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Abstract: Factors affecting forwarding work are interesting because they can be used to better optimize forwarding 
routes and to predict costs. The main objective of this study was to investigate the association between driving speed 
and driving distance when forwarding. Data was automatically collected during 2.5 years from two large forwarders 
operating during final felling in central Sweden. Driving speeds for the work tasks Driving unloaded, Loading drive 
and Driving loaded were analysed using correlation, least-squares regression, and quantile regression. The results 
showed that speed and distance were strongly correlated for the work element Driving unloaded, while the correla-
tion was weaker for Loading drive and Driving loaded. Possible factors leading to these results are as follows: longer 
travelling distances stimulate better planning and the establishment of better extraction roads; operators may feel 
stressed and drive faster as travelling distance increases; and finally, the relative influence of accelerations and decel-
erations decreases with increasing driving distance. Also, the use of quantile regression was successful and provided 
information that normal least-squares regression does not provide.
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Correct estimations of forwarder driving speed 
are important when calculating the cost and pro-
ductivity of machines, machine systems and even 
when evaluating new working methods (Sund-
berg, Silversides 1988), and also when trying 
to optimise forwarding routes (Carlsson et al. 
1998; Flisberg et al. 2007; Väätäinen et al. 2012; 
Ylimäki et al. 2012). Most studies of forwarding 
and factors that affect the driving speed have fo-
cused on load size and different ground conditions 
like inclination, snow conditions, roughness and 
bearing capacity (Tufts 1997; Akay et al. 2004; 
Nurminen et al. 2006), while other factors have 
been studied only to a limited extent. Some theo-
retical estimations have been based only on driv-
ing distances without any assumptions of terrain 

parameters (e.g. Belbo, Talbot 2014). However, 
some previous studies have found and quantified 
an association between mean driving distance and 
average speed at the inter-stand level (Kuitto et al. 
1994; Väkevä et al. 2001). Several studies indicate 
that the distance driven has an influence on driv-
ing speed at the load level (Nurminen et al. 2006; 
Ghaffarian et al. 2007; Kumazawa et al. 2011), 
but these studies did not quantify the association. 

Rather than being a direct effect, the association 
between distance driven and driving speed could be 
a confounding of distance and other factors to some 
extent. Ghaffarian et al. (2007) found an increased 
driving speed at longer distances based on 40 loads, 
and concluded that this higher speed at longer dis-
tances was caused by steeper slopes since forward-
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ing was conducted downhill. According to a deduc-
tive study by Gullberg (1997), driving speed during 
loading increases with increasing distance driven be-
tween piles. Gullberg (1997) also deduced that driv-
ing loaded and unloaded could be divided into driving 
on strip roads and driving on haul roads with notably 
higher driving speed on haul roads. Consequently, 
it has been concluded that the association between 
driven distance and driving speed could be caused by 
a larger proportion of driving on haul roads with high-
er driving speeds, resulting in higher average driving 
speeds (Berg, Manner 2018). This cause would be 
similar to what has been observed for roundwood 
trucks (e.g. Ranta 2002). Indeed, Kumazawa et al. 
(2011) found that both load size and average driving 
speed increase with increasing distance for mini for-
warders (2–2.5 t load size) in Japan. However, these 
authors concluded that this higher speed was mainly 
caused by the mental stress that longer forwarding 
distances and lower productivities put on the opera-
tors. In Japan, strip roads are pre-made by an excava-
tor and are of good quality (because of steep terrain 
and concerns about the compaction of volcanic soils), 
which generally means that there is not any effect of 
better road conditions on the driving speed. Likewise, 
Nurminen et al. (2006) observed increasing driving 
speed at longer distances based on 27 loads from both 
thinning and final felling stands, and concluded that 
the proportion of acceleration and deceleration time 
is higher for shorter distances.

Because it has traditionally been very resource 
intensive to collect large follow-up datasets of for-
warder driving speed and distance, any possible 
association between driving speed and distance 
driven has previously been difficult to investigate 
at the load level. However, the recent developments 
in on-board computers and software has enabled 
new ways to study forwarding (e.g. Manner et al. 
2016). This development also enables a more in-
depth study of the relationship between forwarder 
driving speed and a given distance driven during 
a specific work element. The development also en-
ables investigations without affecting the operator’s 
behaviour during the data gathering (i.e. reducing 
the so-called observer effect). Moreover, it is now 
also possible to investigate the variation in average 
driving speed and/or distance-dependent driving 
speeds (i.e. variable driving speed), which could be 
interesting during theoretical analyses. 

In forest operations studies, confidence and pre-
diction intervals are often difficult to assess because 

least-squares regression functions must sometimes 
have the dependent variable logarithmically trans-
formed to achieve normally distributed residuals. 
This limitation can be remedied using quantile re-
gression which directly models the development 
percentiles in a similar manner to least-squares 
regression (Cade, Noon 2003). Quantile regres-
sion was originally developed for econometrics 
but it has also been used in ecological studies and 
has proven capable of detecting dependences that 
normal least-squares regression cannot detect. The 
advantages of quantile regression include the fol-
lowing: it can handle unequal variation when in-
vestigating prediction and confidence intervals; it 
does not lose data when back-transforming the de-
pendent variables; and it models limiting factors. 
When using quantile regression, it is important to 
investigate several percentiles as the coefficients 
can change quite rapidly (Cade, Noon 2003). Thus, 
quantile regression could most likely be useful 
also in forest operations studies. However, to our 
knowledge, quantile regression has previously been 
used only once in connection with forest machine 
data (Lu et al. 2017), and that study was aimed at 
estimating tree characteristics from harvester data.

Objectives

The objectives of this study were to investigate: 
(1) the association between driving speed and drive 
distance when forwarding; and (2) if quantile regres-
sion could provide added value when investigating 
automatically collected data from forwarders.

Material and METHODS

The time study dataset of Manner et al. (2016) 
was used. The dataset was gathered between March 
2011 and October 2013 from two large forward-
ers in central Sweden (Fig. 1). The dataset was 
collected by TimberLink software installed in the 
on-board computers of two JD 1910E forwarders 
(22 tonnes with 19-tonne payload capacity) while 
being operated by nine operators in total [see the 
original article of Manner et al. (2016) for more 
detailed descriptions like forest conditions and as-
sortment details]. The number of assortments was 
not included in our analysis since it does not affect 
driving speed (Manner et al. 2013). 
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Firstly, the data was pooled over forwarders, op-
erators and stands, separately for unloaded driving, 
loading drive, and loaded driving speeds, and un-
loaded driving, loading drive, and loaded driving 
distances. Driving observations also include simul-
taneous crane work and driving, see Manner et 
al. (2016) for more details. Secondly, a possible as-
sociation between the forwarder driving speed and 
distance driven was analysed for the three different 
work elements.

However, the data needed to be filtered before the 
analyses were conducted. This filtering was con-
ducted in three stages. In the first stage, loads that 
came from uncommon or unordinary work were 
filtered out. This comprised e.g. forwarding logs 
during the construction of railways, motorways, 

and powerlines. In the second stage, loads that con-
tained values that raised suspicion of measurement 
errors were filtered out. The following criteria were 
applied in stage two: unloaded and loaded distanc-
es should be more than 0 m·load–1; productive ma-
chine (PM) time should be at least 10 min·load–1; 
unloading distance should be below 500 m·load–1; 
and loading drive distance should be at least  
10 m·load–1. In the third stage, loads in which in-
dividual observations deemed to have a too large 
impact on the analysis were filtered out. This fil-
tering was based on 50% of the median driven dis-
tance (distance range), and 1% of the number of 
observations for each of the three work elements. 
This corresponded to a distance range of 99.7, 96.8, 
and 71.1 m for unloaded driving, loading drive, 
and loaded driving, respectively, and 45 observa-
tions for all three work elements. These values did 
not change as observations were removed. The ob-
servation with the longest forwarding distance for 
each work element was identified. This observation 
was then removed if it had fewer than 45 observa-
tions within the given distance range for that work 
element. This procedure was repeated until the ob-
servation with the longest distance for each work 
element had at least 45 other observations within 
the distance range. After all three filtering stages, 
the original number of loads (n = 8,868) was re-
duced to 4,392 loads for driving unloaded, 4,367 
loads for loading drive, and 4,423 loads for driving 
loaded.

Data analysis

The data was further divided into 25 m distance 
classes (starting from 0 m) with the closed lower 
bound and open upper bound. The mean, median, 
standard deviation (SD), median absolute devia-
tion (MAD), the 5th and 95th percentiles, minimum, 
and maximum were then calculated for the driving 
speed of each work element in these distance class-
es. Spearman’s rank correlation coefficient (rs) and 
Pearson’s product-moment correlation coefficient 
(rp) were used on this whole filtered dataset to assess 
associations between driven distances and driving 
speed. Least- squares regression analysis was used to 
further investigate the association between the re-
spective driving speed and distance observations. In 
these regressions, unloaded driving, loading drive, 
and loaded driving speeds were the dependent vari-

Fig. 1. Data collection region. Dark area shows the loca-
tion of central Sweden. Map by Lapplänning [CC BY-SA 
2.5 (https://creativecommons.org/licenses/by-sa/2.5)], via 
Wikimedia Commons
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ables, and unloaded, loading and loaded distances 
driven were the respective independent variables. 
Adjusted coefficient of determination (Adj R2) and 
regression coefficient were used to evaluate how 
well the regression functions fitted the data. Predict-
ed coefficient of determination (Prd R2) was used to 
evaluate the functions for over-fitting. When depen-
dent variables had to be transformed, Snowdon 
(1991) ratio corrections were used to correct for 
the logarithmic bias when values were back-trans-
formed. Regression functions with Adj. R2 above 5% 
were considered relevant.

To investigate associations between driving 
speed percentiles and the distance driven, quantile 
regression was applied for the 5th, 15th, 85th and 95th 
percentiles (Koenker 2004). The Barrodale and 
Roberts algorithm was used in the quantile regres-
sion. The dependent variables of regressions were 
unloaded driving, loading drive and loaded driv-
ing speed, with unloaded driving, loading drive 
and loaded driving distance as the respective inde-
pendent variables (Koenker, d’Orey 1987, 1994). 
These above-mentioned variables were also used in 
a quantile regression for the median (50th percen-
tile) to investigate if extreme values had a large im-
pact on the least-squares regression function.

All statistical calculations and tests were con-
ducted in R (Core Team R 2015) using Rstudio 
(Version 0.99.896, 2015) (R Studio Team 2015).

RESULTS

Unloaded

The average unloaded driving speed in the filtered 
data was 3.29 km·h–1 (SD = 1.04), while the mean 
unloaded distance driven was 240 m (SD = 199).  
The median unloaded driven speed was 3.26 km·h–1 
(MAD = 0.87), while the median driving unload-
ed distance was 194 m (MAD = 185). The rp and 
rs were 0.504 and 0.579, respectively (P < 0.0001). 
The descriptive values for the distance categories 
revealed a tendency that average driving speed in-
creased with increasing driving distance (Table 1). 

The least-squares regression analysis indicated a 
relatively clear logarithmic association between un-
loaded distance driven and driving speed (Table 2,  
Fig. 2). The least-squares regression, and the quan-
tile regression of the 95th, 85th, 50th (median), 15th 
and 5th percentiles increased logarithmically with 

distance until about 200 m (Table 3, Fig. 2). There-
after, the models started to plateau. The logarith-
mical increase was quite similar for the quantile 
regression median and the 15th and 5th percentiles, 
while the 95th and 85th percentiles had a relatively 
slower increase. The variation in the data decreased 
with increasing distance driven, and this variation 
was asymmetric but it became more symmetric 
with increased distance.

Loading

The average loading drive speed in the filtered data 
was 1.94 km·h–1 (SD = 0.47), while the mean loading 
distance driven was 213 m (SD = 134). The median 
loading drive speed was 1.90 km·h–1 (MAD = 0.47), 
while the median loading distance driven was 191 m 
(MAD = 127). The rp and rs were 0.214 and 0.159, re-
spectively (P < 0.0001). The descriptive values for the 
distance categories revealed a tendency that average 
driving speed increased with increasing driving dis-
tance (Table 4).

There was a very weak quadratic association be-
tween loading drive speed and driving distance in the 
least-squares regression function (Table 2, Fig. 2).  
The least-squares regression, and the quantile re-
gression of the 95th, 85th, 50th (median), 15th and 5th 
percentiles, were relatively flat during roughly half 
of the studied distance and then showed a slow in-
crease (Table 3, Fig. 2). These regressions indicated 
that the increase was faster for the higher percen-
tiles and relatively small for the 5th percentile. This 
situation meant that the variation was asymmetric 
but constant for about half the studied distance, 
and then became increasingly asymmetric with in-
creasing distance.

Loaded

The average driving loaded speed in the filtered 
data was 2.74 km·h–1 (SD = 0.80), while the mean 
driving loaded distance was 189 m (SD = 167). 
The median driving loaded speed was 2.66 km·h–1 
(MAD = 0.67), while the median driving loaded dis-
tance was 138 m (MAD = 139). The rp and rs were 
0.234 and 0.297, respectively (P < 0.0001). The de-
scriptive values for the distance categories revealed 
a tendency that average driving speed increased 
with increasing driving distance (Table 5).
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Table 1. Descriptive statistics for the driving unloaded speed based on distance intervals

Driving 
distance 
(m)*

n
Mean 

distance 
(m)

Driving unloaded speed (km·h–1)

mean SD median MAD 5th  

percentile
95th  

percentile min max

0–25 528 9 1.89 0.73 1.81 0.62 0.86 3.06 0.00 5.46
25–50 238 38 2.65 0.92 2.51 0.76 1.49 4.51 0.76 6.46
50–75 221 62 2.89 0.78 2.79 0.63 1.86 4.26 1.31 6.08
75–100 221 88 3.10 0.76 3.00 0.59 1.98 4.57 1.55 6.24
100–125 315 112 3.22 0.80 3.07 0.67 2.14 4.67 1.44 6.03
125–150 291 138 3.32 0.86 3.20 0.74 2.18 5.15 1.70 6.10
150–175 222 162 3.43 0.79 3.31 0.67 2.44 4.84 1.65 6.63
175–200 208 188 3.38 0.69 3.30 0.59 2.43 4.66 1.18 5.50
200–225 206 212 3.49 0.79 3.37 0.66 2.43 4.95 1.63 7.19
225–250 183 238 3.57 0.83 3.48 0.67 2.49 4.65 1.85 9.71
250–275 189 262 3.58 0.64 3.49 0.61 2.64 4.68 2.29 6.57
275–300 184 287 3.62 0.72 3.54 0.62 2.62 4.97 2.25 6.35
300–325 165 311 3.66 0.72 3.53 0.65 2.66 4.96 2.23 6.26
325–350 145 338 3.62 0.73 3.58 0.61 2.51 4.75 2.31 7.44
350–375 136 363 3.73 0.84 3.66 0.60 2.63 4.89 1.83 8.36
375–400 119 388 3.62 0.71 3.52 0.60 2.69 4.70 1.88 6.53
400–425 95 412 3.51 0.66 3.51 0.61 2.62 4.61 1.81 5.46
425–450 80 437 3.85 0.75 3.77 0.77 2.82 5.07 2.28 6.10
450–475 71 460 3.90 1.06 3.71 0.88 2.77 5.44 2.12 9.05
475–500 70 487 4.21 1.06 4.10 1.21 2.20 5.79 2.06 7.16
500–525 54 513 3.87 0.77 3.67 0.55 3.03 5.20 2.38 6.66
525–550 47 537 3.91 0.72 3.68 0.55 2.89 5.22 2.60 5.81
550–575 48 561 4.12 1.08 3.76 0.60 3.11 5.72 3.00 9.35
575–600 50 588 4.06 0.90 3.83 0.93 2.80 5.56 2.70 6.50
600–625 46 610 3.79 0.81 3.76 0.73 2.85 5.04 1.95 6.36
625–650 43 638 4.30 1.30 3.95 0.82 2.96 6.22 2.77 9.48
650–675 29 664 4.13 1.52 3.57 1.21 2.53 5.74 2.52 9.85
675–700 27 686 4.06 0.97 4.02 0.86 2.76 5.63 2.49 6.81
700–725 25 713 3.99 0.75 3.98 0.71 3.02 5.14 2.97 6.02
725–750 31 740 4.54 1.89 4.20 0.76 3.04 7.36 2.54 12.77
750–775 21 763 4.01 1.13 3.84 0.92 2.84 5.54 2.65 7.78
775–800 21 788 3.51 0.69 3.27 0.60 2.81 4.29 2.70 5.62
800–825 11 811 4.67 1.33 4.39 1.42 3.01 6.73 2.74 7.08
825–850 23 836 4.77 1.88 4.12 0.63 3.32 9.52 2.57 10.13
850–875 8 862 4.02 0.69 4.11 0.57 3.02 4.80 2.86 4.93
875–900 11 886 4.37 1.04 3.83 0.45 3.53 6.26 3.53 6.26
900–925 7 910 4.20 0.93 4.44 0.62 2.90 5.14 2.89 5.25
925–950 3 927 3.52 0.44 3.43 0.43 3.17 3.94 3.14 4.00

*Distance from closed lower bound to open upper bound, n – observations in category, SD – standard deviation,  
MAD – median absolute deviation

There was a weak logarithmic association between 
driving loaded speed and driving distance in the least-
squares regression function (Table 2, Fig. 2). The least-

squares regression, and the quantile regression of the 
95th, 85th and 50th (median) percentiles, increased at 
the beginning and then flattened out, while the 5th and 
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15th percentiles increased continually (Table 3, Fig. 2).  
These values indicate that the mean, median, and 
the 85th and 95th percentiles had relatively constant 
values for driving loaded speed at most driving dis-
tances, while percentiles below the mean increased. 
This situation indicated an asymmetric variation that 
increased with driving distance.

DISCUSSION

The association between driving speed and driv-
ing distance was strongest for driving unloaded 
while it was weaker for loading drive and driving 

loaded (Tables 4 and 5, Fig. 2). This association 
could be both because of driving distance acting 
as an indirect factor as well as a direct factor. The 
driving distance could be an indirect factor that 
leads to improved planning and strip road condi-
tions as well as more time spent on haul roads of 
better quality. At the same time driving distance is 
a proxy for these direct factors that are difficult to 
measure. Possible effects of driving distance as a di-
rect factor are decreased impacts of accelerations 
and decelerations (which theoretically should have 
an impact on driving speed), and operators’ mental 
stress to compensate longer driving distances with 
higher speed.

Fig. 2. Observed driving speed in dependence on driving distance when forwarding in central Sweden: (a) driving un-
loaded speed, (b) loading drive speed, (c) driving loaded speed. Estimated least-squares regression functions (red solid 
line) and quantile regression for the 50th (median; red dashed line), 95th (blue line), 85th (green line), 15th (green line) and 
5th (blue line) percentile for the association between driving speed and distance

Table 2. Least-squares regression functions for the association between driving distance (m) and driving speed (km·h–1) 
for unloaded, loading, and loaded work

Driving 
work  
element

Depen-
dent 

variable

Correc-
tion

Range 
(m)

Parameter Model´s

Variable Coefficient Standard error RMSE Adj R2 

(%)
Prd R2 

(%) df

Unloaded LN 
(Speed) 0.9744 1–928 Intercept 1.8700 × 10–1 0.1444 × 10–1

0.2637 51.41 51.20 4,390LN (Distance) 1.9270 × 10–1 0.0283 × 10–1

Loading Speed – 11–731 Intercept 1.8526 × 10–0 0.0089 × 10–0
0.4600 5.17 5.08 4,365Distance2 1.3498 × 10–6 0.0873 × 10–6

Loaded LN 
(Speed) 0.9866 1–761 Intercept 1.0949 × 10–0 0.0057 × 10–0

0.2752 20.07 19.71 4,4211/√ Distance –1.1156 × 10–0 0.0335 × 10–0

LN – natural logarithm, RMSE – root mean square error, Adj R2  – adjusted coefficient of determination; Prd R2 – predicted 
coefficient of determination, df – degrees of freedom, all values of parameters and models were P < 0.0001 
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The use of quantile regression seemed to work 
well on the data and enabled a better investigation 
of the variation in driving speed than what the use 
of only least-squares regression and descriptive 
analysis of categories enables. Quantile regression 
was particularly useful for the unloaded and loaded 
driving speeds because their response variable was 
transformed (meaning that the normal confidence 
interval would be difficult to use after retransfor-
mation). Transformed response variables are not 
a concern for quantile regression (Cade, Noon 
2003). Quantile regression also allowed the per-
centiles to be modelled with different independent 
variables than what least-squares regression func-
tions require, and this ability is an advantage when 
dealing with asymmetrically varying data. Many of 
the differences revealed in our study would have 
been difficult to detect statistically by more tradi-
tional methods used in forest technology.

Kumazawa et al. (2011) suggested that stress on 
long distances could lead to higher driving speed. 
Since stress can affect driving behaviour in road 
traffic (af Wåhlberg 1997; Matthews et al. 1998; 
Stradling 2007), is it quite likely to play a role in 
forwarding as well. It is therefore likely that at least 
part of the association between driving speed and 
distance can be explained by operator’s stress. 

Driving unloaded speed for a specific forwarder 
model should be influenced only by the ground con-
ditions (bearing capacity, roughness, and slope) and 
physical obstacles, while loading drive and driving 
loaded speed should be affected also by other factors 
like load size and number of load stops (Tufts 1997; 
Akay et al. 2004; Nurminen et al. 2006). These de-
tails probably explain dissimilarity in the association 
between driving speed and work elements.

Loading drive speed required long driving dis-
tances to show any association with distance. High 
percentiles had a faster increase in loading drive 
speed than low percentiles (the 5th percentile was 
close to flat, Fig. 2b). This difference can be ex-
plained by the fact that loading drive speed (in ad-
dition to ground conditions) is also affected by the 
number of loading stops and the distance between 
loading stops (Gullberg 1997; Tufts 1997). The 
number of loading stops depends on the log con-
centration of forwarded assortments, so a longer 
distance is needed before the association between 
driving speed and the loading drive work element 
can be detected. 

Driving loaded speed increased to some extent with 
increasing distance and then flattened out (Fig. 2c). 
The lower percentiles increased more than the high 
percentiles, leading to a decreased variation in speed 

Table 3. Quantile regression functions for the 5th, 15th, 50th (median), 85th, and 95th percentiles for the unloaded, loading 
and loaded driving speed (km·h–1) based on unloaded, loading and loaded driving distance (m), respectively,

Driving work 
element Percentile Dependent  

variable
Intercept

Variable
Independent variable

Coefficient* SE Coefficient* SE

Unloaded

5th LN (Speed) –0.37807 0.04202 LN (Distance) 2.2914 × 10–1 0.0771 × 10–1

15th LN (Speed) –0.12170 0.02899 LN (Distance) 2.0687 × 10–1 0.0530 × 10–1

50th LN (Speed) 0.30298 0.01751 LN (Distance) 1.6889 × 10–1 0.0327 × 10–1

85th Speed 1.47958 0.01720 LN (Distance) 5.1864 × 10–1 0.0299 × 10–1

95th Speed 2.01071 0.22546 LN (Distance) 5.4948 × 10–1 0.4126 × 10–1

Loading

5th LN (Speed) 0.14195 0.01424 Distance 4.1747 × 10–4 4.5558 × 10–5

15th LN (Speed) 0.33444 0.00774 Distance2 6.8716 × 10–7 7.4038 × 10–8

50th Speed 1.82353 0.01162 Distance2 1.2773 × 10–6 1.1862 × 10–7

85th Speed 2.30858 0.01319 Distance2 1.6261 × 10–6 2.0912 × 10–7

95th Speed 2.62392 0.02018 Distance3 3.9477 × 10–9 2.5084 × 10–10

Loaded

5th LN (Speed) –0.38443 0.05453 LN (Distance) 1.8875 × 10–1 0.1011 × 10–1

15th Speed 0.86344 0.04943 LN (Distance) 2.4666 × 10–1 0.0986 × 10–1

50th LN (Speed) 1.09048 0.00805 1/√ Distance –1.0942 × 10–0 0.0640 × 10–0

85th LN (Speed) 1.35338 0.01159 1/√ Distance –1.0312 × 10–0 0.0953 × 10–0

95th LN (Speed) 1.50469 0.01795 1/√ Distance –6.5420 × 10–1 1.8500 × 10–1

LN – natural logarithm, SE – standard error, *indicates values P < 0.0001
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at longer distances. Driving loaded speed should be 
affected (in addition to ground conditions) by load 
size which varies between loads (Tufts 1997). The 
variation in load size should be larger at short distanc-
es than at long distances because small loads at long 
distances are inadvisable (from a productivity point 
of view). These details should explain the association 
between driving loaded speed and distance.

We investigated the 5th, 15th, 85th and 95th percen-
tiles instead of only the usual 5th and 95th percen-

tiles. This decision was made because Cade and 
Noon (2003) recommended using more than two 
percentile classes as the values of the coefficients in 
the quantile regression can change quickly. These 
investigated percentile classes differed from the 
classes previously used by Lu et al. (2017) on simu-
lated forest machine data. However, their applica-
tion of quantile regression was quite different from 
ours since they focused on tree characteristics 
while we focused on machine performance.

Table 4. Descriptive statistics for the loading drive speed based on distance intervals 

Driving 
distance 
(m)*

n
Mean 

distance 
(m)

Loading drive speed (km·h–1)

mean SD median MAD 5th  

percentile
95th  

percentile min max

10–25 53 20 1.69 0.44 1.67 0.38 0.97 2.32 0.80 3.25
25–50 255 39 1.87 0.45 1.84 0.44 1.20 2.60 0.78 4.02
50–75 323 63 1.90 0.41 1.93 0.43 1.25 2.56 0.74 3.03
75–100 312 88 1.88 0.46 1.86 0.46 1.22 2.76 0.62 3.21
100–125 349 113 1.87 0.44 1.82 0.43 1.24 2.66 0.83 4.24
125–150 336 138 1.87 0.47 1.84 0.48 1.19 2.64 0.92 4.21
150–175 340 162 1.87 0.47 1.81 0.44 1.17 2.75 0.86 4.04
175–200 358 188 1.89 0.44 1.85 0.48 1.25 2.65 0.94 3.14
200–225 298 212 1.89 0.48 1.82 0.46 1.26 2.66 0.95 4.45
225–250 312 237 1.95 0.42 1.94 0.41 1.27 2.65 1.07 3.43
250–275 244 262 1.99 0.42 1.98 0.47 1.33 2.67 1.13 3.31
275–300 229 288 1.96 0.42 1.92 0.41 1.33 2.68 1.02 3.23
300–325 191 312 1.94 0.48 1.87 0.52 1.29 2.79 0.95 3.19
325–350 144 337 1.96 0.44 1.94 0.47 1.31 2.73 1.10 3.24
350–375 131 361 2.05 0.50 2.00 0.58 1.37 2.87 1.16 3.55
375–400 87 387 2.16 0.48 2.21 0.47 1.51 2.81 1.29 4.18
400–425 82 412 2.02 0.49 1.97 0.57 1.35 2.83 1.11 3.42
425–450 51 437 2.08 0.51 2.03 0.49 1.32 2.87 1.03 3.73
450–475 60 462 2.17 0.56 2.04 0.54 1.47 3.09 1.25 4.46
475–500 38 485 2.21 0.58 2.17 0.54 1.47 3.23 1.20 3.81
500–525 33 513 2.18 0.51 2.19 0.56 1.43 3.07 1.24 3.40
525–550 22 538 2.18 0.44 2.13 0.49 1.47 2.84 1.36 3.07
550–575 28 562 2.41 0.64 2.41 0.54 1.57 3.48 1.19 4.14
575–600 22 586 2.18 0.58 2.27 0.56 1.30 2.72 1.25 3.80
600–625 13 612 2.27 0.76 2.19 0.63 1.36 3.52 1.16 3.90
625–650 20 639 2.63 0.59 2.71 0.59 1.80 3.58 1.65 3.66
650–675 12 662 2.38 0.65 2.40 0.31 1.47 3.33 1.37 3.95
675–700 9 686 2.39 0.66 2.26 0.50 1.80 3.42 1.75 3.89
700–725 12 713 2.60 0.53 2.42 0.20 2.13 3.52 2.09 3.96
725–750 3 728 2.25 0.18 2.17 0.06 2.13 2.43 2.13 2.46

*Distance from closed lower bound to open upper bound, n – observations in category, SD – standard deviation, MAD – 
median absolute deviation
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Comparison with previous studies

Some previous studies found an association 
between driving speed and distance at the load 
level, but they could not quantify it (Nurminen 
et al. 2006; Ghaffarian et al 2007; Kumazawa 
et al. 2011). We have however quantified the as-
sociation between forwarder driving speed and 

distance at the load level, just like Väkevä et al. 
(2001) previously did at the stand level. Our re-
sults are valid for larger forwarders in stands of 
central Sweden. Nevertheless, it is still interest-
ing to compare our results with those of previ-
ous studies. Compared to Väkevä et al. (2001), 
our observed least-squares regression model for 
driving unloaded speed was basically the same  

Table 5. Descriptive statistics for the driving loaded speed based on distance intervals 

Driving 
distance 
(m)*

n
Mean 

distance 
(m)

Driving loaded speed (km·h–1)

mean SD median MAD 5th  

percentile
95th  

percentile min max

0–25 466 12 2.03 0.79 1.92 0.69 0.95 3.50 0.31 5.98
25–50 472 38 2.54 0.80 2.45 0.73 1.38 3.99 0.88 5.94
50–75 440 63 2.73 0.80 2.64 0.69 1.58 4.22 0.85 5.63
75–100 329 87 2.87 0.87 2.69 0.66 1.61 4.57 1.11 5.80
100–125 339 112 2.77 0.72 2.70 0.61 1.76 4.03 1.03 5.75
125–150 303 138 2.78 0.77 2.71 0.67 1.68 4.41 1.10 5.53
150–175 226 162 2.82 0.76 2.76 0.65 1.77 4.42 1.19 5.70
175–200 211 188 2.96 0.74 2.83 0.64 2.00 4.35 1.34 5.09
200–225 196 212 2.85 0.66 2.74 0.58 2.00 4.22 1.71 5.46
225–250 188 236 2.86 0.70 2.75 0.55 1.89 4.27 1.41 6.04
250–275 179 263 2.94 0.68 2.84 0.65 1.96 4.23 1.68 5.25
275–300 139 287 2.87 0.69 2.77 0.75 1.91 4.06 1.62 4.88
300–325 111 312 2.81 0.65 2.63 0.57 1.92 4.21 1.48 4.65
325–350 128 337 2.82 0.67 2.77 0.67 1.86 4.00 1.49 4.93
350–375 94 363 2.81 0.62 2.67 0.43 2.02 4.01 1.79 5.27
375–400 62 389 2.93 0.62 2.82 0.70 2.11 3.79 1.98 5.26
400–425 62 411 2.89 0.68 2.76 0.57 2.03 4.03 1.84 5.09
425–450 69 437 2.88 0.77 2.67 0.51 2.07 4.35 1.81 5.45
450–475 54 462 3.02 0.62 2.86 0.68 2.27 4.02 2.00 4.66
475–500 40 488 3.04 0.71 2.81 0.67 2.25 4.17 2.22 4.67
500–525 45 513 3.00 0.62 2.91 0.67 2.30 4.06 2.13 5.01
525–550 43 537 2.94 0.63 2.79 0.56 2.29 4.24 1.98 4.78
550–575 37 562 3.26 0.72 3.12 0.75 2.25 4.62 2.20 4.86
575–600 34 586 3.15 0.66 3.03 0.65 2.28 4.30 1.96 4.66
600–625 41 613 3.22 0.60 3.08 0.66 2.53 4.22 2.41 4.50
625–650 28 635 3.22 0.80 2.97 0.71 2.25 4.61 2.10 5.00
650–675 23 663 2.97 0.67 2.90 0.45 2.44 3.93 1.00 4.39
675–700 23 685 3.16 0.71 2.89 0.58 2.43 4.43 2.36 4.88
700–725 12 708 2.92 0.44 2.81 0.30 2.53 3.78 2.49 3.81
725–750 21 739 2.92 0.69 2.71 0.40 2.20 3.94 2.14 5.11
750–775 8 756 3.00 0.60 2.67 0.25 2.48 3.87 2.44 3.98

*Distance from closed lower bound to open upper bound, n – number of observations in category, SD – standard deviation, 
MAD – median absolute deviation
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(–2 to 2% difference) at all distances > 50 m (Fig. 3a).  
However, there was a larger difference in the driv-
ing loaded speed, since Väkevä et al.’s (2001) results 
gave 3–11% faster speed at distances of 0–75 m,  
and 4–18% lower speeds at 175–775 m than our 
results (Fig. 3c).

Differences between fixed speeds and speeds 
estimated according to driving distance can be 
quite large. Our least-squares regression func-

tion and the mean from our study mostly esti-
mated approximately the same driving loaded 
speed (except at short distances where it could be 
up to 16% above the regression function estimate;  
Fig. 3c). However, the difference was much larg-
er for the unloaded and loading driving speeds,  
+51 to –25% and +5 to –26%, respectively. Natu-
rally, the difference was even larger when compar-
ing with the fixed speed reported in other studies. 

Fig 3. The relative difference (%) in unloaded driving (a), loading drive (b) and loaded driving speed (c) between the 
least-squares regression functions from our study, the mean in our study, and the observed values reported in the 
following publications: Strandgard et al. (2017) for a forwarder with an 18-ton maximum load size; Manner et al. 
(2016) for forwarders with a 19- ton maximum load size; Lindroos and Wästerlund (2013) for a forwarder with 
15.1-ton maximum load size; Manner et al. (2013) for a forwarder with 14-ton maximum load size; Klepac and 
Rummer (2012) for a forwarder with maximum 20-ton load size; and Nurminen et al. (2006) for forwarders with an 
11–14 ton maximum load size
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These differences are large enough that using fixed 
speed could negatively affect the accuracy of cal-
culations when terrain conditions are not assumed 
or distances deviate substantially (from those re-
ported in the studies). However, if the investigated 
situation is very similar to that of a study with fixed 
driving speed, it is probably more suitable to use 
a fixed speed. Also, if specific terrain conditions 
are used, it is probably best to use the results from 
other studies. 

Weaknesses

Observations with short driving distances clearly 
dominated all three work elements. This situation 
was the cause for the filtering. There was, of course, 
an unfortunate loss of information when observa-
tions without obvious measurement errors were 
removed. Nevertheless, this filtering was deemed 
necessary as otherwise a handful of observations 
on long driving distances would have had an very 
significant impact on both the least-squares and 
quantile regressions. And because of the potential 
problems with errors in the data, we chose to inves-
tigate the 5th, 15th, 85th, and 95th percentiles, since it 
is likely that errors are more prevalent at extremely 
high or low driving speeds.

There are many variables that were not accounted 
for in our data material, and in some cases distance 
is confounded with other variables that influence 
the driving speed (Nurminen et al. 2006; Ghaf-
farian et al 2007). In other words, speed is often 
a proxy for other variables that are not measured 
or are difficult to measure, such as better planning 
and more time spent on high-quality haul roads. 
Meanwhile, there are also factors that are more di-
rectly affected by distance, such as operator’s stress 
and the number of decelerations. In our study, we 
could not distinguish between these direct and in-
direct factors, but future studies might do so. 

Recommendations

When designing future studies of forwarding, 
our results can be of interest because they indicate 
that travelling distance (in addition to the other 
commonly investigated variables like ground con-
dition, slope, load size, etc.) can explain some of 
the variations in driving speed. Also, our results 

can be of interest when simulating forwarder work 
and when optimizing forwarding routes, especially 
when there is limited information about the other 
variables that affect forwarding productivity (quan-
tile regressions can also be especially interesting in 
this situation).

Conclusions

Based on our large data set from stands located 
in central Sweden, there seems to be a fairly strong 
connection between speed and driving distance 
during forwarding work. Granted, driving distance 
is probably mostly a proxy for other variables that 
affect speed, but driving distance is also a direct 
factor to some extent because of its effect on opera-
tor’s stress and relative machine acceleration and 
deceleration time. Thus, we recommend research-
ers and managers to consider including distance as 
an explanatory variable when modelling forward-
ing in future studies. Correspondingly, when only 
distance is used in system analyses and similar 
modelling of forwarding work, it is probably better 
to rather use distance-dependent variable speeds 
than constant speeds. Also, our study shows that 
quantile regression is a useful tool also for forest 
technology/forest operations researchers.
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