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Abstract: Forest fires are a major environmental issue because they are increasing as a consequence of climate change 
and global warming. The present study was aimed to model forest fire hazard using the ordered weighted averaging 
(OWA) multi-criteria evaluation algorithm and to determine the role of human, climatic, and environmental factors 
in forest fire occurrence within the Golestan National Park (GNP), Iran. The database used for the present study was 
created according to daily classification of climate changes, environmental basic maps, and human-made influential 
forest fire factors. In the study area, the forest fires were registered using GPS. Expert opinions were applied through 
the analytic hierarchy process (AHP) to determine the importance of effective factors. Fuzzy membership functions 
were used to standardize the thematic layers. The fire risk maps were prepared using different OWA scenarios for man-
-made, climatic, and environment factors. The findings revealed that roads (weight = 0.288), rainfalls (weight = 0.288), 
and aspects (weight = 0.255) are the major factors that contribute to the occurrence of forest fire in the study area. The 
forest fire maps prepared from different scenarios were validated using the relative operating characteristic (ROC) cu-
rve. Values of forest fire maps acquired from scenarios of human, environment, climate factors and their combination 
were 0.87, 0.731, 0.773 and 0.819, respectively.
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Natural or anthropogenic forest fire is a pon-
derous threat with irreversible damage and deep 
ecological and socio-economic impacts, especially 
in tropical forests, and its negative impacts could 
sometimes last more than one decade (Alexan-
dridis et al. 2008; Artés et al. 2014; Rahman et al. 
2018). Forest fires seriously threaten the sustain-
ability and environmental services of these eco-
systems (Hong et al. 2018), profoundly change the 
structure of vegetation and biodiversity (Bengtsson 
et al. 2000; Gandhi et al. 2001), increase absolute 

carbon storage (Healey et al. 2014), and endanger 
species composition (Moretti et al. 2004). It has 
been estimated that about 20% of CO2 emission 
into the atmosphere is caused by forest fires (Kuhrt 
et al. 2001), and the possibility of fire in the future 
could be attributed to climate change conditions 
(Holsten et al. 2013). Therefore, analysis of factors 
affecting the occurrence and spread of fire as well 
as understanding its dynamic behaviour is neces-
sary to minimize the occurrence of forest fires 
(Kandya et al. 1998). 
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It is of great importance to determine the fire se-
verity and frequency and develop effective strate-
gies for forest-fire management (Miller et al. 2016). 
Modelling natural processes enhances understand-
ing of the natural environment as well as the rela-
tionships and dynamics of its interacting parts. By 
presenting a simplified or an abstract representa-
tion of the world, models can provide insight into 
the past, define the present or predict the future 
state of natural phenomena (Smyth 1998). Accord-
ing to the inventory of forest fires and geographi-
cal and meteorological data, a large number of 
methodologies and probabilistic models have been 
developed and frequently applied to predict for-
est fires. Such models include, but not limited to, 
hybrid machine learning methods and GIS-based 
spatial prediction models (Bui et al. 2018), overlap 
indices and inference algorithm (Garcia-Jimenez 
et al. 2017), optimal combination using genetic al-
gorithms (Hong et al. 2018), ground-based data of 
forest fires (Ying et al. 2018), fuzzy inference system 
(Lin et al. 2018), design and application of fuzzy 
logic-based fire monitoring (Sarwar et al. 2018), 
and fire susceptibility using data mining techniques 
(Pourtaghi et al. 2016). 

In parallel to the above-mentioned methods, 
multi-criteria evaluation (MCE) as decision sup-
port systems-based models have been applied for 
forest fire crisis management (Srivastava et al. 
2019). Over the past years, MCE has become more 
common to identify conservation priorities and 
threats as well as to develop and evaluate alterna-
tive plans which facilitate a compromise between 
interested parties (Malczewski 1999; Karnatak et 
al. 2007; Wood, Dragicevic 2007; Geneletti, Van 
Duren 2008). MCE simplifies complex decisions 
with multiple criteria and helps identify areas of 
good planning and success in environmental pro-
tection areas. MCE consists of three main proce-
dures including Boolean overlay, weighted linear 
combination (WLC), and ordered weighted aver-
aging (OWA). OWA can be applied in the natural 
sciences to improve decision-making (Mokarram, 
Hojati 2017).

The Golestan National Park (GNP) in the north 
of Iran is one of the oldest reservoirs of the bio-
sphere and biome mountain complex systems 
with complicated zoning in Odwardy’s classifica-
tion outstanding and distinct characteristics of 
Hyrcanian Province. This national park is the only 
sample of the above-mentioned biome in the world 

network of biosphere reserves and is an important 
touristic area (Ghoddousi et al. 2018). It has been 
estimated that one-eighth of plants, one-third of 
bird species, and over 50 percent of mammalian 
species of Iran live in the above-mentioned park. 
Due to being exposed to wet and dry winds and, in 
turn, being susceptible to fire (Shokri et al. 2002), 
in this park there burned about 3 000 ha in Sep-
tember 2013, 250 ha in September 2014, 1 400 ha 
in July 2015, and 300 ha in July 2018. Therefore, the 
present study applied GIS-based MCE with a focus 
on the analytic hierarchy process (AHP) algorithm 
and OWA to identify areas vulnerable to fire risk 
based on human, environment, and climate factors 
and also to assess their accuracy in the study area. 

MATERIAL AND METHOD 

Study area. The GNP with the area of 91 895 ha 
is located in the northeast of Iran, from 37°16'34''to 
37°31'00''N and 55°43'00'' to 56°17'45''E (Figure 1). 
It occupies a transitional position between the sub-
humid south Caspian region and the semi-arid 
parts of central and east-central Iranian plateau. 
The presence of several relatively high mountains 
blocks the wet air masses from the Caspian Sea, 
creating particular microclimatic conditions with 
precipitation varying from 150 mm∙year−1 in the SE 
to more than 750 mm∙year−1 in some central parts 
of the park. The park possesses a diverse mosaic of 
vegetation units, including the Hyrcanian low- to 
high-altitude mesophytic forests, shrub lands, open 
and closed scrubs, sometimes mixed with C4 grass-
lands, Juniperus woodlands, mountain steppes and 
meadows, Artemisia and Artemisia–Stipa steppes 
and different transitional and halophilous commu-
nities (Akhani 1998; Akhani, Ziegler 2002).

Method. The research was conducted in four 
steps including (1) creation of a spatial database, 
(2) preparation of criteria, (3) normalization of 
factors, and (4) application of the multi-criteria 
evaluation using the ordered weighted average sce-
narios and analytic hierarchy process (Figure  2). 
All of the steps were conducted in the IDRISI Tai-
ga and ArcGIS (Ver. 10.4, 2019) software. Firstly, 
the factors influencing the fire were identified 
and the data were obtained through field surveys 
in the study area and from government organs. 
The factors were classified into climatic, human, 
and environmental factors, and their fuzzy state 
was estimated according to their influencing way. 
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Modelling was performed using six scenarios of 
OWA and weights obtained from the participato-
ry technique AHP. The models were evaluated on 
the basis of the map obtained from the fires that 
occurred in the area as well as the characteristics 
of the relative factor.

Forest fire effective factors. The factors affect-
ing fire were divided into three categories (Table 1): 
anthropogenic factors, in which humans play an es-
sential role; climate factors, prepared by meteoro-
logical data during the last 10 years; and environ-
mental factors, dealing with local conditions.

Analytic hierarchy process. The participatory 
technique which involves opinions of experts in 
various areas related to a specific subject was used 
to define factors and constraints as well as weight 
of each criterion (Eastman 1999). AHP is one of 
the most popular multi-criteria decision-making 

techniques that allows to formulate a problem in a 
hierarchical manner and to consider the possibil-
ity of different quantitative and qualitative criteria 
about the problem. One of the important advan-
tages of this process in group decision-making is 
the decision combination of the group members so 
that the optimal decision will be computed based 
on the votes of all members. Therefore, in this part 
of the study, the factors related to climatic, hu-
man, and environmental agents were assessed us-
ing AHP and weights were obtained for the factors 
and agents. For this purpose, questionnaires were 
filled by ten specialists and the mean weight was 
determined.

Fuzzy logic. Fuzzy theory (Zadeh 1965) was 
raised against classical logic theory, a powerful tool 
to address the requirements of complex systems 
which are dependent on human reasoning, deci-

Figure 1. Map of the Golestan Na-
tional Park (GNP) in the northeast 
of Iran with the location of sam-
pling sites and nearby villages

Figure 2. Flow chart of the major processes conducted for forest fire hazard mapping
OWA − ordered weighted averaging; AHP − analytic hierarchy process; ROC − relative operating characteristic

Spatial database Preparing human, climate and environmental impact factors

Calculation weight factors based on AHP

Calculation weight agents based on AHP

Run of OWA scenarios

Accessory assessment with ROC

Run of OWA scenarios

Fire hazards mapsAccessory assessment with ROC

Fuzzification

Human, climate and  
environmental agents fire maps
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Table 1. Forest fire effective factors and their categorization

Agents Factors (scale) Source factors Description

Climate

rainfall-plant 
(mm)

April to November is the growing 
season of the plants in the park. We 
obtained the average monthly rainfall 
during these months, and the map was 
prepared using the inverse distance 
weighted (IDW) interpolation method

Precipitation during the growing 
season will increase due to rising fuel 
fires (Chapin et al. 2003).

rainfall (mm)
maps of temperature, rainfall, pressure, 
and moisture were prepared from 
meteorological data using the IDW 
interpolation method 

Increasing precipitation and moisture 
reduce the risk of fire (Tanskanen et al. 
2005). Temperature, pressure, and wind 
are factors which increase the fire risk 
(Keeley, Keeley 1988; Whelan 1995; 
Balzter et al. 2005).

moisture (%)
pressure (mbar)
temperature (cc)

wind (m/s)

wind maps were obtained according 
to wind speed and direction at the 
weather stations in four parts of the 
park, wind rose plots at the stations 
were plotted in the WRPLOT 
View software

Environmental

elevation (m) DEM was obtained from a topographic 
map at 1 : 30 000-scale

Topographic factors explain variation in 
local climate and indirectly influence  
factors, and fire risk is reduced with 
increasing elevation (Whelan 1995).

slope (%) slope map was prepared 
from the built DEM 

Slope produces a direct physical effect  
on active fire fronts (Bui et al. 2017).

aspect aspect map was obtained 
from the built DEM 

Fires would be more in the parts that 
get more sunlight intensity  
(Franklin et al. 2000).

landuse
land use map with resolution  
of 300 meters was prepared in  
the Environment Department for 2017 

Landuse maps have impact on the fire 
risk based on users 
(Cantarello et al. 2011).

spring (m) distance map of springs was obtained 
in the study area with GPS Springs attract tourists in the study area.

NDVI NDVI map was obtained from 2017  
Landsat 8 satellite images

NDVI data for dynamically assessing 
the potential fire risk  
(Gonzalez-Alonso et al. 1997;  
Burgan et al. 1998; Zipoli et al. 2000).

Human

main road (m) distance map of the transit road  
across the park

Forests located near roads are more 
sensible to fire (Jaiswal et al. 2002).

side roads (m)
distance map of the roads around 
boundaries and roads in the park  
for the access of guards

village (m) distance map of the villages 
around the park

Housing developments and human 
population density will increase 
fire forest (Glickman, Babbitt 2001; 
Rundel, King 2001).

camping (m) distance map of camping areas Since tourists increase the probability 
of forest fires (Sunlu 2003).

hunters (m) distance map of the arrest shepherds 
and hunters information recorded 
by the central office park

Shepherds and hunters cause intentional 
and unintentional forest fires 
(Faramarzi et al. 2014).shepherds (m)

NDVI – normalized difference vegetation index; DEM − digital elevation model
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sion making and inference. In this study, in order 
to standardize the GIS data layers for subsequent 
integration, the factor maps were fuzzified accord-
ing to their nature using different membership 
functions. The membership functions were speci-
fied as monotonically increasing or decreasing 
functions which are controlled by breakpoints or-
dered from low to high on the measurement scale, 
as specified in Table 2. Regarding monotonically 
increasing functions, the first point indicates the 
location where the membership function begins to 
rise above 0, and the second one shows the point 
of unity (i.e., 100 percent class membership). The 
output was scaled from 0 (zero class membership) 
to  255 (100 percent class membership) for each 
layer (Mokarram, Hojati 2017).

OWA. OWA is a weighted average-based method, 
except that the amount of pre-multiplying the vector 
weight is ordered. This type of sorting is the special 
feature of the approach and leads to nonlinear mod-
els (Wu 2018). With different sets of ordered weights, 
one can generate a wide range of OWA operators, 
including the three special cases of the WLC, Bool-
ean overlay combination AND (non-risk), and OR 
(risk-taking) (Malczewski 2006). The WLC method 

is an intermediate measure with full compensation 
between two functions of AND and OR, whereas the 
OWA method is an intermediate one with different 
compensation between these two functions. 

OWA method combines common functions and 
provides a continuous fuzzy compensation between 
the feed (AND) and union (OR) through integrat-
ing the weight-degree average (Eastmam 1997). The 
degree of dispersion of the weights is controlled by 
the level of TRADEOFF using two ANDness and 
ORness characteristics which indicate the size of 
the compensation (Valente, Vettorazzi 2008). 

This method leads to continuous grading of sce-
narios between the operators subscription and 
community, and this continuous grading is done 
by the local and global weights. To control the 
level of compensation, the global weight is added 
gradually based on expert opinion and through a 
paired comparison, and the local weight is added 
gradually and removal criteria and leverage provide 
to control the level of uncertainty and risk-taking 
(Malczewski 1999; Jiang, Eastman 2000), thereby 
providing a full range of risk scenarios between the 
two operators subscription (AND) and union (OR) 
as follows (Gorsevski et al. 2012): 

Table 2. Standardization method for effective factors according to fuzzy logic

Agents Factors Membership  
function type

Membership  
function shape

Control points

a, c b, d

Climate

temperature linear increasing 12 17
rainfall-plant linear increasing 50 250

pressure linear increasing 877 951
rainfall linear decreasing 190 615

moisture linear decreasing 61 68
wind linear decreasing 1 8

Environmental

elevation linear decreasing 500 2 200
NDVI linear decreasing 0.2 0.8
slope linear decreasing 10 60

land use linear decreasing 1 10
aspect linear increasing 1 9
springs J-shaped increasing 1 000 10 000

Human

road side J-shaped decreasing 1 000 15 000
road main J-shaped decreasing 1 000 12 000

village J-shaped decreasing 5 000 15 000
farmer J-shaped decreasing 2 000 6 000

camping J-shaped decreasing 1 000 7 000
hunter linear decreasing 3 000 20 000

NDVI – normalized difference vegetation index
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(i) Average risk and full TRADEOFF; this scenario 
provides the same result as the WLC, and the 
risk is at the midpoint of AND-OR functions and 
the TRADEOFF is full. That is, sequential weight 
is distributed evenly between all invoices, irre-
spective of their position in the ranking order of 
the minimum to the maximum (i.e., AND and 
OR function, respectively) at any position. This 
distribution demonstrates no deviation towards 
the two functions and the results are placed in 
intermediate risk, like the WLC method.

(ii) Low-risk and no TRADEOFF; this scenario 
makes results for low risk (i.e., use of a logic 
close to the AND logic) which assigns all weight 
to the first order rank. In this way, therefore, 
weighting makes no compensation possible.

(iii) Low-risk and a small amount of TRADEOFF 
scenario; this method distributes the weights 
between the factors, and the first factor has the 
highest weight and then the weights are de-
creased. It has a middle range function between 
the end-AND function and intermediate-risk 
WLC situations.

(iv) High-risk and a few TRADEOFFS; like the low-
risk and a few TRADEOFFS scenarios, weight is 
distributed between factors, but the first factor 
in the ranked order has the lowest weight and 
then the weights are increased in the order. This 
scenario has a central function in the intermedi-
ate risk range OR WLC’s position.

(v) Average risk and no TRADEOFF; the factor or 
factors account for all the centre order weights. 
This scenario is the average risk, like the WLC 
method, but there is no TRADEOFF. 

(vi) High-risk and no TRADEOFF; in this scenar-
io high-risk conclusion [use of a logic close to 
the logic OR (maximum risk sequence)] is cre-
ated and all weight is allocated to the last rank 
sequence, and thus weighting will make no 
compensation. 

In the ordered weighted average, the method di-
agonally arranges relative weights and the risk level 
associated with AND-OR can be obtained from 
integration between AND and OR from the equa-
tions in OWA (Equations (1) to (4)) (Jiang, East-
man 2000; Rinner, Malczewski 2002; Valente, Vet-
torazzi 2008).

ANDness = (1/(n – 1)) ∑((n – i) Worderi) 	  (1)

ORness = 1 – ANDness 	  (2)

 	  
(3)

 	  (4)

where:
n	 – the number of variables;
Worderi	– the weight of variable.

The sequence weights and above equations for 
each of the scenarios of OWA were determined 
for human, climate, and environmental factors 
and combined agents (Table 3 and 4).

Accessory assessment with relative operat-
ing characteristic. the relative operating char-
acteristic (ROC) module can be used to com-
pare the image of a probabilistic model versus 
a real picture (Hong et al. 2018); that is, ROC 
is an index used to measure the accuracy of a 
probability prediction compared to the ob-
served land use change. ROC curves are drawn 
using true-positive and false-positive propor-
tions (Figure 3). 

The ROC statistic (i.e., area under the curve) is 
calculated using Equation (5).

AreaUnderCurve = ∑n
i=1[xi+1 + 1 – xi] × 

                               × [yi + (yi+1 – yi)/2] 	  (5)

where:
xi, yi	 – false and true pixel percentages for scenario I, 

respectively;
n	 – the number of scenarios (Pontius, Schneider 

2001).

The ROC graph for three input images; the di-
agonal dark line was derived from the input im-
age where the positions were assigned the actual 
values randomly, and two lines were of different 
models. The model shown in thin line with a hol-
low square has a lower implementation proportion 
dark line model. 

After OWA, the values of ROC for each of these 
maps to Boolean map were obtained according 
to fire occurrence in the study area. The forest 
fire locations were identified according to field 
surveys, MODEIS satellite images, and the his-
torical fires recorded by the park authority during 
1981−2018. A total of 70 fires were recorded and 
used in this study.

TRADEOFF = 1 − √ n(∑Worderi − 1/n)2

                                             
n − 1

RISK = (    1     ) ∑[(n − i)Worderi ]

                
n − 1
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RESULTS

Figure 4 demonstrates the weights of human, cli-
mate, and environmental agents and their impor-
tance in the occurrence of forest fires in the study 
area which was calculated using AHP. 

According to the opinions of the experts, the 
main important factors related to humans, climate 
and environment are roads, rainfall, plant, and land 
use, respectively, where the human agent is the 
most important. Factors related to hunters, farm-
ers, and tourists exhibited average weights, yet the 
ones related to villagers and side roads did the low-
est. Climate factors including temperature, annual 

rainfall, humidity, and wind showed almost equal 
weights, but air pressure had the lowest weight. 
Weights of normalized difference vegetation index 
(NDVI) and elevation factors were medium, where-
as slope and spring distance obtained low weights.

Risk maps for human, environmental, and cli-
matic agents were provided by OWA scenarios 
(Figure  5). These maps were compared with the 
real fire map and the area under the curve (AUC) 
was calculated for all of the scenarios. In all sce-
narios, the map of human agent displayed the 
highest AUC; indeed, the implementation model 
of human agent appeared to be more suitable or 
stronger. The best scenario maps for the desired 
factors were as follows: human agent, average risk 
and no TRADE-OFF; climate agent, low-risk and 
low TRADEOFF; environmental agent, low-risk 
and no TRADEOFF; and combined agent, average 
risk and no TRADE-OFF. These scenarios showed 
the highest AUC amounts.

According to the obtained ROC for each of the 
scenarios, the human agent map showed higher us-
ability than the others (Table 5). In all scenarios, 
the maps obtained from the combined agents dem-
onstrated high accuracy except the high-risk and 
no TRADEOFF scenario, which is a poor perfor-
mance scenario. Scenarios with low-risk and low 
TRADEOFF as well as with suitable amount of 
ROC showed the best performance. Moreover, the 

Table 3. Different ordered weighted averaging (OWA) procedures for six factors

OWA operator Order weights ANDness ORness TRADEOFF
Average risk and full TRADEOFF 0.16, 0.16, 0.16, 0.16, 0.16, 0.16 0.48 0.52 0.993
Low risk and no TRADEOFF 1, 0, 0, 0, 0, 0 1 0 0
Low risk and a few TRADEOFF 0.5, 0.3, 0.125, 0.05, 0.025, 0 0.84 0.16 0.804
High risk and a few TRADEOFF 0, 0.025, 0.05, 0.125, 0.3, 0.5 0.16 0.84 0.804
Average risk and no TRADEOFF 0, 0, 0.5, 0.5, 0, 0 0.5 0.5 1
High risk and no TRADEOFF 0, 0, 0, 0, 0, 1 0 1 0

Table 4. Different ordered weighted averaging (OWA) procedures for three agents

OWA operator Order weights ANDness ORness TRADEOFF
Average risk and full TRADEOFF 0.33, 0.33, 0.33 0.495 0.505 0.996
Low risk and no TRADEOFF 1, 0, 0, 1 0 0
Low risk and a few TRADEOFF 0.5, 0.35, 0.15 0.675 0.325 0.824
High risk and a few TRADEOFF 0.15, 0.35, 0.5 0.325 0.675 0.824
Average risk and no TRADEOFF 0, 1, 0 0.5 0.5 1
High risk and no TRADEOFF 0, 0, 1 0 1 0

Figure 3. Relative Operating Characteristic (ROC) graph
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low-risk and no TRADEOFF scenario with the val-
ue greater than 0.7 demonstrated acceptable per-
formances for all agents.

Finally, the fire risk maps were obtained from the 
best OWA scenarios: human agent of average risk 
and low TRADEOFF (Figure 6A), climate agent 
of low risk and a few TRADEOFFS (Figure 6B), 
environmental agent of low risk and no TRAD-
EOFF (Figure 6C), and agents of low risk and a few 
TRADEOFFS (Figure 6D). In addition, the respec-
tive lower and higher membership classes were as 
follows: in the map of human agent, 3 and 245; in 
the climate agent map, 0 and 144; in the environ-
mental factor map, 0 and 129; in the combined 
agent map, 5 and 92.

DISCUSSION

The development of GIS and decision support 
systems (DSS) have introduced a toolset which ef-
ficiently integrates many different GIS data layers 
to be used in hazard maps for conservation plan-
ning and assessment (Karnatak et al. 2007; Wood, 
Dragicevic 2007; Geneletti, Van Duren 2008). The 
present study introduced a tool for preventing and 
examining the accordance of wild fire in the GNP. 

Validated threat maps were generated using MCE, 
and the approach was developed in our study to 
decide on protection policies for the study area 
against fire risk and for strategic planning in man-
agement. In particular, our analysis involved a se-
ries of MCE approach tests on the fire hazards and 
provided conservation planners with new spatial 
information which could guide the future alloca-
tion of financial resources for conservation. De-
spite the important role of human factors in forest 
fire and fire spreading, we notify and educate indi-
viduals to reduce the risk of fire. 

To compare and calculate the weight of factors, 
they should be in the same group and the same di-
rection (Kahraman 2008); in this study, three clas-
sified agents including human, environmental, and 
climate factors were in one direction. 

According to the opinions of the experts about 
human factors, this study also demonstrated that 
the transit road through the park has been the most 
important factor in forest fire, and the lowest weight 
obtained between human factors is related to the 
side road. Faramarzi et al. (2014) evaluated GNP 
fires and showed that 46% of fires in the area is di-
rectly associated with transit road. High frequency 
of fires around the roads is influenced by the num-

Figure 4. Diagram of analytic hierarchy process (AHP) weight
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ber of tourists and passengers passing through the 
roads; however, high-frequency roads can have a 
positive impact on roadside facilities to reduce and 
timely control fires. Due to the main road cross-
ing through the park, heavy traffic of travellers and 
tourists is the most important factor in initiating 
fire. Thus, the protective agencies around the roads 
play an important role in fire control. 

The results of AHP showed that hunter, farmer, 
and tourist factors play important roles in fire oc-
currence. Generally, parks with landscape and di-

verse wildlife attract tourists and hunters. In ad-
dition, farmers living in the park or villages in the 
vicinity influence the plant biota through grazing. 
In the same study Murthy et al. (2019) stated that 
anthropogenic variables including distance to vil-
lages and roads influenced fire incidences while 
about 3 km from villages and roads are high-risk 
areas in terms of susceptibility to fire.

Among the climatic factors, rainfall in the grow-
ing season of plants exhibited the maximum 
weight. Precipitation in the growing season causes 

Figure 5. Relative operating characteristic (ROC) graph for ordered weighted averaging (OWA) scenarios: (A) low risk 
and no TRADEOFF, (B) average risk and full TRADEOFF, (C) high risk and no TRADEOFF, (D) high risk and a few 
TRADEOFFS, (E) low risk and a few TRADEOFFS, and (F) average risk and no TRADEOFF
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a dense coverage of annual plants, whose drying in 
autumn, in turn, increases the risk of fire hazard. 
In addition, among the environmental factors the 
maximum weight has been allocated to landuse 
because the different directions of a land vary in 
terms of light, coverage, and moisture capacity 
(Saklani 2008). In the studied area, the highest fre-
quency of fires has occurred in the southern and 
southwestern regions because of exposure to sun 
light and thus being hotter. 

Land use factor determines the type of vegetation 
in the park, and given that the aggregation of veg-
etation determines and causes more fire, increas-
ing thorns and chips can be considered among the 
most important factors in the fire management 
plan of the parks. The MCE models work accord-
ing to the decision maker assumptions which are 
based on the ascending or descending weights. In 

this study, some of the features of the model were 
solved based on OWA space and the results were 
compared with each other. The results demonstrat-
ed that the position of the model in different stra-
tegic spaces leads to different outputs in fire haz-
ard modelling, and the ROC value obtained from 
different scenarios of OWA represented the issue 
when compared with the fires that occurred in the 
area. In multi-criteria decision making, in general, 
the weight of each criterion is calculated based on 
the decision maker›s approximation and estimates, 
though accompanied by error. Therefore, consider-
ing different spaces and evaluating them could in-
crease the accuracy of the model. The ROC charts 
exhibit the status of AUC when compared to the 
fires that occurred in the area, and in all scenarios 
the AUC value for the human factor model was 
higher than in the other models.

Figure 6. Fire risk maps of best ordered weighted averaging scenarios: (A) climate agent of low risk and a few TRADE-
OFFS, (B) environmental agent of low risk and no TRADEOFF, (C) human agent of average risk and no TRADEOFF, 
and (D) combined agents of low risk and a few TRADEOFFS

(A)� (B)

(C)� (D)
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Considering ROC values, the results of the hu-
man agent model indicated good overall perfor-
mance. The area under the curve (AUC) with val-
ues between 0.5–0.7, 0.7–0.9 and > 0.9 indicates 
low accuracy, useful application and high accuracy, 
respectively (Swets 1988), albeit the main cause of 
fire is the human factor. Despite the amount of low 
accuracy, ROC for climate factors derived from 
the model showed an important role of forest fire 
when compared to the climate factors, especially in 
drought years. 

The maps obtained from human, climatic and 
environmental factors revealed good AUC values 
and combination of these three maps can be used 
in fire management procedures in the study area. 
Concerning the selection of a membership func-
tion, previous researchers applied linear functions 
on different factors, including elevation and slope 
as well as distance to rivers, location of fires, and 

villages and constructions (Fuller et al. 2010). In 
this study, the membership functions were selected 
in two forms (linear and J-shaped) due to the rela-
tion between each factor and the fire occurrence. 
That is, where the effect of factors on fire is cen-
tralized and decentralized in a region, the J-shaped 
and linear membership function has been used, 
respectively. 

Both “low-risk and no TRADEOFF” and “low-
risk and low TRADEOFF” scenarios show the best 
results with high ROC values, and the combination 
maps could be introduced as the best performance 
in mapping fire hazards. In this scenario, pixels 
with the lowest rank (i.e. value) are assigned as the 
highest weight. That is, pixels with a minimum role 
in the result of this model displayed the highest 
weight, leading to high accuracy of the final map. 
Moreover, the results showed the output maps with 
different class membership. 

Indeed, a higher number of influential factors 
in some areas and the distance between the mini-
mum and maximum pixels in the factors associated 
with the human agent would increase the value of 
membership class. However, there is no significant 
difference in the value of pixels in environmental 
and climate factors, and thus the classes are not im-
portant in these factors. Roads which are divided 
into smaller parts in natural areas can be used as 
firebreak to prevent the spread of fire (Eker, Oguz 
Coban 2010). Risk fire maps, therefore, can be used 
as a guide for creating firebreak during the prepara-
tion of new roads (Demir et al. 2009). Studies con-
ducted in Southern California demonstrated that 
the road is an important factor and useful strategy 
to prevent or control fire in forests.

CONCLUSION

This article presents an applied research which 
was carried out using the multi-criteria evaluation 
method, when the human, climatic, and environ-
mental factors were considered to determine the 
areas with potential fire hazard in the Golestan Na-
tional Park. The results highlighted the importance 
of human factors in the occurrence of fires in the 
study area, among which the transit road that pass-
es through the park has the most significant impact 
on wildfires in the region that greatly increase the 
importance of clearing the road from the park. 
Low risk and a few TRADEOFFS scenarios show, 
on average, the best performance among OWA 

Table 5. Relative operating characteristic (ROC) value for 
factors and agents for ordered weighted averaging (OWA) 
scenarios

OWA operator Risk map ROC value

Average risk and 
full TRADEOFF

human factors 0.821
climate factors 0.67
environmental factors 0.638
agents 0.794

Low risk and 
no TRADEOFF

human factors 0.795
climate factors 0.706
environmental factors 0.773
agents 0.797

Low risk and 
a few TRADEOFF

human factors 0.85
climate factors 0.731
environmental factors 0.704
agents 0.819

High risk and 
a few TRADEOFF

human factors 0.771
climate factors 0.611
environmental factors 0.622
agents 0.719

Average risk and 
no TRADEOFF

human factors 0.87
climate factors 0.621
environmental factors 0.693
agents 0.791

High risk and 
no TRADEOFF

human factors 0.681
climate factors 0.644
environmental factors 0.629
agents 0.674
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scenarios, which indicates the importance of the 
interaction of all variables in the incidence of fires. 
According to the fire risk mapping and assessment 
review, the results demonstrated that the accuracy 
of each method, despite the practical and usable 
maps, could be used in fire crisis management. To 
determine the fire risk maps using human, climatic, 
and environmental factors, each map can be used 
in special cases. For example, prevention and man-
agement programs using warning tools could be 
considered in areas where human factors are more 
prominent than the other ones. Moreover, making 
natural cut fire and cultivation of fire-resistant spe-
cies as well as preparing maps of wind patterns and 
high-temperature days could be useful strategies 
in forest fire management programs. A reasonable 
management approach to tackle this issue in the 
park could be suggested to design water tanks or to 
build helicopter pads in high fire risk areas to fight 
fire as quickly as possible.
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