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Abstract: The objective of this research is the identification of burned forest areas that occurred in Syria from Septem-
ber 2" to October 15%, 2020. Forest fire risk classes were determined using Sentinel-2 images. Normalized Burn Ratio
(NBR), Differenced Normalized Burn Ratio (dNBR), and Burned Area Index for Sentinel-2 (BAIS2), and Normalized
Difference Vegetation Index (NDVI) were used for the identification how much the forests have been destroyed and
to establish fire risk classes. According to the study results, the size of the vegetation area that was destroyed due to fire
was determined, and the probability of the forest fire exposure of these areas was established. The fires also altered some
chemical properties in the soil during the combustion process. Thus, this study was focused on the impact of fire on the
availability of soil nutrients. Soil samples were collected from three depths (0-10 cm, 10-20 cm and 20-30 cm) under
the forest land a month after the fire in three locations: Al-Fazeen, Sawda and Gard Al-rihan. Pine (Pinus brutia) trees
cover these areas. The results of this study indicated that the fire increased pH, EC and sand, the fire also led to an in-
crease in the solubility of the available major soil elements N, P and K. There was an increase in the solubility of the soil
microelements Zn, Cu, Mn and Fe while the content of organic material and silt and clay ratio decreased at the three
sites in comparison with unburned soil.

Keywords: burned forest; NBR; dNBR; BAIS2; NDVI

From the past to the present, a global pattern of in-
creasing forest fires has been recorded. The litera-
ture defines the fire intensity in a fire environment
as an impact of the fire on the ecosystem (Sugihara
et al. 2006). The natural environment is disrupted
as a result of these fires which cause harm to enor-
mous natural areas, as well as human and living crea-
ture deaths. There are two main factors that cause
forest fires: nature and humans. Forest fires are
caused by a number of circumstances, including un-
planned urbanization, sabotage, carelessness, irre-
sponsibility, and global warming. Many large forest
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fires have erupted around the world in recent years;
271 350 ha of land in Greece in 2007, 450 000 ha
in Australia in 2009, and 500 000 ha in Russia in 2010
were destroyed. In addition, 25 000 ha in Bo-
livia in 2010 were ravaged by fires. The forest fire
in Canada destroyed 1 200 000 ha of land in 1825,
and this was recorded as the largest known forest
fire in history (Francos et al. 2016). Forest fires have
been reported in France, Greece, Italy, Portugal and
Spain, more than 450 000 ha were burned annually
between 2000 and 2006, and in 2007 the burned area
amounted to about 500 000 ha.
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Most of them occur in Italy and Greece (Bassi,
Kettunen 2008) while most of the Mediterra-
nean Basin fires are a consequence of anthropo-
genic activities and are not normal (Espelta et al.
2008). However, the frequency of fires is expected
to increase due to global warming, changes in the
rainfall regime and the length of the rainy season
(Pausas 2004). The Mediterranean countries are
among the most affected by fires (Quintano et al.
2018). Fires are among the main reasons for en-
vironmental alteration in the ecosystems of the
forest. In the Mediterranean, forest cover and fire
recovery are monitored for fire management and
plan. It is important that the burned areas and the
intensity of the fires are known accurately (Brewer
et al. 2005; Fernandez-Manso, Quintano 2015).

In the Mediterranean countries, studies have
shown an increase in the extent, area, and frequen-
cy of combustion (Pausas et al. 2008). Like within all
countries in the Mediterranean region, the fires are
the main threat to forests in Syria (Ali 2000, 2004).
Fires are the most dangerous form of encroachment
on Syrian forests due to the sudden change in the
environment surrounding these forests. Annually,
the fires consume the equivalent of 755.19 ha of our
forests, most of which consist of Pinus brutia (Ka-
sas 2008). The 2002 damage caused by forest fires
is most severe in felled areas (Rowell, Moore 2003).
Remote sensing can be used to recognize areas af-
fected by forest fires, as well as to classify these areas
according to the likelihood of wildfires. For so long,
forest fire damage has been revealed by remote
sensing methods (Yurtseven 2014). Remote sens-
ing provides a new window for understanding the
reasons, processes, and effects of forest fires, and
utilizes geographic techniques (Gupta et al. 2018).

In detecting and monitoring the regions with
forest fire danger, remote sensing also offers speed,
practicality, and efficiency. The use of remote sens-
ing in the identification of forest fires has become
more common as technology advances. Damage
detection studies and the detection of risk areas
has increased gradually and there are many studies
on this subject (Kerr, Ostrovsky 2003; Boer et al.
2008; Matin et al. 2017; Navarro et al. 2017; Yuan
et al. 2017). Remote sensing is one of the tools that
provide a timely reception of measurements with
the growth of technology. Remote sensing could
be used to identify areas damaged by forest fires,
and besides, these areas could be classified accord-
ing to forest fire possibility.

The chemical and physical properties of soil can
be greatly affected by forest fires, which also affect
soil erosion and can affect the entire vegetation cover
(SCBD 2001). Fires can also cause a number of organic
and inorganic changes in the soil (Ursino, Rulli 2010).

This study aims to detect the area destroyed
by fire by means of remote sensing and to evaluate
the fire risk in other areas. In this context, Senti-
nel-2 images were used in order to detect the for-
est fire risk class. Normalized Burn Ratio (NBR),
Burned Area Index for Sentinel-2 (BAIS2), Differ-
enced Normalized Burn Ratio (dNBR), and Nor-
malized Difference Vegetation Index (NDVI) were
used to determine the forest areas damaged by fire
and to identify the fire hazard classes.

MATERIAL AND METHODS

Study area. The research area is situated in the
northwestern part of Syria between 34°18'00"N and
36°26'00"N and 35°40'00"E and 37°28'00"E. The
portion of the affected territory encompasses Lat-
takia, Tartous and part of Hama and Idlib prov-
inces (Figure 1). In addition, it has been classified
as a high-risk area and rated with a very high prob-
able risk index (Forestry and Reforestations Direc-
torate 2005). The type of climate found in the study
area is called semi-moderate oceanic average cli-
mate, indicating certain dryness during the sum-
mer. This means that a large part of the vegetation
is adapted to periods of drought. Under this climat-
ic type, pine trees are the predominant vegetation
likely prevalent in most of the region. The wildfire
incidents occurred in the period between Septem-
ber 2™ and October 15%, 2020.

Data and preprocessing. Remote sensing data
from the Sentinel-2 sensor used within the scope
of the study were obtained free of charge from the
United States Geological Survey (USGS) website
(http://earthexplorer.usgs.gov/) in the UTM pro-
jection system as defined in the 37™ region. Four
Sentinel-2 satellite images were used covering the
study area, two before the fire taken on Septem-
ber 27%, 2020, and the other two taken after the fire
on October 22", 2020 (Table 1). The Sentinel-2A
satellite images used were without cloud coverage
over the entire scenes.

Remote sensing data were analyzed in order
to identify the burn severity classes. Sentinel-2 data
have high spatial resolution (10-20 m, depending
on bands) and high temporal frequency (5 days),
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Figure 1. Study area
and recent studies have scrutinized their identifica- The Normalized Burn Ratio has been used

tion for burned area mapping (Roteta et al. 2019).
Topographic factors, atmospheric influences, and
shadows must all be eliminated or minimized.
Due to effects and sensor-induced errors in sat-
ellite images, atmospheric correction is required
(Canbaz et al. 2018; Kalkan, Maktav 2018). For
this, Sentinel-2 data were atmospherically cor-
rected to L2A bottom of atmosphere reflectance
using the Sen2Cor processor algorithm in SNAP
program (Main-Knorn et al. 2017), NBR, dNBR,
and BAIS2 were performed as spectral indices
of forest fire, in addition to NDVT index. The indi-
ces used were obtained from the electromagnetic
spectrum for satellite image Sentinel-2A. These
indices were created through images taken before
and after fire.

Table 1. The satellite images used in the study, sensor — S2A

Sentinel-2 Scene Date Event
L1C_T37SBU_20200927T081719 September 27",

pre-fire
L1C_T37SBV_20200927T081719 2020
L1C_T37SBU_20201022T082011 October 22",

post-fire

L1C_T37SBV_20201022T082011 2020
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to watch changes in vegetation caused by fire (Chen
et al. 2011; Veraverbeke et al. 2011) in the near-in-
frared range. Healthy vegetation has a high reflec-
tivity, whereas in the shortwave infrared region,
it has a low reflectivity. In addition, the burned
areas have low near-infrared reflection but short-
wavelength infrared reflection. Therefore, high
NBR values indicate unburned vegetation, while
low values indicate burned areas (Key, Benson
2006). In the next step, the NBR difference (dNBR)
between the pre-fire image and the post-fire im-
age gave an idea of the intensity of the combustion.
BAIS2 Burned Area Map Spectrum Index has been
specifically designed to take advantage of the spec-
tral properties of Sentinel-2 MSI. This index makes
use of the characteristics of vegetation described
in the red edge spectral domains and the radiative
response in the shortwave infrared (SWIR) spec-
tral domain that are largely known to be effective
in identifying burned areas (Elvidge 1990). Table 2
shows the forest fire indicators used in the study
and their corresponding formulas.

Once the burned area has been mapped using
QGIS software (v3.16, 2020), the next stride is the
computation of one of the best-known and most
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Table 2. Fire indices employed in the study

Fire indices Formula
B8 -B12
NBR B8 +B12
dNBR NBR  ..—-NBR
pre-fire post-fire
. _
BAIS 1- B6 + B7 + BSA “ B12 - BSA +1
B4 VB12 + BSA

NBR — Normalized Burn Ratio; dNBR — Differenced Normal-
ized Burn Ratio; BAIS — Burned Area Index for Sentinel-2;
B4, B6, B7, B8A, B12 — Sentinel-2 spectral bands used for
the index calculation

commonly used spectral indices, NDVI. It benefits
from the feature of green powerful vegetation — ab-
sorption of visual red light, as opposed to its high
reflection of near-infrared light [Equation (1)].

B8 — B4
B8 + B4

NDVI =

(1)

where:
B4, B8 — Sentinel-2 spectral bands used for NDVI index
calculation.

Determination of thresholds. In this study,
we determined the optimal threshold for each spec-
tral index by comparing the burned areas obtained
from a reference image (Google Earth image) with
those acquired by a sequence of thresholds from
a spectral index (Santana et al. 2018).

Validation. The error matrix and its associated
precision scale (total precision) which is the ratio
of the number of correctly classified samples to the
total number of samples (Congalton, Green 2019)
were calculated.

Soil samples. The soil was sampled before and after
fire from three random locations in the studied area.
Soil sampling was done from the depths of 0-10 cm,
10-20 cm, and 20-30 c¢cm under forest land from
three sites after burning. Pine (Pinus brutia) trees
cover these areas. Soil chemical and physical data
were estimated in laboratories of the General Com-
mission of Scientific Agricultural Research (GCSAR).

Laboratory analysis. Mechanical analysis was
performed on the texture of soil (%), using hydrom-
eter modality (Gee, Or 2002).

Chemical analysis. pH of a saturated paste
was extracted using pH meter (Conyers, Davey
1988), EC (electrical conductivity) (Siemens-m™!)
in a saturated paste was extracted using EC meter

(Rhoades 1996), and percentage of organic matter
was determined using the wet oxidization method
with dipotassium chromate in a high acidity me-
dium (Nelson, Sommers 1996). Overall nitrogen
levels were identified using the Kjeldahl oxidation
method (Bremner 1996). Available phosphorous
was measured by the Olsen method (Kuo 1996).
Available potassium levels were measured with
a flame emission spectrometer (Suarez 1996). Di-
ethylenetriaminepentaacetic acid (DTPA) was
used to extract micronutrients (iron, manganese,
zinc, and copper). Then they were measured us-
ing atomic absorption spectrometry (Loeppert,
Inskeep 1996). Statistical analyses of the obtained
data were processed by two-way analysis of vari-
ance (ANOVA) using the R software (4.0.5, 2021),
in which soil depth and fire time sequence were
chosen as factors (Table 2). The influence of factors
(soil depth and fire) and the possible interaction
between them was carried out on a 95% probability
level (Davies 2016). Fire risk zones and vegetation
cover destroyed by fire have been detected using
fire indices and NDVI.

RESULTS AND DISCUSSION

First, NBR and dNBR were applied to images.
Then, the results of the indices were classified ac-
cording to pixel values and the regions that pose
a fire risk were determined (Figures 2 and 3).

According to the risk severity map made accord-
ing to the dNBR index it is understood that not
nearly all of the study area is under a threat of wild-
fire. Additionally, the sizes of fire severity classes
were calculated (Table 3).

The new BAIS2 spectral index (Burned Area In-
dex for Sentinel-2) for the mapping of the burned
area was used to adopt a spectral set of bands that
have been shown to be suitable for the detection
of the burned area after a fire. The dBAIS2-derived

Table 3. Distribution of calculated areas after applying the
Differenced Normalized Burn Ration (dNBR)

) ) Area (km?)
Fire severity
September 27, 2020 October 2274, 2020
Low to moderate 2720.30 5156.48
Moderate to high 3 543.88 3 889.89
High 1911.30 1718.41
Sum 8175.48 10 764.80
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Figure 4. The post-fire Difference Burned Area Index for
Sentinel-2 (dBAIS2) map (September 27, 2020)
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Figure 5. The post-fire Difference Burned Area Index for
Sentinel-2 (dBA1S2) map (October 22", 2020)
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Figure 6. The pre-fire Normalized Difference Vegetation
Index (NDVI) map (before the fire)
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Figure 8. The post-fire Normalized Difference Vegetation
Index (NDVI) map (October 224, 2020)
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Figure 7. The post-fire Normalized Difference Vegetation
Index (NDVI) map (September 27, 2020)

index (Difference Burned Area Index for Senti-
nel-2) is calculated from the arithmetic difference
between the pre-fire BAIS2 values and the post-
fire BAIS2 values, and the difference indices (such
as dBAIS2 and dNBR) have been shown to have
better results compared to the results with the NBR
and dNBR indices (Sommai 2020). Figures 4 and 5
illustrate dBAIS2 index in the burned area.

In addition, NDVI was calculated using images
taken just before and after the burning to determine
the status of the vegetation before and after the oc-
currence of fire (Figures 6-8). The NDVTI indicator
has also been calculated for the burned area outlined
in the study area. It is understood that the number
of dense vegetation and moderate vegetation classes
decreased, while the pixels in the sparse vegetation
class increased according to NDVI (Table 4).

Moreover, in the NDVI maps obtained after the
fire, the pixel values ranged between 0.1 and 0.3 for
the destroyed area by the fire. Therefore, these ar-
eas were classified as sparse vegetation and moder-
ate vegetation (Rutkay et al. 2020) (Figure 9).

Accuracy assessment. For evaluating the ac-
curacy of dNBR, BAIS2 and NDVI, spectral indi-
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) ) Pre-fire Post-fire (September 27, 2020) Post-fire (October 227, 2020)
Vegetation density
(m?)
Low 4165 006.08 3 836 366.92 1182 436.68
Moderate 617 231.56 636 897.36 145 178.96
High 1 469 461.04 710 619.92 241 967.80

Table 5. Soil textural classes and variation in soil fertility before and after the fire at three places for different depths

Site Fire status Depth Sand Silt Clay . EC pH oM
(cm) (%) (%) (%) (Siemens-m™!) (%)

0-10 49.5 26.0 24.5 0.577 7.935 4.844

burned 10-20 47.6 25.2 27.2 0.571 7.853 4.321

20-30 49.5 24.0 26.5 0.580 7.957 4.547

' 0-10 41.0 28.5 30.5 0.572 7.911 5.807

unburned 10-20 42.0 30.2 27.8 0.532 7.041 4.415

20-30 39.5 30.0 30.5 0.544 7.902 3.975

0-10 49.5 21.0 26.5 0.635 7.941 5.561

burned 10-20 45.0 24.7 28.3 0.642 7.922 4.899

20-30 48.5 22.5 27.5 0.691 7.868 4.925

’ 0-10 45.5 28.0 29.5 0.517 7.868 6.772

unburned 10-20 46.0 25.0 30.0 0.535 7.698 6.110

20-30 44.0 28.5 29.0 0.597 7.854 5.561

0-10 45.3 25.0 26.2 0.707 7.352 3.542

burned 10-20 44.2 27.2 26.6 0.699 7.423 3.021

20-30 44.7 29.0 25.0 0.692 7.032 2.959

’ 0-10 40.8 33.0 29.7 0.675 7.151 6.117

unburned 10-20 42.1 30.6 27.3 0.601 7.011 5.632

20-30 43.0 32.0 26.3 0.558 6.607 4.905

EC - electrical conductivity; OM — organic matter

ces were derived from Sentinel satellite imagery
in identifying burned areas. 132 random points
were used to calculate the overall accuracy, which
is the ratio of the number of correctly classified
samples to the total number of samples (Congalton
et al. 1983). The overall accuracy was 87.4% of the
DNBR index, 90.2% of the BAIS2 index, and 82.4%
of the NDVI index, which corresponds with a high
classification precision (Fleiss et al. 2013).

The effect of fire on the availability of soil nu-
trients. The results of this search indicated that
the fire led to a change in some chemical proper-
ties of the soil during the burning process (Tables
5 and 6). The organic matter content in burned and
unburned soils decreased significantly in the sec-
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ond and third location. However, there was no sig-
nificant difference between the soil depths in the
three locations. This result is due to burning or-
ganic matter during the fire thus reducing its soil
content (Garcia-Marco, Gonzalez-Prieto 2008).
The pH values were significantly higher in the
burned soil compared to the unburned soil only
at the third site. Nevertheless, there was no signifi-
cant difference in pH values between the depths
of soils at the three studied sites. The difference
between the burned and unburned soil can be due
to the ash from combustion of the vegetation above
the soil surface due to the fire, as part of this ash
returns to the forest land and increases pH value
due to its richness in soluble base cations and its
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Vegetation changes

infiltration with water into the soil after rain. This
is consistent with findings of Ershad et al. (2013).
The EC values of the burned soil were higher com-
pared to the unburned soil. It was significantly dif-
ferent at the second site, and significantly different
at the third soil depth compared to unburned soils.
This is due to a release of mineral ions from depos-

pre-fire
M post-fire (Sept 27", 2020)

M post-fire (Oct 22", 2020)

high vegetation density
Figure 9. Vegetation changing before

and after the fire

ited ash and combusted organic matter (Hernan-
dez et al. 1997; Certini 2005). An increase in sand
percentage at the three sites was significant at the
first and second depth at the first site, with a de-
crease in the percentage of silt at the three sites,
and it was significant at the first site. As for the clay,
its percentage was decreased at the three sites, but

Table 6. Variation in soil fertility before and after the fire at three places for different depths

Site Fire status Depth N P K Fe Mn Cu Zn
(cm) (ppm)
0-10 0.294 5.430 130.6 2.456 1.670 1.602 1.100
burned 10-20 0.225 5.065 175.9 2.012 1.665 1.610 0.986
20-30 0.224 4.178 224.6 2.267 1.642 1.038 0.847
! 0-10 0.258 0.994 105.0 1.828 1.703 1.544 1.038
unburned 10-20 0.202 1.302 87.9 1.903 1.801 1.453 0.973
20-30 0.196 1.518 79.9 2.142 1.675 1.100 0.773
0-10 0.308 5.195 533.9 3.030 1.646 2.647 0.636
burned 10-20 0.332 5.032 412.4 3.065 1.602 2.499 0.676
20-30 0.418 4.367 330.9 3.093 1.640 2.643 0.416
? 0-10 0.292 4.418 330.4 2.922 1.607 2.497 0.633
unburned 10-20 0.281 3.892 255.3 2.865 1.544 2.423 0.471
20-30 0.262 3.492 236.3 3.063 1.573 2.199 0.410
0-10 0.442 5.012 499.9 3.334 2.111 1.939 0.711
burned 10-20 0.401 5.601 445.0 3.712 2.030 2.034 0.687
20-30 0.399 4.980 449.4 3.233 2.301 2.026 0.602
’ 0-10 0.376 4.993 301.8 2.055 2.010 1.655 0.544
unburned 10-20 0.383 4.235 305.7 2.224 1.879 1.436 0.505
20-30 0.399 3.639 311.4 2.237 1.901 1.518 0.498
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the decrease was significant only at the second site.
Nevertheless, there was no significant difference
in the depths of soil at the three sites.

Moreover, the fire led to an increase in the solubil-
ity of the available major soil elements N, P and K.
This is due to the ash with a high content of carbon-
ates and oxides, which precipitated on the surface
layer of soil (Capulin-Grande et al. 2018), for N this
increase was significant at the first site, and it was
significant at the second and third depth.

The results showed that the pre- and post-fire
available phosphorus concentration in soils was
significantly different at the first and second site.
However, this difference was significant at the sec-
ond depth at the second site only. It was found that
the pre- and post-fire concentration of potassium
available in soils was significant at the first and
second site, but this difference was not significant
at particular depths of soil between burned and un-
burned soil.

An increase was revealed in the solubility of the
soil microelements Zn, Cu, Mn and Fe. This increase
was significant at the third site for Fe. However,
no significant difference was observed between the
burned and unburned soils at particular depths.
The second site was found to have the maximum
concentration of Mn compared to the other sites.
In addition, the fire had no significant effect on the
depths of the soil.

Moreover, fires led to a significant decrease in Cu
and Zn at the third site but this change in the Zn and
Cu concentrations was not significant between
burned and unburned soils at particular soil depths.

CONCLUSION

The findings of the study can help the forest
management measures planning required to re-
trieve forest cover effectively. It is thought that us-
ing higher resolution satellite Sentinel-2A images
will increase the accuracy of the study. When the
change detection analysis in Sentinel-2A images
and NBR, dNBR, BAIS2 and NDVI indices were
used, it was possible to identify the burned area
in the study area and risk classes for future fires
in this region were estimated, besides the detection
of vegetation that was destroyed by fire was also
carried out. In addition, as a consequence, the map
of this region was created with elevated accuracy.

The results of this study indicated that combus-
tion had a significant effect on dissolved cations
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in the soil. In contrast, the increased availability
of soil nutrients after a fire is caused by forest ash
deposits and the products of soil organic matter
oxidation resulting from the fire. In general, in all
instances, there was a trend towards a high gear
of soil nutrients in the burned soils.
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