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Abstract: Simulation of the runoff-rainfall process in forest lands is essential for forest land management. In this re-
search, a hydrologic modelling system (HEC-HMS) and artificial neural network (ANN) were applied to simulate the 
rainfall-runoff process (RRP) in forest lands of Kasilian watershed with an area of 68 square kilometres. The HMS model 
was performed using the secondary data of rainfall and discharge at the climatology and hydrometric stations, the Soil 
Conservation Service (SCS) for simulating a flow hydrograph, the curve number (CN) method for runoff estimation, 
and lag time method for flow routing. Further, a multilayer perceptron (MLP) network was used for simulating the 
rainfall-runoff process. HEC-HMS model was used to optimize the initial loss (IL) values in the rainfall-runoff process 
as an input. IL reflects the conditions of vegetation, soil infiltration, and antecedent moisture condition (AMC) in soil. 
Then, IL values and also incremental rainfall were applied as inputs into ANN to simulate the runoff values. The com-
parison of the results of simulating the RRP in two scenarios, using IL and without IL, showed that the IL parameter 
has a high effect in increasing the simulation performance of the rainfall-runoff process. Moreover, ANN predictions 
were more precise in comparison with those of the HMS model. Further, forest lands can significantly increase IL values 
and decrease runoff generation.
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It is important to predict the behaviour of floods 
and runoff generation in forest lands, due to their 
complex nature and the great damage they cause 
(Khaleghi 2017, 2018). Many factors affect the 
rainfall-runoff process (RRP) and also the runoff 
phenomenon. Simulation of these phenomena is 
important and difficult. Therefore, different meth-
ods have been developed to analyse this process. 
Further, lack of vegetation or soil impermeability 
can lead to several outcomes, including an increase 
in surface flow and consequently annual runoff, 
increase of the watershed instantaneous peak dis-
charge, increase in hydrograph slope, and finally 
reduction of the groundwater discharge (Burns 
et al. 2005; Khaleghi, Varvani 2018; Varvani 2019; 
Farajzadeh, Khaleghi 2020). 

Recently, various hydrologic models have been 
used to simulate the quantitative dimensions of the 
RRP (Kim, Barros 2001). To manage natural disas-
ters and to design and to build the water structures, 
it is necessary to estimate the peak discharge value 
and the runoff volume of a watershed (Khaleghi et 
al. 2011). Therefore, different methods have been 
presented for simulating the rainfall-runoff model-
ling. Sapountzis and Stathis (2014) quantified the 
hydrologic response of the torrents that originate in 
the forest area of Stratoni using the synthetic unit 
hydrograph method. Based on previous research, 
the hydrologic modelling system (HEC-HMS) has 
had effective results in this regard. For example, the 
results of Amengual et al. (2008) which were used 
for presenting a rainfall-runoff model (RRM) in the 
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Emilia-Romagna Region, confirm it well. Hogue et 
al. (2006) proposed the Sacramento model. Hellwe-
ger and Maidment (1999) combined a geographic 
information system (GIS) directly with HEC-HMS 
to access an RRM. Also, Stone (2001) combined GIS 
and HEC-HMS model to achieve an RRM. Their re-
sults were favourable and desirable because of the 
high speed and capacity of the resultant model in 
simulation of a flood hydrograph and also in the es-
timation of flood quantitative characteristics such 
as runoff volume and peak discharge. Also based 
on the research results of Dibike and Solomatine 
(2001) the HEC-HMS model has sufficient reliabil-
ity in the estimation of the infiltration parameters 
and for simulating daily streamflow. 

Today, the use of the artificial neural network 
(ANN) method in simulating processes has in-
creased (Abrahart, See 2007). This method has 
been inspired by the human brain and nervous sys-
tem patterns (Maier, Dandy 2000; Tokar, Markus 
2000; Tesch, Randeu 2006; Lee et al. 2008; Gholami 
et al. 2015, 2019; Varvani et al. 2019). Using this 
method has had very appropriate results. ANN has 
a high potential and ability to establish the rela-
tionship between different factors and also in the 
simulation of a parameter. The use of ANN causes 
a reliable and flexible learning ability in creating 
models and due to this property, converts the ANN 
to an attractive inductive approach in hydrological 
response forecasting (Manson et al. 1996; Luk et al. 
2001; Kisi, Kerem Cigizoglu 2007; Pan et al. 2011; 
Sahour et al. 2020). The research results of Minns 
and Hall (1996) in implementing an ANN to pres-
ent an RRM and simulate a flood hydrograph are 
satisfactory. Also, Dunjó et al. (2004) implement-
ed an RRM to assess the spatiotemporal effects of 
land-use changes in runoff generation and access 
to good results. Zimmermann et al. (2006) and also 
Descheemaeker et al. (2006) revealed a significant 
and positive correlation between the total vegeta-
tion cover and the runoff generating threshold. 

There are also examples where the two approaches 
are combined to improve forecasting performance 
(Alvisi et al. 2006). If the flow data (discharge-stage 
data) is not available or the purpose is to study 
the hydrological and climatic conditions and land 
use, applying an RRM is a satisfactory alternative 
(Haberlandt et al. 2008). Some of the researchers 
such as Wilby et al. (2003) and Jain et al. (2004) em-
phasized the effectiveness of ANN in the simula-
tion of RRP. Therefore based on recent reviews, one 

can say that ANN has a high ability and potential 
in hydrological process modelling. Therefore, the 
incorporation of HEC-HMS model (optimizing a 
simulated hydrograph) and ANN (the high perfor-
mance in the simulation) will result in much more 
effective results. For example, Verma et al. (2010) 
used remote sensing (RS) and GIS to investigate the 
performance of HEC-HMS and WEPP models in 
simulating the runoff generation in watersheds. Pe-
ters et al. (2006) incorporated the HEC-RAS capac-
ities and ANN to perform flood routing in a stream. 
One of the features of this method is that if there is 
no observational data, synthetic precipitation can 
be used repeatedly (Cameron et al. 1999; Blazkova, 
Beven 2004; Aronica, Candela 2007; Moretti, Mon-
tanari 2008). The goal of this study is to evaluate 
the performance of ANN coupled with HEC-HMS 
in simulating the RRP in forest lands. This study 
presents a methodology with high performance for 
simulating the RRP and the runoff values through 
coupling the HEC-HMS model and an ANN in the 
Kasillian forested watershed.

MATERIAL AND METHODS

Study area. The Kasilian watershed, a forested 
area, is divided into three sub-basins of Velikh-Chal, 
Sangheh, and Sarband in Mazandaran province. 
Also, this watershed is one of the few watersheds 
in Iran which is less influenced by human activities 
and has long-term statistics. Therefore, this area is 
considered as a representative of mountainous and 
forest areas and has a total area of about 68 square 
kilometres, which is located between 53°8'44"E to 
53°15'42"E and 35°58'30"N to 36°07'15"N in Ma-
zandaran province (Northern Iran). Figure 1 shows 
the location of Kasilian watershed. The elevation 
ranges from 204 to 2 995 m a.s.l. in the Kasilian 
watershed. The study area has a semi-humid and 
cold climate (Gholami et al. 2008). The region has 
the mean annual precipitation of 791 mm and the 
mean temperature is 11 °C. There is a hydrometric 
station in the outlet of the watershed and a rainfall 
recorder station upstream of it. The most impor-
tant land uses of the study area in terms of hectares 
are forests (4 222.6), farming (2 143.6), rangelands 
(346.8), and residential areas (87) (Khaleghi 2017). 
Table 1 presents the characteristics of the Kasil-
ian watershed. In the studied watershed, different 
types of tree species are observed such as Carpi-
nus betulus, Buxus hyrcana, Fagus orientalis, and 
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Alnus subcordata. Moreover, species of spruces, 
Populus, and Cupressus trees can be seen in refor-
ested lands. 

Methods. In this study, an HEC-HMS and an 
ANN model were applied to simulate RRP in the 
Kasilian watershed. The HMS model was performed 
using the SCS and curve number (CN) methods. 

SCS and CN methods were used for hydrograph 
simulating and estimating runoff values, respectively. 

The SCS-CN method was applied for the determi-
nation of the initial loss and determination of the 
runoff-rainfall relation (runoff values). Therefore, 
initial loss is a parameter that involves those factors 
for simulation of the RRP, which was selected as an 
input in the rainfall-runoff model. The initial loss 
values were calculated by the following formula:

	 (1)

where:
S 	 – total loss (mm);  
CN 	– curve number.

S is obtained through the above formula and the 
initial loss is equal to 0.2 × S. The average value of 
CN was estimated as equal to 70.71 in the study 
area. The maximum and minimum values of CN 
were observed in the dense forest and the dry 
farming (deforested lands), respectively. Due to 
some contradictory cases in which the IL values of 
some rainfall events were more than the total rain-
fall (Table 1), it was necessary to use a model to 
optimize this parameter. HEC-HMS model was se-
lected for this purpose due to its high capability in 
optimization. In the first step, to a simulation of the 
flood hydrograph and also to optimizing the initial 
loss parameter, the HEC-HMS model was used. To 
do this, the extension of HEC-GeoHMS in the Ar-
cGIS medium and also the digital elevation model 
(DEM) were implemented to simulate the physical 
model of the watershed. This process was done by 

Figure 1. Location of the study area, Kasilian watershed in northern Iran

Table 1. The characteristics of the Kasilian watershed

KasilianWatershed properties
TalarThe main river

53°18’00’’E
53°60’30’’E

Location
35°58’30’’N
36°07’00’’N

shale – sandstoneDominant geological formation
very deep clayPedology

forests, rangelands,  
and villagesDominant vegetation

semi-humidClimate
67.8Watershed area (km2)
44.5Watershed perimeter (km)
0.43Circular ratio

1 672The mean elevation (m)
15.8The mean slope (%)
13The mean slope of main river (%)

2.282Drainage density (km·km–2)

25 400 254
CN

S  
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importing the watershed physical model into the 
HEC-HMS model and implementing rainfall data 
(Sangdeh station) and flood hydrograph data (Va-
likben station). Moreover, the lag time method was 
used for flood routing in the main channel. IL and 
the SCS lag time were selected as the optimization 
parameters. In this study, a total of nine events 
were considered: 6 events for data training in ANN 
and 3 events for data testing. To simulate the flood 
hydrograph in the ANN, both IL and rainfall values 
were used. Table 2 presents the input data of the 
incremental rainfall and IL during a rainfall event.

Rainfall-runoff process modelling using an 
ANN. To execute this research, a single-layer per-
ceptron with a backpropagation algorithm was run 
in the environment of MATLAB software (Version 
7.5.0, 2007). To attain the best results in an accurate 
simulation of RRP, HEC-HMS and ANN capabili-
ties were combined. To determine the optimized 
structure of an ANN network in rainfall-runoff 
modelling, the trial-error method was used. To do 
optimization, different structures of the MLP net-
work were used. To pattern mapping problems, the 
MLP network was selected with the backpropaga-
tion rule and the learning techniques of GDX (Gra-
dient Descent), LM (Levenberg-Marquardt), and 
CG (Conjugate Gradient) and with (2–20) neurons 
(Hung et al. 2009). To select the desired optimal 
network model, statistical criteria were used. The 
selection procedure is based on the following sta-
tistics: correlation (R), coefficient of determination 
(R-squared), and root mean squared error (RMSE). 
The performance of the network was evaluated 
through different parameters, for example:

 2obs cal
1RMSE

n

i
Q Q

n






	 (2)

where: 
Qobs	 – observed values;  
Qcal	 – values calculated by network and model;  
n	 – number of data in each step.

The nearer the RMSE to zero, the nearer are the 
observed and calculated values to each other and the 
more accurate is the simulation in each stage. Pearson’s 
R-Squared statistics (RSqr) and efficiency index (R2):
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where:
Qi	 – observed value;
Ôi	 – simulated value;
Ōi	 – mean of the observed data;
Õi 	– mean of the simulated data.

The purpose of the network terrain is to obtain a 
network that can improve the relationship between 
the inputs and output of the model.

Finally, an MLP network was trained by using 
secondary rainfall data and the optimized IL val-
ues in the HMS model. The model was optimized 
by using the trial-error method and the changes in 
the inputs, transfer function, learning technique, 
epoch number, and neuron number. Network per-
formance was evaluated by comparison between 
the observed runoff values and the simulated val-
ues and the statistical criteria. Runoff values were 
estimated by subtracting the baseflow from the 
recorded streamflow hydrograph. Baseflow is the 
discharge value before flood or rainfall started. 
The optimized network was selected based on the 
minimum error and the maximum conformity be-
tween the observed and simulated hydrographs. 
In the test stage, the optimized network was used 
for simulating runoff and flood hydrograph of the 
three validation events (rainfall-runoff ). Finally, 
the optimized MLP network was validated by a 
comparison between the observed and simulated 
runoff values.

RESULTS

To optimize the IL parameter, an RRM was used 
in the HEC-HMS model. Table 1 illustrates the IL 
values of the used rainfall events. The HEC-HMS 
model was implemented to simulate and optimize 
flood hydrograph events (Figures 2 and 3). Table 2 

Table 2. The values of rainfall and initial loss (based on 
formula 1) for the used events in rainfall-runoff modelling

Optimized 
initial loss

Initial loss
(mm)

Rainfall
(mm)Date

11.322126.3224 May 1991
9.82125.5322 Oct 1994

10.12110.54 May 1993
8.82118.22 Sep 1990

112115.626 Sep 1991
11.03212020 Jun 1992
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shows the estimated IL (based on a formula) and 
the optimized IL (based on the HMS model) in the 
study area. Then, a series of inputs includes the IL 
values, incremental rainfall, and runoff values that 
were entered into the ANN model for simulating 
the rainfall-runoff process. The mean of the opti-
mized IL values was used as IL for the modelling 
process. Also, three rainfall events were imple-
mented to validate or test the network results. 
Table 3 shows a sample of input and output data 
(a rainfall-runoff event) for modelling in the ANN.

ANN was used to simulate the runoff in two dif-
ferent scenarios with IL input and without IL in-
put. The results of this comparison are given in Fig-
ures 4 to 9. Based on the quantitative comparison 
of hydrographs (Figures 8 and 9), implementing 

Figure 2. The comparison of the observed and simulated hydrographs by HEC-HMS model (May 24, 1991)

Figure 3. The comparison of the observed and optimized hydrographs by HEC-HMS model (May 24, 1991)

the IL increases the simulation performance. Com-
parison of the ANN and HEC-HMS models based 
on the goodness of fit test showed that compared 
to the ANN model, the HEC-HMS model gave 
much higher MSE and MRE. Also, compared to the 
HEC-HMS model, the ANN model provides more 
accurate streamflow prediction at both high and 
low streamflow conditions. Therefore, the higher 
the number of independent variables, the better is 
the performance of both ANN and empirical mod-
els. But due to the limitation of this process in the 
number of independent variables, we do not see a 
significant improvement in the performance of the 
model. This is because of a data error, so the more 
the independent variables, the higher is the precip-
itation data error.
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DISCUSSION

HMS model was used for exact or optimized IL 
values. According to Table 2, a significant differ-
ence was observed between the primary IL and 
the optimized IL. IL is an important parameter 
in a rainfall-runoff model because it reflects a 
complex of vegetation, soil texture, and AMC. 
The optimized IL is lower than the primary IL 
values. Tree species, tree height and density, 
vegetation canopy, and initial lost values are the 
most important determinative factors of IL and 
runoff generation. Runoff is produced when 
rainfall exceeds the IL values (Table 3). There-
fore, incremental IL values the same as in Table 
3 can be used as an efficient input in a rainfall-
runoff model. The optimized hydrographs in the 
HMS model showed that the HMS model has 
high capabilities in the optimization process. 
The optimization process will be more efficient 
for estimating peak discharge values or runoff 
volumes. ANN can optimize its structure and it 
is not suitable for IL optimization. Therefore, a 
coupling of HMS (hydrologic model) and ANN 
can improve the modelling process. In Figures 4 
to 9, we can observe the effect of the optimized 
IL in the rainfall-runoff modelling. It is impor-
tant to simulate IL values from similar rainfall. 
There are two significant advantages of master-
ing IL values. One is that the conditions of forest 
cover, soil, and even AMC are somehow applied 
in the model. Second, it will increase the perfor-
mance of the rainfall-runoff model, especially in 
the peak discharge index. Finally, an optimized 
MLP network was tested or validated. The results 
showed that the MLP network can simulate run-
off values with acceptable accuracy (Abrahart, 
See 2007; Kisi, Kerem Cigizoglu 2007; Gholami 
et al. 2015). Further, that can be used for simulat-
ing a flood hydrograph. The optimized network 
was an MLP network with a tangent hyperbolic 
transfer function, LM learning technique, 1 000 
training epochs, and one neuron. Further, an im-
portant point in the application of the rainfall-
runoff model in forest lands is runoff estimation 
at a specific area. Moreover, a validated model 
can be used to evaluate the effect of forestry, tree 
cover type, or deforestation on runoff generation. 
On the other hand, it can be used in the design of 
forest engineering structures in connection with 
the design of forest roads or drains.

Table 3. Artificial neural network (ANN) input param-
eters for rainfall-runoff modelling in one-hour intervals 
(May 4, 1993)

Time (h) Discharge 
(m3·s–1)

Rainfall
(mm)

Initial loss
(mm)

7 0.475 0 0
8 0.475 0.7 0.7
9 0.525 0.4 0.4
10 0.6 1.5 1.5
11 0.675 1.6 1.6
12 0.833 0.9 0.9
13 0.998 2 2
14 1.163 1.4 1.4
15 1.615 0.8 0.8
16 1.895 0.5 0.5
17 2.043 0.5 0.3
18 2.043 0.2 0
19 1.965 0 0
20 1.895 0 0
21 1.825 0 0
22 1.685 0 0
23 1.615 0 0
24 1.475 0 0
1 1.335 0 0
2 1.273 0 0
3 1.218 0 0
4 1.108 0 0
5 1.053 0 0
6 0.998 0 0
7 0.97 0 0
8 0.943 0 0
9 0.888 0 0
10 0.833 0 0
11 0.833 0 0
12 0.778 0 0
13 0.75 0 0
14 0.725 0 0
15 0.7 0 0
16 0.675 0 0
17 0.65 0 0
18 0.625 0 0
19 0.625 0 0
20 0.6 0 0
21 0.575 0 0
22 0.575 0 0
23 0.525 0 0
24 0.525 0 0
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Figure 6. The comparison of the observed and simulated hydrographs ANN in the case without using the initial loss 
parameter (October 6, 1992 – the correlation between observed and simulated values equals 0.42)

Figure 5. The comparison of the observed and simulated hydrographs by ANN in the case of using the optimized initial 
loss parameter (October 12, 1995)

Figure 4. The comparison of the observed and simulated hydrographs by artificial neural network (ANN) in the case 
without the initial loss parameter (October 12, 1995)
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Figure 8. The comparison of the observed and simulated hydrographs by ANN in the case without using the initial loss 
parameter (June 15, 1995 – the correlation between observed and simulated values equals 0.39)

Figure 7. The comparison of the observed and simulated hydrographs by ANN in the case of using the optimized initial 
loss parameter (October 6, 1992 – the correlation between observed and simulated values equals 0.67)

Figure 9. The comparison of the observed and simulated hydrographs by ANN in the case of using the optimized initial 
loss parameter (June 15, 1995 – the correlation between observed and simulated values equals 0.6)
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CONCLUSION

The goal of this research was to simulate flood 
hydrograph and runoff values by implementing the 
ANN model in forest lands. The results of this study 
certify the capability of the ANN model. The results 
of this study are in line with Abrahart and See (2007) 
and also Zimmermann et al. (2006). All of them find 
good results in their researches. It was also revealed 
that the performance of the model varies depending 
on the accuracy and number of input data. Therefore, 
the higher the number of real-time rainfall data, the 
forecasting of stream flows at incremental intervals 
will be more accurate. Further, vegetation is one of the 
main affecting factors in the runoff generation that 
should be considered. According to the results, IL can 
be used as an applied index for simulating the vegeta-
tion conditions in a rainfall-runoff model. Generally, 
based on the results of this study, implementing the 
IL parameter as a volume or quantity index increases 
the simulation accuracy of hydrograph dimensions as 
much as twice. In this regard, implementing histori-
cal rainfall and streamflow/gage height data increases 
the performance of the model (Dawson, Wilby 1998). 
Finally, compared to the HEC-HMS model, the ANN 
model has a better performance in simulating and 
solving phenomena and problems. Thus, one can 
say that ANN hydrologic models have high perfor-
mance in real-time prediction of stream flows and 
watershed modelling. For future studies, we suggest 
that the other ANN structure and also field plot mea-
surements be used for modelling the rainfall-runoff 
process and to estimate IL values in different types of 
forest cover in forest lands.
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