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Abstract: Forest fires are a major environmental issue because they are increasing as a consequence of climate change
and global warming. The present study was aimed to model forest fire hazard using the ordered weighted averaging
(OWA) multi-criteria evaluation algorithm and to determine the role of human, climatic, and environmental factors
in forest fire occurrence within the Golestan National Park (GNP), Iran. The database used for the present study was
created according to daily classification of climate changes, environmental basic maps, and human-made influential
forest fire factors. In the study area, the forest fires were registered using GPS. Expert opinions were applied through
the analytic hierarchy process (AHP) to determine the importance of effective factors. Fuzzy membership functions
were used to standardize the thematic layers. The fire risk maps were prepared using different OWA scenarios for man-
-made, climatic, and environment factors. The findings revealed that roads (weight = 0.288), rainfalls (weight = 0.288),
and aspects (weight = 0.255) are the major factors that contribute to the occurrence of forest fire in the study area. The
forest fire maps prepared from different scenarios were validated using the relative operating characteristic (ROC) cu-
rve. Values of forest fire maps acquired from scenarios of human, environment, climate factors and their combination
were 0.87, 0.731, 0.773 and 0.819, respectively.
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Natural or anthropogenic forest fire is a pon-
derous threat with irreversible damage and deep
ecological and socio-economic impacts, especially
in tropical forests, and its negative impacts could
sometimes last more than one decade (Alexan-
dridis et al. 2008; Artés et al. 2014; Rahman et al.
2018). Forest fires seriously threaten the sustain-
ability and environmental services of these eco-
systems (Hong et al. 2018), profoundly change the
structure of vegetation and biodiversity (Bengtsson
et al. 2000; Gandhi et al. 2001), increase absolute

carbon storage (Healey et al. 2014), and endanger
species composition (Moretti et al. 2004). It has
been estimated that about 20% of CO, emission
into the atmosphere is caused by forest fires (Kuhrt
et al. 2001), and the possibility of fire in the future
could be attributed to climate change conditions
(Holsten et al. 2013). Therefore, analysis of factors
affecting the occurrence and spread of fire as well
as understanding its dynamic behaviour is neces-
sary to minimize the occurrence of forest fires
(Kandya et al. 1998).
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It is of great importance to determine the fire se-
verity and frequency and develop effective strate-
gies for forest-fire management (Miller et al. 2016).
Modelling natural processes enhances understand-
ing of the natural environment as well as the rela-
tionships and dynamics of its interacting parts. By
presenting a simplified or an abstract representa-
tion of the world, models can provide insight into
the past, define the present or predict the future
state of natural phenomena (Smyth 1998). Accord-
ing to the inventory of forest fires and geographi-
cal and meteorological data, a large number of
methodologies and probabilistic models have been
developed and frequently applied to predict for-
est fires. Such models include, but not limited to,
hybrid machine learning methods and GIS-based
spatial prediction models (Bui et al. 2018), overlap
indices and inference algorithm (Garcia-Jimenez
et al. 2017), optimal combination using genetic al-
gorithms (Hong et al. 2018), ground-based data of
forest fires (Ying et al. 2018), fuzzy inference system
(Lin et al. 2018), design and application of fuzzy
logic-based fire monitoring (Sarwar et al. 2018),
and fire susceptibility using data mining techniques
(Pourtaghi et al. 2016).

In parallel to the above-mentioned methods,
multi-criteria evaluation (MCE) as decision sup-
port systems-based models have been applied for
forest fire crisis management (Srivastava et al.
2019). Over the past years, MCE has become more
common to identify conservation priorities and
threats as well as to develop and evaluate alterna-
tive plans which facilitate a compromise between
interested parties (Malczewski 1999; Karnatak et
al. 2007; Wood, Dragicevic 2007; Geneletti, Van
Duren 2008). MCE simplifies complex decisions
with multiple criteria and helps identify areas of
good planning and success in environmental pro-
tection areas. MCE consists of three main proce-
dures including Boolean overlay, weighted linear
combination (WLC), and ordered weighted aver-
aging (OWA). OWA can be applied in the natural
sciences to improve decision-making (Mokarram,
Hojati 2017).

The Golestan National Park (GNP) in the north
of Iran is one of the oldest reservoirs of the bio-
sphere and biome mountain complex systems
with complicated zoning in Odwardy’s classifica-
tion outstanding and distinct characteristics of
Hyrcanian Province. This national park is the only
sample of the above-mentioned biome in the world

88

https://doi.org/10.17221/50/2020-JES

network of biosphere reserves and is an important
touristic area (Ghoddousi et al. 2018). It has been
estimated that one-eighth of plants, one-third of
bird species, and over 50 percent of mammalian
species of Iran live in the above-mentioned park.
Due to being exposed to wet and dry winds and, in
turn, being susceptible to fire (Shokri et al. 2002),
in this park there burned about 3 000 ha in Sep-
tember 2013, 250 ha in September 2014, 1 400 ha
in July 2015, and 300 ha in July 2018. Therefore, the
present study applied GIS-based MCE with a focus
on the analytic hierarchy process (AHP) algorithm
and OWA to identify areas vulnerable to fire risk
based on human, environment, and climate factors
and also to assess their accuracy in the study area.

MATERIAL AND METHOD

Study area. The GNP with the area of 91 895 ha
is located in the northeast of Iran, from 37°16'34"'to
37°31'00"N and 55°43'00" to 56°17'45"E (Figure 1).
It occupies a transitional position between the sub-
humid south Caspian region and the semi-arid
parts of central and east-central Iranian plateau.
The presence of several relatively high mountains
blocks the wet air masses from the Caspian Sea,
creating particular microclimatic conditions with
precipitation varying from 150 mm-year~! in the SE
to more than 750 mm-year~! in some central parts
of the park. The park possesses a diverse mosaic of
vegetation units, including the Hyrcanian low- to
high-altitude mesophytic forests, shrub lands, open
and closed scrubs, sometimes mixed with C4 grass-
lands, Juniperus woodlands, mountain steppes and
meadows, Artemisia and Artemisia—Stipa steppes
and different transitional and halophilous commu-
nities (Akhani 1998; Akhani, Ziegler 2002).

Method. The research was conducted in four
steps including (1) creation of a spatial database,
(2) preparation of criteria, (3) normalization of
factors, and (4) application of the multi-criteria
evaluation using the ordered weighted average sce-
narios and analytic hierarchy process (Figure 2).
All of the steps were conducted in the IDRISI Tai-
ga and ArcGIS (Ver. 10.4, 2019) software. Firstly,
the factors influencing the fire were identified
and the data were obtained through field surveys
in the study area and from government organs.
The factors were classified into climatic, human,
and environmental factors, and their fuzzy state
was estimated according to their influencing way.
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Modelling was performed using six scenarios of
OWA and weights obtained from the participato-
ry technique AHP. The models were evaluated on
the basis of the map obtained from the fires that
occurred in the area as well as the characteristics
of the relative factor.

Forest fire effective factors. The factors affect-
ing fire were divided into three categories (Table 1):
anthropogenic factors, in which humans play an es-
sential role; climate factors, prepared by meteoro-
logical data during the last 10 years; and environ-
mental factors, dealing with local conditions.

Analytic hierarchy process. The participatory
technique which involves opinions of experts in
various areas related to a specific subject was used
to define factors and constraints as well as weight
of each criterion (Eastman 1999). AHP is one of
the most popular multi-criteria decision-making

37°13'30"N

techniques that allows to formulate a problem in a
hierarchical manner and to consider the possibil-
ity of different quantitative and qualitative criteria
about the problem. One of the important advan-
tages of this process in group decision-making is
the decision combination of the group members so
that the optimal decision will be computed based
on the votes of all members. Therefore, in this part
of the study, the factors related to climatic, hu-
man, and environmental agents were assessed us-
ing AHP and weights were obtained for the factors
and agents. For this purpose, questionnaires were
filled by ten specialists and the mean weight was
determined.

Fuzzy logic. Fuzzy theory (Zadeh 1965) was
raised against classical logic theory, a powerful tool
to address the requirements of complex systems
which are dependent on human reasoning, deci-

Spatial database Preparing human, climate and environmental impact factors

Run of OWA scenarios ]4—[ Fuzzification ]4—[ Calculation weight factors based on AHP

Human, climate and
environmental agents fire maps

4,{ Accessory assessment with ROC ]

[ Calculation weight agents based on AHP H Run of OWA scenarios ]

{ Accessory assessment with ROC ]

Fire hazards maps

Figure 2. Flow chart of the major processes conducted for forest fire hazard mapping
OWA - ordered weighted averaging; AHP — analytic hierarchy process; ROC — relative operating characteristic
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Table 1. Forest fire effective factors and their categorization

https://doi.org/10.17221/50/2020-JES

Agents Factors (scale) Source factors Description
April to November is the growing
season of the plants in the park. We Precipitation during th .
rainfall-plant obtained the average monthly rainfall recipitation during the growing
. season will increase due to rising fuel
(mm) during these months, and the map was fires (Chapin et al. 2003)
prepared using the inverse distance P ’ '
weighted (IDW) interpolation method
rainfall (mm) .
maps of temperature, rainfall, pressure,
Climate moisture (%) and moisture were prepared from
pressure (mbar) ~ meteorological data using the IDW Increasing precipitation and moisture
temperature (cc) interpolation method reduce the risk of fire (Tanskanen et al.
2005). Temperature, pressure, and wind
wind maps were obtained according are factors which increase the fire risk
to wind speed and direction at the (Keeley, Keeley 1988; Whelan 1995;
wind (m/s) weather stations in four parts of the Balzter et al. 2005).
park, wind rose plots at the stations
were plotted in the WRPLOT
View software
Topographic factors explain variation in
elevation (m) DEM was obtained from a topographic  local climate and indirectly influence
map at 1: 30 000-scale factors, and fire risk is reduced with
increasing elevation (Whelan 1995).
slope (%) slope map was prepared Slope produces a direct physical effect
from the built DEM on active fire fronts (Bui et al. 2017).
. Fires would be more in the parts that
aspect eflspecthmap was obtained get more sunlight intensity
rom the built DEM (Franklin et al. 2000).
Environmental
land use map with resolution Landuse maps have impact on the fire
landuse of 300 meters was prepared in risk based on users
the Environment Department for 2017  (Cantarello et al. 2011).
. distance map of springs was obtained . S
spring (m) in the study area with GPS Springs attract tourists in the study area.
NDVI data for dynamically assessing
NDVI NDVI map was obtained from 2017 the potential fire risk
Landsat 8 satellite images (Gonzalez-Alonso et al. 1997;
Burgan et al. 1998; Zipoli et al. 2000).
. distance map of the transit road
main road (m)
across the park
Forests located near roads are more
distance map of the roads around sensible to fire (Jaiswal et al. 2002).
side roads (m) boundaries and roads in the park
for the access of guards
Housing developments and human
illage (m) distance map of the villages population density will increase
Human viiag around the park fire forest (Glickman, Babbitt 2001;

camping (m)

hunters (m)

shepherds (m)

distance map of camping areas

distance map of the arrest shepherds
and hunters information recorded
by the central office park

Rundel, King 2001).

Since tourists increase the probability
of forest fires (Sunlu 2003).

Shepherds and hunters cause intentional
and unintentional forest fires
(Faramarzi et al. 2014).

NDVI - normalized difference vegetation index; DEM - digital elevation model
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sion making and inference. In this study, in order
to standardize the GIS data layers for subsequent
integration, the factor maps were fuzzified accord-
ing to their nature using different membership
functions. The membership functions were speci-
fied as monotonically increasing or decreasing
functions which are controlled by breakpoints or-
dered from low to high on the measurement scale,
as specified in Table 2. Regarding monotonically
increasing functions, the first point indicates the
location where the membership function begins to
rise above 0, and the second one shows the point
of unity (i.e., 100 percent class membership). The
output was scaled from O (zero class membership)
to 255 (100 percent class membership) for each
layer (Mokarram, Hojati 2017).

OWA. OWA is a weighted average-based method,
except that the amount of pre-multiplying the vector
weight is ordered. This type of sorting is the special
feature of the approach and leads to nonlinear mod-
els (Wu 2018). With different sets of ordered weights,
one can generate a wide range of OWA operators,
including the three special cases of the WLC, Bool-
ean overlay combination AND (non-risk), and OR
(risk-taking) (Malczewski 2006). The WLC method

is an intermediate measure with full compensation
between two functions of AND and OR, whereas the
OWA method is an intermediate one with different
compensation between these two functions.

OWA method combines common functions and
provides a continuous fuzzy compensation between
the feed (AND) and union (OR) through integrat-
ing the weight-degree average (Eastmam 1997). The
degree of dispersion of the weights is controlled by
the level of TRADEOFF using two ANDness and
ORness characteristics which indicate the size of
the compensation (Valente, Vettorazzi 2008).

This method leads to continuous grading of sce-
narios between the operators subscription and
community, and this continuous grading is done
by the local and global weights. To control the
level of compensation, the global weight is added
gradually based on expert opinion and through a
paired comparison, and the local weight is added
gradually and removal criteria and leverage provide
to control the level of uncertainty and risk-taking
(Malczewski 1999; Jiang, Eastman 2000), thereby
providing a full range of risk scenarios between the
two operators subscription (AND) and union (OR)
as follows (Gorsevski et al. 2012):

Table 2. Standardization method for effective factors according to fuzzy logic

Membership Membership Control points
Agents Factors . .
function type function shape a, ¢ b, d
temperature linear increasing 12 17
rainfall-plant linear increasing 50 250
pressure linear increasing 877 951
Climate
rainfall linear decreasing 190 615
moisture linear decreasing 61 68
wind linear decreasing 1 8
elevation linear decreasing 500 2200
NDVI linear decreasing 0.2 0.8
slope linear decreasing 10 60
Environmental
land use linear decreasing 1 10
aspect linear increasing 1 9
springs J-shaped increasing 1 000 10 000
road side J-shaped decreasing 1 000 15 000
road main J-shaped decreasing 1 000 12 000
village J-shaped decreasing 5000 15 000
Human
farmer J-shaped decreasing 2 000 6 000
camping J-shaped decreasing 1 000 7 000
hunter linear decreasing 3000 20 000

NDVI - normalized difference vegetation index
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(i) Average risk and full TRADEOFF; this scenario
provides the same result as the WLC, and the
risk is at the midpoint of AND-OR functions and
the TRADEOFF is full. That is, sequential weight
is distributed evenly between all invoices, irre-
spective of their position in the ranking order of
the minimum to the maximum (i.e., AND and
OR function, respectively) at any position. This
distribution demonstrates no deviation towards
the two functions and the results are placed in
intermediate risk, like the WLC method.

(ii) Low-risk and no TRADEOFF; this scenario
makes results for low risk (i.e., use of a logic
close to the AND logic) which assigns all weight
to the first order rank. In this way, therefore,
weighting makes no compensation possible.

(iii) Low-risk and a small amount of TRADEOFF
scenario; this method distributes the weights
between the factors, and the first factor has the
highest weight and then the weights are de-
creased. It has a middle range function between
the end-AND function and intermediate-risk
WLC situations.

(iv) High-risk and a few TRADEOFFS; like the low-
risk and a few TRADEOFES scenarios, weight is
distributed between factors, but the first factor
in the ranked order has the lowest weight and
then the weights are increased in the order. This
scenario has a central function in the intermedi-
ate risk range OR WLC’s position.

(v) Average risk and no TRADEOFF; the factor or
factors account for all the centre order weights.
This scenario is the average risk, like the WLC
method, but there is no TRADEOFF.

(vi) High-risk and no TRADEOFF; in this scenar-
io high-risk conclusion [use of a logic close to
the logic OR (maximum risk sequence)] is cre-
ated and all weight is allocated to the last rank
sequence, and thus weighting will make no
compensation.

In the ordered weighted average, the method di-
agonally arranges relative weights and the risk level
associated with AND-OR can be obtained from
integration between AND and OR from the equa-
tions in OWA (Equations (1) to (4)) (Jiang, East-
man 2000; Rinner, Malczewski 2002; Valente, Vet-
torazzi 2008).

ANDness = (1/(n = 1)) Z((n = i) W_...) (1)
ORness = 1 — ANDness (2)
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T 2
TRADEOEE = 1 — 4| /EWorderi = 1/1) 3)
n-1
1 .
RISK = (—I’l 1 Z[(” - l) Worderi] (4)
where:
n — the number of variables;
W, 4o — the weight of variable.

The sequence weights and above equations for
each of the scenarios of OWA were determined
for human, climate, and environmental factors
and combined agents (Table 3 and 4).

Accessory assessment with relative operat-
ing characteristic. the relative operating char-
acteristic (ROC) module can be used to com-
pare the image of a probabilistic model versus
a real picture (Hong et al. 2018); that is, ROC
is an index used to measure the accuracy of a
probability prediction compared to the ob-
served land use change. ROC curves are drawn
using true-positive and false-positive propor-
tions (Figure 3).

The ROC statistic (i.e., area under the curve) is
calculated using Equation (5).

AreaUnderCurve = ¥",_ [x,  + 1 —-x] x 5)

X [yi + (yi+1 - yl)/z]

where:

x,y, — false and true pixel percentages for scenario I,
respectively;

n  — the number of scenarios (Pontius, Schneider
2001).

The ROC graph for three input images; the di-
agonal dark line was derived from the input im-
age where the positions were assigned the actual
values randomly, and two lines were of different
models. The model shown in thin line with a hol-
low square has a lower implementation proportion
dark line model.

After OWA, the values of ROC for each of these
maps to Boolean map were obtained according
to fire occurrence in the study area. The forest
fire locations were identified according to field
surveys, MODEIS satellite images, and the his-
torical fires recorded by the park authority during
1981-2018. A total of 70 fires were recorded and
used in this study.
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Table 3. Different ordered weighted averaging (OWA) procedures for six factors

OWA operator Order weights ANDness ORness TRADEOFF
Average risk and full TRADEOFF 0.16, 0.16, 0.16, 0.16, 0.16, 0.16 0.48 0.52 0.993
Low risk and no TRADEOFF 1,0,0,0,0,0 1 0 0

Low risk and a few TRADEOFF 0.5, 0.3, 0.125, 0.05, 0.025, 0 0.84 0.16 0.804
High risk and a few TRADEOFF 0, 0.025, 0.05, 0.125, 0.3, 0.5 0.16 0.84 0.804
Average risk and no TRADEOFF 0,0,0.5,05,0,0 0.5 0.5 1

High risk and no TRADEOFF 0,0,0,0,0,1 0 1 0
Table 4. Different ordered weighted averaging (OWA) procedures for three agents

OWA operator Order weights ANDness ORness TRADEOFF
Average risk and full TRADEOFF 0.33, 0.33, 0.33 0.495 0.505 0.996
Low risk and no TRADEOFF 1,0,0, 1 0 0

Low risk and a few TRADEOFF 0.5,0.35,0.15 0.675 0.325 0.824
High risk and a few TRADEOFF 0.15,0.35,0.5 0.325 0.675 0.824
Average risk and no TRADEOFF 0,1,0 0.5 0.5 1

High risk and no TRADEOFF 0,0,1 0 1 0

RESULTS

Figure 4 demonstrates the weights of human, cli-
mate, and environmental agents and their impor-
tance in the occurrence of forest fires in the study
area which was calculated using AHP.

According to the opinions of the experts, the
main important factors related to humans, climate
and environment are roads, rainfall, plant, and land
use, respectively, where the human agent is the
most important. Factors related to hunters, farm-
ers, and tourists exhibited average weights, yet the
ones related to villagers and side roads did the low-
est. Climate factors including temperature, annual
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Figure 3. Relative Operating Characteristic (ROC) graph

rainfall, humidity, and wind showed almost equal
weights, but air pressure had the lowest weight.
Weights of normalized difference vegetation index
(NDVI) and elevation factors were medium, where-
as slope and spring distance obtained low weights.

Risk maps for human, environmental, and cli-
matic agents were provided by OWA scenarios
(Figure 5). These maps were compared with the
real fire map and the area under the curve (AUC)
was calculated for all of the scenarios. In all sce-
narios, the map of human agent displayed the
highest AUC; indeed, the implementation model
of human agent appeared to be more suitable or
stronger. The best scenario maps for the desired
factors were as follows: human agent, average risk
and no TRADE-OFF; climate agent, low-risk and
low TRADEOFF; environmental agent, low-risk
and no TRADEOFF; and combined agent, average
risk and no TRADE-OFF. These scenarios showed
the highest AUC amounts.

According to the obtained ROC for each of the
scenarios, the human agent map showed higher us-
ability than the others (Table 5). In all scenarios,
the maps obtained from the combined agents dem-
onstrated high accuracy except the high-risk and
no TRADEOFF scenario, which is a poor perfor-
mance scenario. Scenarios with low-risk and low
TRADEOFF as well as with suitable amount of
ROC showed the best performance. Moreover, the
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Figure 4. Diagram of analytic hierarchy process (AHP) weight

low-risk and no TRADEOFF scenario with the val-
ue greater than 0.7 demonstrated acceptable per-
formances for all agents.

Finally, the fire risk maps were obtained from the
best OWA scenarios: human agent of average risk
and low TRADEOFF (Figure 6A), climate agent
of low risk and a few TRADEOFFS (Figure 6B),
environmental agent of low risk and no TRAD-
EOFF (Figure 6C), and agents of low risk and a few
TRADEOFFS (Figure 6D). In addition, the respec-
tive lower and higher membership classes were as
follows: in the map of human agent, 3 and 245; in
the climate agent map, 0 and 144; in the environ-
mental factor map, 0 and 129; in the combined
agent map, 5 and 92.

DISCUSSION

The development of GIS and decision support
systems (DSS) have introduced a toolset which ef-
ficiently integrates many different GIS data layers
to be used in hazard maps for conservation plan-
ning and assessment (Karnatak et al. 2007; Wood,
Dragicevic 2007; Geneletti, Van Duren 2008). The
present study introduced a tool for preventing and
examining the accordance of wild fire in the GNP.
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Validated threat maps were generated using MCE,
and the approach was developed in our study to
decide on protection policies for the study area
against fire risk and for strategic planning in man-
agement. In particular, our analysis involved a se-
ries of MCE approach tests on the fire hazards and
provided conservation planners with new spatial
information which could guide the future alloca-
tion of financial resources for conservation. De-
spite the important role of human factors in forest
fire and fire spreading, we notify and educate indi-
viduals to reduce the risk of fire.

To compare and calculate the weight of factors,
they should be in the same group and the same di-
rection (Kahraman 2008); in this study, three clas-
sified agents including human, environmental, and
climate factors were in one direction.

According to the opinions of the experts about
human factors, this study also demonstrated that
the transit road through the park has been the most
important factor in forest fire, and the lowest weight
obtained between human factors is related to the
side road. Faramarzi et al. (2014) evaluated GNP
fires and showed that 46% of fires in the area is di-
rectly associated with transit road. High frequency
of fires around the roads is influenced by the num-
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Figure 5. Relative operating characteristic (ROC) graph for ordered weighted averaging (OWA) scenarios: (A) low risk
and no TRADEOFF, (B) average risk and full TRADEOFF, (C) high risk and no TRADEOFF, (D) high risk and a few
TRADEOFES, (E) low risk and a few TRADEOFFS, and (F) average risk and no TRADEOFF

ber of tourists and passengers passing through the
roads; however, high-frequency roads can have a
positive impact on roadside facilities to reduce and
timely control fires. Due to the main road cross-
ing through the park, heavy traffic of travellers and
tourists is the most important factor in initiating
fire. Thus, the protective agencies around the roads
play an important role in fire control.

The results of AHP showed that hunter, farmer,
and tourist factors play important roles in fire oc-
currence. Generally, parks with landscape and di-

verse wildlife attract tourists and hunters. In ad-
dition, farmers living in the park or villages in the
vicinity influence the plant biota through grazing.
In the same study Murthy et al. (2019) stated that
anthropogenic variables including distance to vil-
lages and roads influenced fire incidences while
about 3 km from villages and roads are high-risk
areas in terms of susceptibility to fire.

Among the climatic factors, rainfall in the grow-
ing season of plants exhibited the maximum
weight. Precipitation in the growing season causes
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Figure 6. Fire risk maps of best ordered weighted averaging scenarios: (A) climate agent of low risk and a few TRADE-
OFFS, (B) environmental agent of low risk and no TRADEOFF, (C) human agent of average risk and no TRADEOFF,

and (D) combined agents of low risk and a few TRADEOFFS

a dense coverage of annual plants, whose drying in
autumn, in turn, increases the risk of fire hazard.
In addition, among the environmental factors the
maximum weight has been allocated to landuse
because the different directions of a land vary in
terms of light, coverage, and moisture capacity
(Saklani 2008). In the studied area, the highest fre-
quency of fires has occurred in the southern and
southwestern regions because of exposure to sun
light and thus being hotter.

Land use factor determines the type of vegetation
in the park, and given that the aggregation of veg-
etation determines and causes more fire, increas-
ing thorns and chips can be considered among the
most important factors in the fire management
plan of the parks. The MCE models work accord-
ing to the decision maker assumptions which are
based on the ascending or descending weights. In
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this study, some of the features of the model were
solved based on OWA space and the results were
compared with each other. The results demonstrat-
ed that the position of the model in different stra-
tegic spaces leads to different outputs in fire haz-
ard modelling, and the ROC value obtained from
different scenarios of OWA represented the issue
when compared with the fires that occurred in the
area. In multi-criteria decision making, in general,
the weight of each criterion is calculated based on
the decision maker>s approximation and estimates,
though accompanied by error. Therefore, consider-
ing different spaces and evaluating them could in-
crease the accuracy of the model. The ROC charts
exhibit the status of AUC when compared to the
fires that occurred in the area, and in all scenarios
the AUC value for the human factor model was
higher than in the other models.
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Considering ROC values, the results of the hu-
man agent model indicated good overall perfor-
mance. The area under the curve (AUC) with val-
ues between 0.5-0.7, 0.7-0.9 and > 0.9 indicates
low accuracy, useful application and high accuracy,
respectively (Swets 1988), albeit the main cause of
fire is the human factor. Despite the amount of low
accuracy, ROC for climate factors derived from
the model showed an important role of forest fire
when compared to the climate factors, especially in
drought years.

The maps obtained from human, climatic and
environmental factors revealed good AUC values
and combination of these three maps can be used
in fire management procedures in the study area.
Concerning the selection of a membership func-
tion, previous researchers applied linear functions
on different factors, including elevation and slope
as well as distance to rivers, location of fires, and

Table 5. Relative operating characteristic (ROC) value for
factors and agents for ordered weighted averaging (OWA)

scenarios
OWA operator Risk map ROC value
human factors 0.821
Average risk and climate factors 0.67
full TRADEOFF environmental factors 0.638
agents 0.794
human factors 0.795
Low risk and climate factors 0.706
no TRADEOFF environmental factors 0.773
agents 0.797
human factors 0.85
Low risk and climate factors 0.731
a few TRADEOFF environmental factors 0.704
agents 0.819
human factors 0.771
High risk and climate factors 0.611
a few TRADEOFF environmental factors 0.622
agents 0.719
human factors 0.87
Average risk and climate factors 0.621
no TRADEOFF environmental factors 0.693
agents 0.791
human factors 0.681
High risk and climate factors 0.644
no TRADEOFF environmental factors 0.629
agents 0.674

villages and constructions (Fuller et al. 2010). In
this study, the membership functions were selected
in two forms (linear and J-shaped) due to the rela-
tion between each factor and the fire occurrence.
That is, where the effect of factors on fire is cen-
tralized and decentralized in a region, the J-shaped
and linear membership function has been used,
respectively.

Both “low-risk and no TRADEOFF” and “low-
risk and low TRADEOFF” scenarios show the best
results with high ROC values, and the combination
maps could be introduced as the best performance
in mapping fire hazards. In this scenario, pixels
with the lowest rank (i.e. value) are assigned as the
highest weight. That is, pixels with a minimum role
in the result of this model displayed the highest
weight, leading to high accuracy of the final map.
Moreover, the results showed the output maps with
different class membership.

Indeed, a higher number of influential factors
in some areas and the distance between the mini-
mum and maximum pixels in the factors associated
with the human agent would increase the value of
membership class. However, there is no significant
difference in the value of pixels in environmental
and climate factors, and thus the classes are not im-
portant in these factors. Roads which are divided
into smaller parts in natural areas can be used as
firebreak to prevent the spread of fire (Eker, Oguz
Coban 2010). Risk fire maps, therefore, can be used
as a guide for creating firebreak during the prepara-
tion of new roads (Demir et al. 2009). Studies con-
ducted in Southern California demonstrated that
the road is an important factor and useful strategy
to prevent or control fire in forests.

CONCLUSION

This article presents an applied research which
was carried out using the multi-criteria evaluation
method, when the human, climatic, and environ-
mental factors were considered to determine the
areas with potential fire hazard in the Golestan Na-
tional Park. The results highlighted the importance
of human factors in the occurrence of fires in the
study area, among which the transit road that pass-
es through the park has the most significant impact
on wildfires in the region that greatly increase the
importance of clearing the road from the park.
Low risk and a few TRADEOFFS scenarios show,
on average, the best performance among OWA
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scenarios, which indicates the importance of the
interaction of all variables in the incidence of fires.
According to the fire risk mapping and assessment
review, the results demonstrated that the accuracy
of each method, despite the practical and usable
maps, could be used in fire crisis management. To
determine the fire risk maps using human, climatic,
and environmental factors, each map can be used
in special cases. For example, prevention and man-
agement programs using warning tools could be
considered in areas where human factors are more
prominent than the other ones. Moreover, making
natural cut fire and cultivation of fire-resistant spe-
cies as well as preparing maps of wind patterns and
high-temperature days could be useful strategies
in forest fire management programs. A reasonable
management approach to tackle this issue in the
park could be suggested to design water tanks or to
build helicopter pads in high fire risk areas to fight
fire as quickly as possible.
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