.
- Hui-yu L., Jing J., Gui-feng L., Xu-jun M., Jing-xiang D., Shi-jie L. (2005): Genetic variation and division of *Pinus sylvestris* provenances by ISSR markers. Journal of Forestry Research, 16: 216–218.
- Kempf M., Zarek M., Paluch J. (2020): The pattern of genetic variation, survival and growth in the *Abies alba* Mill. Population within the introgression zone of two refugial lineages in the Carpathians. Forests, 11: 849.
- Kim Y.M., Hong K.N., Lee J.W., Yang B.H. (2014): Genetic variation of *Abies holophylla* populations in South Korea Based on ISSR markers. Journal of Korean Forest Society, 103: 182–188.
- Konnert M., Bergmann F. (1995): The geographical distribution of genetic variation of silver fir (*Abies alba*, Pinaceae) in relation to its migration history. Plant Systematics and Evolution 196: 19–30.
- Kosinska J., Lewandowski A., Chalupka W. (2007): Genetic variability of Scots pine maternal populations and their progenies. Silva Fennica, 41: 5–12.
- Kremer A., Ronce O., Robledo-Arnuncio J.J., Guillaume F., Bohrer G., Nathan R., Bridle J.R., Gomulkiewicz R., Klein E.K., Ritland K., Kuparinen A., Gerber S., Schueler S. (2012): Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 15: 378–392.
- Labra M., Grassi F., Sgorbati S., Ferrari C. (2006): Distribution of genetic variability in southern populations of Scots pine (*Pinus sylvestris* L.) from the Alps to the Apennines. Flora Morphology, Distribution, Functional Ecology of Plants, 201: 468–476.
- Liepelt S., Bialozyt R., Ziegenhagen B. (2002): Winddispersed pollen mediates post-glacial gene flow among refugia. Proceedings of the National Academy of Sciences, 99: 14590–14594.
- Liepelt S., Cheddadi R., de Beaulieu J.L., Fady B., Gömöry D., Hussendörfer E., Konnert M., Litt T., Longauer R., Terhürne-Berson R., Ziegenhagen B. (2009): Postglacial range expansion and its genetic imprints in *Abies alba* (Mill.) A synthesis from palaeobotanic and genetic data. Review of Palaeobotany and Palynology, 153: 139–149.
- Litkowiec M., Lewandowski A., Raczka G. (2016): Spatial pattern of the mitochondrial and chloroplast genetic variation in poland as a result of the migration of *Abies alba* Mill. from different glacial refugia. Forests, 7: 284.
- Loarie S.R., Duffy P.B., Hamilton H., Asner G.P., Field C.B., Ackerly D.D. (2009): The velocity of climate change. Nature, 462: 1052–1055.

- Loveless M.D., Hamrick J.L. (1984): Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics, 15: 65–95.
- Major E.I., Höhn M., Avanzi C., Fady B., Heer K., Opgenoorth L., Piotti A., Popescu F., Postolache D., Vendramin G.G., Csilléry K. (2021): Fine-scale spatial genetic structure across the species range reflects recent colonisation of high elevation habitats in silver fir (*Abies alba* Mill.). Molecular Ecology, 30: 5247–5265.
- Masternak K., Niebrzydowska B., Głębocka K. (2015): Genetic variation of silver fir (*Abies alba* Mill.) preserved in the Katowice Forest District. Forest Research Papers, 76: 315–321.
- Mauri A., de Rigo D., Caudullo G. (2016): *Abies alba* in Europe: Distribution, habitat, usage and threats. In: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri A. (eds): European Atlas of Forest Tree Species. Luxembourg, Publication Office of the European Union: 48–49.
- Meloni M., Perini D., Filigheddu R., Binelli G. (2006): Genetic variation in five Mediterranean populations of *Juniperus phoenicea* as revealed by inter-simple sequence repeat (ISSR) markers. Annals of Botany, 97: 299–304.
- Nei M. (1972): Genetic distance between populations. The American Naturalist, 106: 283–292.
- Nosil P., Feder J.L. (2013): Genome evolution and speciation: toward quantitative descriptions of pattern and process. Evolution 67: 2461–2467.
- Nowakowska J.A, Zachara T., Konecka A (2014): Genetic variability of Scots pine (*Pinus sylvestris* L.) and Norway spruce (*Picea abies* L. Karst.) natural regeneration compared with their maternal stands. Forest Research Papers, 75: 47–54.
- Nybom H., Bartish I.V. (2000): Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics, 3: 93–114.
- Paluch J., Zarek M., Kempf M. (2019): The effect of population density on gene flow between adult trees and the seedling bank in *Abies alba* Mill. European Journal of Forestry Research 138: 203–217.
- Parducci L., Szmidt A.E., Madaghiele A., Anzidei M., Vendramin G.G. (2001): Genetic variation at chloroplast microsatellites (cpSSrs) in *Abies nebrodensis* (Lojac.) Mattei and three neighboring *Abies* species. Theoretical and Applied Genetics, 102: 733–740.
- Pawlaczyk E.M., Kroplewska I., Bobowicz M.A. (2013): Post-glacial migration of silver fir (Abies alba Mill.) to Poland
 Analysis on the basis of mitochondrial DNA polymorphism. Sylwan, 157: 458–463.
- Peakall R., Smouse P.E. (2012): GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics, 28: 2537–2539.

- Pidek I.A., Svitavská-Svobodová H., Van der Knaap W.O., Magyari E. (2013): Pollen percentage thresholds of *Abies alba* based on 13-year annual records of pollen deposition in modified Tauber traps: Perspectives of application to fossil situations. Review of Palaeobotany Palynology, 195: 26–36.
- Poska A., Pidek I.A. (2010): Pollen dispersal and deposition characteristics of *Abies alba*, *Fagus sylvatica* and *Pinus sylvestris*, Roztocze region (SE Poland). Vegetation History and Archaeobotany, 19: 91–101.
- Pradeep Reddy M., Sarla N., Siddiq E.A. (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, 128: 9–17.
- Pritchard J.K., Stephens M., Donnelly P. (2000): Inference of population structure using multilocus genotype data. Genetics, 155: 945–959.
- Rubio-Moraga A., Candel-Perez D., Lucas-Borja M.E., Tiscar P.A., Viñegla B., Linares J.C., Gómez-Gómez L., Ahrazem O. (2012): Genetic diversity of *Pinus nigra* Arn. populations in Southern Spain and Northern Morocco revealed by Inter-Simple Sequence Repeat profiles. International Journal of Molecular Sciences 13: 5645–5658.
- Szczepanek K., Myszkowska D., Worobiec E., Piotrowicz K., Ziemianin M., Bielec-Bąkowska Z. (2017): The long-range transport of *Pinaceae* pollen: An example in Kraków (southern Poland). Aerobiologia, 33: 109–125.
- Tinner W., Colombaroli D., Heiri O., Henne P.D., Steinacher M., Untenecker J., Vescovi E., Allen J.R.M., Carraro G., Conedera M., Joos F., Lotter A.F., Luterbacher J., Samartin S., Valsecchi V. (2013): The past ecology of *Abies alba* provides new perspectives on future responses of silver fir forests to global warming. Ecology Monographs, 83: 419–439.
- Vinceti B., Manica M., Lauridsen N., Verkerk P.J., Lindner M., Fady B. (2020): Managing forest genetic resources as a strategy to adapt forests to climate change: Perceptions of European forest owners and managers. European Journal of Forestry Research, 139: 1107–1119.
- Wakasugi T., Tsudzuki J., Ito S., Nakashima K., Tsudzuki T., Sugiura M. (1994): Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine *Pinus thunbergii*. Proceedings of the National Academy of Sciences, 91: 9794–9798.
- Wang Z.S., Liu H., Wei N., Xu W.X., An S.Q. (2010): Contribution of progeny cohorts to the restoration of genetic diversity in the post-harvest dragon spruce (*Picea asperata*) stands. Forestry, 83: 307–314.
- Willis K., Van Andel T. (2004): Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quaternary Science Reviews, 23: 2369–2387.
- Woo L.S., Hoon Y.B., Don H.S., Ho S.J., Joo L.J. (2008): Genetic variation in natural populations of *Abies nephrolepis* Max. in South Korea. Annals of Forest Science, 65: 302.

Yeh F.C., Yang R.C., Boyle T. (1999): POPGENE ver.1.32 Microsoft Windows-Based Freeware for Population Genetic analysis. Quick User Guide. Edmonton, Centre for International Forestry Research, University of Alberta: 28.

Zhang Z.Y., Chen Y.Y., Li D.Z. (2005): Detection of low genetic variation in a critically endangered Chinese pine, *Pinus squamata*, using RAPD and ISSR markers. Biochemical Genetics, 43: 239–249.

Zhang X.M., Gao L.M., Möller M., Li D.Z. (2009): Molecular evidence for fragmentation among populations of *Taxus wallichiana* var. *mairei*, a highly endangered conifer in China. Canadian Journal of Forestry Research, 39: 755–764. Zietkiewicz E., Rafalski A., Labuda D. (1994): Genome finger-printing by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20: 176–183.

Received: January 25, 2023 Accepted: March 7, 2023 Published online: April 4, 2023