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Abstract: The objective of this research is the identification of burned forest areas that occurred in Syria from Septem-
ber 2nd to October 15th, 2020. Forest fire risk classes were determined using Sentinel-2 images. Normalized Burn Ratio 
(NBR), Differenced Normalized Burn Ratio (dNBR), and Burned Area Index for Sentinel-2 (BAIS2), and Normalized 
Difference Vegetation Index (NDVI) were used for the identification how much the forests have been destroyed and 
to establish fire risk classes. According to the study results, the size of the vegetation area that was destroyed due to fire 
was determined, and the probability of the forest fire exposure of these areas was established. The fires also altered some 
chemical properties in the soil during the combustion process. Thus, this study was focused on the impact of fire on the 
availability of soil nutrients. Soil samples were collected from three depths (0–10 cm, 10–20 cm and 20–30 cm) under 
the forest land a month after the fire in three locations: Al-Fazeen, Sawda and Gard Al-rihan. Pine (Pinus brutia) trees 
cover these areas. The results of this study indicated that the fire increased pH, EC and sand, the fire also led to an in-
crease in the solubility of the available major soil elements N, P and K. There was an increase in the solubility of the soil 
microelements Zn, Cu, Mn and Fe while the content of organic material and silt and clay ratio decreased at the three 
sites in comparison with unburned soil.
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From the past to the present, a global pattern of in-
creasing forest fires has been recorded. The litera-
ture defines the fire intensity in a fire environment 
as an impact of the fire on the ecosystem (Sugihara 
et  al. 2006). The natural environment is  disrupted 
as a result of these fires which cause harm to enor-
mous natural areas, as well as human and living crea-
ture deaths. There are two main factors that cause 
forest fires: nature and humans. Forest fires are 
caused by a number of circumstances, including un-
planned urbanization, sabotage, carelessness, irre-
sponsibility, and global warming. Many large forest 

fires have erupted around the world in recent years; 
271  350  ha of  land in  Greece in  2007, 450  000  ha 
in Australia in 2009, and 500 000 ha in Russia in 2010 
were destroyed. In  addition, 25  000  ha in  Bo-
livia in  2010 were ravaged by  fires. The forest fire 
in Canada destroyed 1 200 000 ha of  land in 1825, 
and this was recorded as  the largest known forest 
fire in history (Francos et al. 2016). Forest fires have 
been reported in France, Greece, Italy, Portugal and 
Spain, more than 450 000 ha were burned annually 
between 2000 and 2006, and in 2007 the burned area 
amounted to about 500 000 ha.
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Most of  them occur in  Italy and Greece (Bassi, 
Kettunen 2008) while most of  the Mediterra-
nean Basin fires are a  consequence of  anthropo-
genic activities and are not normal (Espelta et  al. 
2008). However, the frequency of fires is expected 
to increase due to global warming, changes in the 
rainfall regime and the length of  the rainy season 
(Pausas 2004). The Mediterranean countries are 
among the most affected by fires (Quintano et  al. 
2018). Fires are among the main reasons for en-
vironmental alteration in  the ecosystems of  the 
forest. In the Mediterranean, forest cover and fire 
recovery are monitored for fire management and 
plan. It is important that the burned areas and the 
intensity of the fires are known accurately (Brewer 
et al. 2005; Fernández-Manso, Quintano 2015).

In the Mediterranean countries, studies have 
shown an increase in the extent, area, and frequen-
cy of combustion (Pausas et al. 2008). Like within all 
countries in the Mediterranean region, the fires are 
the main threat to forests in Syria (Ali 2000, 2004). 
Fires are the most dangerous form of encroachment 
on Syrian forests due to  the sudden change in  the 
environment surrounding these forests. Annually, 
the fires consume the equivalent of 755.19 ha of our 
forests, most of which consist of Pinus brutia (Ka-
sas 2008). The 2002 damage caused by  forest fires 
is most severe in felled areas (Rowell, Moore 2003). 
Remote sensing can be used to recognize areas af-
fected by forest fires, as well as to classify these areas 
according to the likelihood of wildfires. For so long, 
forest fire damage has been revealed by  remote 
sensing methods (Yurtseven 2014). Remote sens-
ing provides a new window for understanding the 
reasons, processes, and effects of  forest fires, and 
utilizes geographic techniques (Gupta et al. 2018).

In detecting and monitoring the regions with 
forest fire danger, remote sensing also offers speed, 
practicality, and efficiency. The use of remote sens-
ing in the identification of forest fires has become 
more common as  technology advances. Damage 
detection studies and the detection of  risk areas 
has increased gradually and there are many studies 
on  this subject (Kerr, Ostrovsky 2003; Boer et  al. 
2008; Matin et al. 2017; Navarro et al. 2017; Yuan 
et al. 2017). Remote sensing is one of the tools that 
provide a timely reception of measurements with 
the growth of  technology. Remote sensing could 
be used to  identify areas damaged by  forest fires, 
and besides, these areas could be classified accord-
ing to forest fire possibility.

The chemical and physical properties of  soil can 
be  greatly affected by  forest fires, which also affect 
soil erosion and can affect the entire vegetation cover 
(SCBD 2001). Fires can also cause a number of organic 
and inorganic changes in the soil (Ursino, Rulli 2010).

This study aims to  detect the area destroyed 
by fire by means of remote sensing and to evaluate 
the fire risk in  other areas. In  this context, Senti-
nel-2 images were used in order to detect the for-
est fire risk class. Normalized Burn Ratio (NBR), 
Burned Area Index for Sentinel-2 (BAIS2), Differ-
enced Normalized Burn Ratio (dNBR), and Nor-
malized Difference Vegetation Index (NDVI) were 
used to determine the forest areas damaged by fire 
and to identify the fire hazard classes.

MATERIAL AND METHODS

Study area. The research area is  situated in  the 
northwestern part of Syria between 34°18'00''N and 
36°26'00''N  and 35°40'00''E and 37°28'00''E. The 
portion of the affected territory encompasses Lat-
takia, Tartous and part of  Hama and Idlib prov-
inces (Figure 1). In addition, it has been classified 
as a high-risk area and rated with a very high prob-
able risk index (Forestry and Reforestations Direc-
torate 2005). The type of climate found in the study 
area is  called semi-moderate oceanic average cli-
mate, indicating certain dryness during the sum-
mer. This means that a large part of the vegetation 
is adapted to periods of drought. Under this climat-
ic type, pine trees are the predominant vegetation 
likely prevalent in most of the region. The wildfire 
incidents occurred in the period between Septem-
ber 2nd and October 15th, 2020.

Data and preprocessing. Remote sensing data 
from the Sentinel-2 sensor used within the scope 
of the study were obtained free of charge from the 
United States Geological Survey (USGS) website 
(http://earthexplorer.usgs.gov/) in  the UTM pro-
jection system as  defined in  the 37th region. Four 
Sentinel-2 satellite images were used covering the 
study area, two before the fire taken on  Septem-
ber 27th, 2020, and the other two taken after the fire 
on  October 22nd, 2020 (Table 1). The Sentinel-2A 
satellite images used were without cloud coverage 
over the entire scenes.

Remote sensing data were analyzed in  order 
to identify the burn severity classes. Sentinel-2 data 
have high spatial resolution (10–20 m, depending 
on  bands) and high temporal frequency (5 days), 
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and recent studies have scrutinized their identifica-
tion for burned area mapping (Roteta et al. 2019). 
Topographic factors, atmospheric influences, and 
shadows must all be  eliminated or  minimized. 
Due to  effects and sensor-induced errors in  sat-
ellite images, atmospheric correction is  required 
(Canbaz et  al. 2018; Kalkan, Maktav 2018). For 
this, Sentinel-2 data were atmospherically cor-
rected to  L2A bottom of  atmosphere reflectance 
using the Sen2Cor processor algorithm in SNAP 
program (Main-Knorn et  al. 2017), NBR, dNBR, 
and BAIS2 were performed as  spectral indices 
of forest fire, in addition to NDVI index. The indi-
ces used were obtained from the electromagnetic 
spectrum for satellite image Sentinel-2A. These 
indices were created through images taken before 
and after fire.

The Normalized Burn Ratio has been used 
to watch changes in vegetation caused by fire (Chen 
et al. 2011; Veraverbeke et al. 2011) in the near-in-
frared range. Healthy vegetation has a high reflec-
tivity, whereas in  the shortwave infrared region, 
it  has a  low reflectivity. In  addition, the burned 
areas have low near-infrared reflection but short-
wavelength infrared reflection. Therefore, high 
NBR values ​​indicate unburned vegetation, while 
low values ​​indicate burned areas (Key, Benson 
2006). In the next step, the NBR difference (dNBR) 
between the pre-fire image and the post-fire im-
age gave an idea of ​​the intensity of the combustion. 
BAIS2 Burned Area Map Spectrum Index has been 
specifically designed to take advantage of the spec-
tral properties of Sentinel-2 MSI. This index makes 
use of  the characteristics of  vegetation described 
in the red edge spectral domains and the radiative 
response in  the shortwave infrared (SWIR) spec-
tral domain that are largely known to be effective 
in identifying burned areas (Elvidge 1990). Table 2 
shows the forest fire indicators used in  the study 
and their corresponding formulas.

Once the burned area has been mapped using 
QGIS software (v3.16, 2020), the next stride is the 
computation of  one of  the best-known and most 

Figure 1. Study area

Table 1. The satellite images used in the study, sensor – S2A

Sentinel-2 Scene Date Event
L1C_T37SBU_20200927T081719 September 27th, 

2020 pre-fire
L1C_T37SBV_20200927T081719
L1C_T37SBU_20201022T082011 October 22nd, 

2020 post-fire
L1C_T37SBV_20201022T082011
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(Rhoades 1996), and percentage of organic matter 
was determined using the wet oxidization method 
with dipotassium chromate in a  high acidity me-
dium (Nelson, Sommers 1996). Overall nitrogen 
levels were identified using the Kjeldahl oxidation 
method (Bremner 1996). Available phosphorous 
was measured by  the Olsen method (Kuo 1996). 
Available potassium levels were measured with 
a  flame emission spectrometer (Suarez 1996). Di-
ethylenetriaminepentaacetic acid (DTPA) was 
used to  extract micronutrients (iron, manganese, 
zinc, and copper). Then they were measured us-
ing atomic absorption spectrometry (Loeppert, 
Inskeep 1996). Statistical analyses of  the obtained 
data were processed by  two-way analysis of  vari-
ance (ANOVA) using the R software (4.0.5, 2021), 
in  which soil depth and fire time sequence were 
chosen as factors (Table 2). The influence of factors 
(soil depth and fire) and the possible interaction 
between them was carried out on a 95% probability 
level (Davies 2016). Fire risk zones and vegetation 
cover destroyed by  fire have been detected using 
fire indices and NDVI.

RESULTS AND DISCUSSION

First, NBR and dNBR were applied to  images. 
Then, the results of the indices were classified ac-
cording to  pixel values and the regions that pose 
a fire risk were determined (Figures 2 and 3).

According to the risk severity map made accord-
ing to  the dNBR index it  is understood that not 
nearly all of the study area is under a threat of wild-
fire. Additionally, the sizes of  fire severity classes 
were calculated (Table 3).

The new BAIS2 spectral index (Burned Area In-
dex for Sentinel-2) for the mapping of the burned 
area was used to adopt a spectral set of bands that 
have been shown to  be suitable for the detection 
of the burned area after a fire. The dBAIS2-derived 

commonly used spectral indices, NDVI. It benefits 
from the feature of green powerful vegetation – ab-
sorption of visual red light, as opposed to its high 
reflection of near-infrared light [Equation (1)].

	 (1)

where:
B4, B8	– Sentinel-2 spectral bands used for NDVI index 
calculation.

Determination of  thresholds. In  this study, 
we determined the optimal threshold for each spec-
tral index by comparing the burned areas obtained 
from a reference image (Google Earth image) with 
those acquired by a  sequence of  thresholds from 
a spectral index (Santana et al. 2018).

Validation. The error matrix and its associated 
precision scale (total precision) which is  the ratio 
of the number of correctly classified samples to the 
total number of samples (Congalton, Green 2019) 
were calculated.

Soil samples. The soil was sampled before and after 
fire from three random locations in the studied area. 
Soil sampling was done from the depths of 0–10 cm, 
10–20  cm, and 20–30  cm under forest land from 
three sites after burning. Pine (Pinus brutia) trees 
cover these areas. Soil chemical and physical data 
were estimated in  laboratories of the General Com-
mission of Scientific Agricultural Research (GCSAR).

Laboratory analysis. Mechanical analysis was 
performed on the texture of soil (%), using hydrom-
eter modality (Gee, Or 2002).

Chemical analysis. pH of a  saturated paste 
was extracted using pH meter (Conyers, Davey 
1988), EC (electrical conductivity) (Siemens·m–1) 
in a saturated paste was extracted using EC meter 

Table 2. Fire indices employed in the study

Fire indices Formula

NBR

dNBR NBRpre-fire – NBRpost-fire

BAIS

NBR – Normalized Burn Ratio; dNBR – Differenced Normal-
ized Burn Ratio; BAIS – Burned Area Index for Sentinel-2; 
B4, B6, B7, B8A, B12 – Sentinel-2 spectral bands used for 
the index calculation

B8 – B12

B8 + B12

B6 + B7 + B8A B12 – B8A1– 1
B4 B12 + B8A

   × +       

Table 3. Distribution of calculated areas after applying the 
Differenced Normalized Burn Ration (dNBR)

Fire severity
Area (km²)

September 27th, 2020 October 22nd, 2020
Low to moderate 2 720.30 5 156.48
Moderate to high 3 543.88 3 889.89
High 1 911.30 1 718.41
Sum 8 175.48 10 764.80

B8 – B4
B8 + B4

NDVI =
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Figure 2. The Differenced Normalized Burn Ration (dNBR) 
map (September 27th, 2020)

Figure 3. The Differenced Normalized Burn Ration (dNBR)  
map (October 22nd, 2020)

Figure 4. The post-fire Difference Burned Area Index for 
Sentinel-2 (dBAIS2) map (September 27th, 2020)

Figure 5. The post-fire Difference Burned Area Index for 
Sentinel-2 (dBAIS2) map (October 22nd, 2020)
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index (Difference Burned Area Index for Senti-
nel-2) is calculated from the arithmetic difference 
between the pre-fire BAIS2 values and the post-
fire BAIS2 values, and the difference indices (such 
as  dBAIS2 and dNBR) have been shown to  have 
better results compared to the results with the NBR 
and dNBR indices (Sommai 2020). Figures 4 and 5 
illustrate dBAIS2 index in the burned area.

In addition, NDVI was calculated using images 
taken just before and after the burning to determine 
the status of the vegetation before and after the oc-
currence of fire (Figures 6–8). The NDVI indicator 
has also been calculated for the burned area outlined 
in the study area. It is understood that the number 
of dense vegetation and moderate vegetation classes 
decreased, while the pixels in the sparse vegetation 
class increased according to NDVI (Table 4).

Moreover, in  the NDVI maps obtained after the 
fire, the pixel values ranged between 0.1 and 0.3 for 
the destroyed area by the fire. Therefore, these ar-
eas were classified as sparse vegetation and moder-
ate vegetation (Rutkay et al. 2020) (Figure 9).

Accuracy assessment. For evaluating the ac-
curacy of  dNBR, BAIS2 and NDVI, spectral indi-

Figure 6. The pre-fire Normalized Difference Vegetation 
Index (NDVI) map (before the fire)

Figure 7. The post-fire Normalized Difference Vegetation 
Index (NDVI) map (September 27th, 2020)

Figure 8. The post-fire Normalized Difference Vegetation 
Index (NDVI) map (October 22nd, 2020)
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Table 4. Vegetation density level pre- and post-fire

Vegetation density
Pre-fire Post-fire (September 27th, 2020) Post-fire (October 22nd, 2020)

(m2)
Low 4 165 006.08 3 836 366.92 1 182 436.68
Moderate 617 231.56 636 897.36 145 178.96
High 1 469 461.04 710 619.92 241 967.80

Table 5. Soil textural classes and variation in soil fertility before and after the fire at three places for different depths

OM
(%)pHEC 

(Siemens·m–1)
Clay
(%)

Silt
(%)

Sand
(%)

Depth
(cm)Fire statusSite

4.8447.9350.57724.526.049.50–10
burned

1

4.3217.8530.57127.225.247.610–20
4.5477.9570.58026.524.049.520–30

5.8077.9110.57230.528.541.00–10
unburned 4.4157.0410.53227.830.242.010–20

3.9757.9020.54430.530.039.520–30
5.5617.9410.63526.521.049.50–10

burned

2

4.8997.9220.64228.324.745.010–20
4.9257.8680.69127.522.548.520–30

6.7727.8680.51729.528.045.50–10
unburned 6.1107.6980.53530.025.046.010–20

5.5617.8540.59729.028.544.020–30
3.5427.3520.70726.225.045.30–10

burned

3

3.0217.4230.69926.627.244.210–20
2.9597.0320.69225.029.044.720–30

6.1177.1510.67529.733.040.80–10
unburned 5.6327.0110.60127.330.642.110–20

4.9056.6070.55826.332.043.020–30

EC – electrical conductivity; OM – organic matter

ces were derived from Sentinel satellite imagery 
in  identifying burned areas. 132 random points 
were used to calculate the overall accuracy, which 
is  the ratio of  the number of  correctly classified 
samples to the total number of samples (Congalton 
et al. 1983). The overall accuracy was 87.4% of the 
DNBR index, 90.2% of the BAIS2 index, and 82.4% 
of the NDVI index, which corresponds with a high 
classification precision (Fleiss et al. 2013).

The effect of fire on the availability of soil nu-
trients. The results of  this search indicated that 
the fire led to a change in some chemical proper-
ties of the soil during the burning process (Tables 
5 and 6). The organic matter content in burned and 
unburned soils decreased significantly in  the sec-

ond and third location. However, there was no sig-
nificant difference between the soil depths in  the 
three locations. This result is  due to  burning or-
ganic matter during the fire thus reducing its soil 
content (Garcia-Marco, Gonzalez-Prieto 2008).

The pH values were significantly higher in  the 
burned soil compared to  the unburned soil only 
at the third site. Nevertheless, there was no signifi-
cant difference in  pH values between the depths 
of  soils at  the three studied sites. The difference 
between the burned and unburned soil can be due 
to the ash from combustion of the vegetation above 
the soil surface due to  the fire, as part of  this ash 
returns to  the forest land and increases pH value 
due to  its richness in  soluble base cations and its 
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Table 6. Variation in soil fertility before and after the fire at three places for different depths

ZnCuMnFeKPNDepth
Fire statusSite

(ppm)(cm)
1.1001.6021.6702.456130.65.4300.2940–10

burned

1

0.9861.6101.6652.012175.95.0650.22510–20
0.8471.0381.6422.267224.64.1780.22420–30

1.0381.5441.7031.828105.00.9940.2580–10
unburned 0.9731.4531.8011.90387.91.3020.20210–20

0.7731.1001.6752.14279.91.5180.19620–30
0.6362.6471.6463.030533.95.1950.3080–10

burned

2

0.6762.4991.6023.065412.45.0320.33210–20
0.4162.6431.6403.093330.94.3670.41820–30

0.6332.4971.6072.922330.44.4180.2920–10
unburned 0.4712.4231.5442.865255.33.8920.28110–20

0.4102.1991.5733.063236.33.4920.26220–30
0.7111.9392.1113.334499.95.0120.4420–10

burned

3

0.6872.0342.0303.712445.05.6010.40110–20
0.6022.0262.3013.233449.44.9800.39920–30

0.5441.6552.0102.055301.84.9930.3760–10
unburned 0.5051.4361.8792.224305.74.2350.38310–20

0.4981.5181.9012.237311.43.6390.39920–30

Figure 9. Vegetation changing before 
and after the fire

infiltration with water into the soil after rain. This 
is consistent with findings of Ershad et al. (2013). 
The EC values of the burned soil were higher com-
pared to the unburned soil. It was significantly dif-
ferent at the second site, and significantly different 
at the third soil depth compared to unburned soils. 
This is due to a release of mineral ions from depos-

ited ash and combusted organic matter (Hernan-
dez et al. 1997; Certini 2005). An increase in sand 
percentage at the three sites was significant at the 
first and second depth at  the first site, with a  de-
crease in  the percentage of  silt at  the three sites, 
and it was significant at the first site. As for the clay, 
its percentage was decreased at the three sites, but 
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the decrease was significant only at the second site. 
Nevertheless, there was no  significant difference 
in the depths of soil at the three sites.

Moreover, the fire led to an increase in the solubil-
ity of the available major soil elements N, P and K. 
This is due to the ash with a high content of carbon-
ates and oxides, which precipitated on the surface 
layer of soil (Capulin-Grande et al. 2018), for N this 
increase was significant at the first site, and it was 
significant at the second and third depth.

The results showed that the pre- and post-fire 
available phosphorus concentration in  soils was 
significantly different at  the first and second site. 
However, this difference was significant at the sec-
ond depth at the second site only. It was found that 
the pre- and post-fire concentration of potassium 
available in  soils was significant at  the first and 
second site, but this difference was not significant 
at particular depths of soil between burned and un-
burned soil.

An increase was revealed in the solubility of the 
soil microelements Zn, Cu, Mn and Fe. This increase 
was significant at  the third site for Fe. However, 
no significant difference was observed between the 
burned and unburned soils at  particular depths. 
The second site was found to  have the  maximum 
concentration of Mn compared to  the other sites. 
In addition, the fire had no significant effect on the 
depths of the soil.

Moreover, fires led to a significant decrease in Cu 
and Zn at the third site but this change in the Zn and 
Cu concentrations was not significant between 
burned and unburned soils at particular soil depths.

CONCLUSION

The findings of  the study can help the forest 
management measures planning required to  re-
trieve forest cover effectively. It is thought that us-
ing higher resolution satellite Sentinel-2A images 
will increase the accuracy of  the study. When the 
change detection analysis in  Sentinel-2A images 
and NBR, dNBR, BAIS2 and NDVI indices were 
used, it  was possible to  identify the burned area 
in  the study area and risk classes for future fires 
in this region were estimated, besides the detection 
of  vegetation that was destroyed by  fire was also 
carried out. In addition, as a consequence, the map 
of this region was created with elevated accuracy.

The results of this study indicated that combus-
tion had a  significant effect on  dissolved cations 

in  the soil. In  contrast, the increased availability 
of soil nutrients after a fire is caused by forest ash 
deposits and the products of  soil organic matter 
oxidation resulting from the fire. In general, in all 
instances, there was a  trend towards a  high gear 
of soil nutrients in the burned soils.
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