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Abstract: Korean pine (Pinus koraiensis Sieb. et Zucc.) is one of the highly commercial woody species in Northeast 
China. In this study, six nonlinear equations and artificial neural network (ANN) models were employed to model 
and validate height-diameter (H-DBH) relationship in three different stand densities of one Korean pine plantation. 
Data were collected in 12 plots in a 43-year-old even-aged stand of P. koraiensis in Mengjiagang Forest Farm, China. 
The data were randomly split into two datasets for model development (9 plots) and for model validation (3 plots). 
All candidate models showed a good perfomance in explaining H-DBH relationship with error estimation of tree 
height ranging from 0.61 to 1.52 m. Especially, ANN models could reduce the root mean square error (RMSE) by 
the highest 40%, compared with Power function for the density level of 600 trees. In general, our results showed that 
ANN models were superior to other six nonlinear models. The H-DBH relationship appeared to differ between stand 
density levels, thus it is necessary to establish H-DBH models for specific stand densities to provide more accurate 
estimation of tree height.
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Tree diameter at breast height (DBH) and tree 
height (H) are the most important variables used in 
forest inventory and management (Lei et al. 2009), 
particularly for estimating total tree and stand vol-
umes (Sharma et al. 2004). In addition, tree sizes 
at the individual tree and stand levels are under-
lying variables for determining site index, timber 
volume, and forest structures and dynamics (Par-
resol, Bernard 1992; Lauri et al. 2015; Ahmadi 
et al. 2016). In forest inventory field, the measure-
ment of tree height is time-consuming and costly 
because of the low visibility of tree tops in dense 
stands while diameter at breast height of a tree can 

be measured quickly, easily, and accurately by ba-
sic instruments such as tree calipers and diameter 
tape (Staudhammer, Lemay 2000; Colbert et 
al. 2002; Sharma, Parton 2007; Mengesha et al. 
2018). To save time and effort in forest inventory, 
foresters often predict tree height using height-di-
ameter (H-DBH) models instead of direct measure-
ment of height (Ahmadi et al. 2013). 

Previous studies have used linear and nonlinear 
growth equations to develop H-DBH relation-
ships for several tree species (Colbert et al. 2002; 
Emanuel et al. 2018; Mengesha et al. 2018). The 
nonlinear growth functions have been widely used 
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to fit tree height-diameter models, however they 
may produce large extrapolation errors when ap-
plying beyond the range of model development 
data, thus the predictive capability of model should 
be carefully validated before application (Zhang 
1997). Artificial neural networks (ANNs) are com-
puting systems in artificial intelligence technology 
which is based on the structures and functions of 
biological neural networks (Ashraf et al. 2015). 
Recently, ANN models have been applied in many 
aspects of forest management, especially in forest 
modelling such as the estimation of tree volume 
(Diamantopoulou, Milios 2010), prediction of 
tree diameter and height (Shao, Reynolds 2006; 
Vieira et al. 2018), and forest cover types (Black-
ard, Dean 1999) because of its strong capacity of 
nonlinear mapping, high accuracy and robustness 
(Sheela, Deepa 2013). However, few studies have 
developed height-diameter (H-DBH) models using 
artificial neural networks (Özçelik et al. 2013). 
The H-DBH relationship of one tree species could 
vary with environmental gradients (Sharma et 
al. 2004; Özçelik et al. 2014), thus the develop-
ment of H-DBH model for specific site conditions 
is needed to provide more accurate estimation of 
tree height. Korean pine (Pinus koraiensis Sieb. et 
Zucc.) is widely distributed in Northeast China 
and it is one of the most valuable and commercial-
ly important timber and nut production species 
(Jin et al. 2017; Nguyen et al. 2018). However, the 
information on H-DBH relationship in this spe-
cies is limited (Zang et al. 2016). Therefore, this 

study aimed to develop H-DBH models using basic 
nonlinear growth equations and artificial neural 
networks (ANN) models to describe the height-di-
ameter relationship in P. koraiensis in Mengjiagang 
Forest Farm, China. 

MATERIAL AND METHODS

Study area and data description

The study was carried out in Mengjiagang Forest 
Farm (46°32'16''N, 129°10'36''E) in Heilongjiang 
Province, China. The climate is East Asian con-
tinental monsoon with long winter and dry sea-
sons. In the study site, mean annual temperature 
is 2.7°C and mean annual precipitation is 550 mm.  
Average annual maximum and minimum temper-
atures are 35.6°C in July and –34.7°C in January, 
respectively. 

The plots were established in 1973 and they 
were planted in a random block arrangement with  
3 density levels: 400 trees·ha–1 (N1); 600 trees·ha–1 
(N2) and 800 trees·ha–1 (N3). In summer of 2016, 
4 plots (40 × 25 m each) were selected to develop 
H-DBH models for each density level. Diameter at 
breast height (DBH), tree height (H) of 758 pine 
trees within 12 plots (4 plots × 3 density levels) 
were measured. For each tree, two perpendicular 
diameters (outside-bark 1.3 m above ground level) 
were measured to the nearest 0.1 cm and were then 
averaged to obtain DBH (cm). Total H (m) was 

Fig. 1. Height diameter relationship in different density levels for: (a) training and (b) validation datasets

(a)� (b)
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measured to the nearest 0.5 m, using a Vertex IV®  

(Haglof, Sweden). In order to evaluate the perfor-
mance of developed H-DBH models, the data were 
randomly divided into a training dataset (9 plots) 
and a validation dataset (3 plots). Two datasets are 
described in Fig. 1 and summary statistics also are 
shown in Table 1.

Model development and comparison

Nonlinear growth functions. A set of 6 nonlin-
ear growth functions was selected from previously 
studies on H-DBH models (Table 2) because of their 
appropriate features such as sigmoid shape and flex-
ibility. Besides, the parameters of these functions 
can be biologically interpreted (e.g., upper asymp-
tote and change rate) as documented in the litera-
ture (Huang 1999). In this study, we employed only 

functions that do not transform tree height variable 
to avoid problem of back transformation bias. We 
used nls function in R version 3.5.1 (R Core Team 
2018) to fit 6 candidate models. For estimating the 
parameters, the initial values were obtained by using 
the package lmfor (Mehtatalo 2015).

Artificial neural networks. In this study, 
we used multilayer neural networks to develop  
H-DBH model in P. koraiensis. A proposed ANN 
model was designed using MATLAB Neural Net-
work Toolbox (MathWorks, Natick, USA) and us-
ing multilayer perceptrons (MLP). In our study, the 
proposed neural network had one input layer, one 
hidden layer and one output layer. In each density 
level, the data of the input layer were DBH val-
ues and the data of output layer were height val-
ues in three plots used for ANN model training  
(Fig. 2). One remaining plot of each density level was 
used to validate the ANN models. The type and the 

Table 1. Summary statistics for the training and the evaluation data sets

Attributes
Training data set (n = 630 trees in 9 plots) Validation data set (n = 128 trees in 3 plots)

DBH (cm) H (m) DBH (cm) H (m)

Min 12.4 9.2 18.7 9.2

Max 32.7 14.9 35.4 15.6

Mean 22.29 12.77 23.51 12.22
Standard deviation 3.44 0.91 2.70 1.18

DBH – diameter at breast height, H – tree height

Table 2. A list of candidate H-DBH models

Model References

Chapman-Richards: � Richards (1959); Huang et al. (1992)

Prodan: � Strand (1959)

Ratskowky: Ratkowsky (1990); Huang et al. (1992)

Logistic: Pearl, Reed (1920); Huang et al. (1992)

Gompertz: Gompertz (1832); Huang et al. (1992)

Power: Stoffels; Van Soest (1953)

H – tree height; DBH – tree diameter at breast height; a, b, c – parameters of the equation
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tion criterion (AIC), which is an index used to select 
the best model from a group of candidate models 
(Akaike 1974). The RMSE, R2 and AIC were defined 
as in the following Eqs (2–4):
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n 	 – sample size, 
p 	 – number of model parameters to be estimated; 
RMSE	 – root mean square error. 

For each ANN model, the AIC value can be cal-
culated by using the Eqs (5, 6) of Panchal et al. 
(2010) and D’Emilio et al. (2018).

 	 (5)

	 (6)

where:
n – number of observations, 
K – number of free parameters, 
RSS – residual sum of square.

complexity of the ANN model can be determined 
by the number of the neurons in the hidden layer. 
Several studies have revealed that the number of 
neurons in the hidden layer can not be determined 
directly. Generally, it should meet the following  
Eq. 1 (Yu, Jia 2012):

i = √j + m + R	  (1)

where:  
i – 	� number of neurons in the hidden layer; 
j – 	 number of neurons in the output layer; 
m – �	number of neurons in the input layer; 
R – 	any number ranging from 0 to 10. 

As the input layer in our study had one neuron 
and the output layer had one neuron, the number 
of neurons  of the hidden layer meets the condition:  
1 ≤ i <11. Thus, in our study, the number of neurons 
in the hidden layer was set from 1 to 10 to search for 
the best ANN models. The activation function used 
in the hidden layer was hyperbolic tangent sigmoid 
transfer function and training algorithm was the 
Levenberg-Marquardt Backpropagation. We set the 
target error as 0.01 and learning rate as 0.01 and the 
networks were trained for 1,000 epochs for all mod-
els as there was very negligible reduction of the root 
mean square error (RMSE) values after 1,000 epochs.

Model performance criteria. In the present 
study, three good-ness of fit statistics obtained from 
the residuals were examined to compare the perfor-
mance of ANN models and six nonlinear models. 
These criteria were root mean square error (RMSE),  
which indicates the precision of the estimates; the 
coefficient of determination (R2), which is used to 
determine the relative correlation between the esti-
mated and the measured data; and Akaike’s informa-
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Fig. 2. Artificial neural network architectures (the model has three layers, for each density level, ten models are constructed 
by correspondingly varying the number of neurons in the hidden layer from 1 to 10)
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RESULTS 

Evaluation of nonlinear models

For six nonlinear regression models (Table 3), we 
found that the coefficient estimates varied among 
density levels. The asymptotically maximum esti-
mated height varied approximatly from 12 to 14 m.  
Among nonlinear models, the Power function 
showed a statistical significance in all coefficient 
estimates. Except for the parameter c, all coefficient 
estimates of Prodan model were not statistically 
significant. The results of goodness of fit statistics 
for the training and validation datasets are shown 
in Fig. 3. In all six nonlinear models, there was a 
small difference in RMSE values between train-
ing and validation data. Power model exhibited 
a smaller RMSE  values in the validation dataset, 
compared with other nonlinear models. In general, 
Power model had the highest value of R2, except for 
N3 density level where Ratskowky model showed 
the highest R2 for the both training (0.742) and vali-
dation data (0.612). The AIC values of Power model 
were slighly smaller than those of other nonlinear 
models for both training and validation data, and 
for all stand density levels.

ANN models

In this study, the number of neurons in the hid-
den layer of ANN models used for training process 
ranged from 1 to 10. In training dataset of N1 and 
N3 density levels, the AIC values tended to increase 
with the number of neurons in the hidden layer. 
In validation dataset, however, the AIC values in-
creased with the neuron number for N1 and N2 den-
sity levels (Fig. 3). We observed that the coefficient of 
determination (R2) of all models varied from 0.61 to  
0.77, and the differences in R2 values were found be-
tween the six nonlinear models and ANN models in 
each stand density level (Fig. 3). 

For N1 and N2 density levels, the best model per-
formance was achieved by using 10 neurons in the 
hidden layer, showing the smallest RMSE  values for 
both training dataset (0.745 and 0.564, respectively) 
and validation dataset (1.277 and 0.610, respectively). 
Meanwhile, in N3 density level, the best model perfor-
mance was observed in the ANN model using 7 neu-
rons in hidden layer for both training dataset (RMSE 
= 1.279) and validation dataset (RMSE = 0.743). 

In N1 density level, the RMSE values of validation 
data ranged from 0.743 to 0.745 and from 0.750 to 
0.763 in ANN models and nonlinear models, respec-
tively. In N2 density level, we found that the RMSE 
values of the ANN model using 10 neurons in the 
hidden layer were reduced by approximately 17 and 
40% for validation and training data, respectively, 
compared to Power model. In N3 density level, the 
RMSE of the ANN model with 7 neurons in the hid-
den layer was slightly lower than those of nonlinear 
models for both training and validation data.

DISCUSSION

Tree height is fundamental variable in forest man-
agement for developing growth model, biomass es-
timation, and for determining stand structure and 
dynamics (Diamantopoulou, Özçelik 2012; 
Navroodi et al. 2016). In our study, six non-lin-
ear growth functions selected for estimating total 
tree height performed quite well with small RMSE  
values (0.651 to 1.517) and fairly well of R2 values 
(0.592–0.744) for all stand density levels. Overall, 
our results supported the findings of previous stud-
ies, indicating the appropriateness of nonlinear 
models in describing H-DBH relationship (Dia-
mantopoulou, Özçelik 2012; Özçelik et al. 
2014; Mengesha et al. 2018; Emanuel et al. 2018). 
In general, H-DBH relationship has been considered 
to approach a sigmoidal shape (Özçelik et al. 2014; 
Costa et al. 2016; Ferraz et al. 2018), however the 
best fit model appeared to vary with tree species and 
site conditions. For example, the best model was the 
logistic growth function for Pinus kesiya in Benguet 
province, Philippines (Lumbres et al. 2013); was 
the Gompertz function for three economically im-
portant tree species of southern Turkey (Özçelik 
et al. 2014); was the Weibull function for Cupressus 
lusitanica in Gergeda Forest, Ethiopia (Mengesha 
et al. 2018). In previous study on H-DBH model of 
Korean pine, Richards equation with four param-
eters appeared to explain well H-DBH relationship 
in Nature forest of Jilin province, China (Deng et al. 
2001). Zang et al. (2016) used Chapman-Richards 
function to describe the H-DBH relationship for 
Pinus koraiensis in mixed Mongolian oak-deciduous 
stands and mixed spruce-fir-deciduous stands in 
Wangqing Forestry Bureau, Jilin Province of North-
east China. On the contrary, our study demonstrat-
ed that Power model was the best fit model among  
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6 candidate nonlinear equations evaluated in terms 
of RMSE  and AIC values for Korean pine planta-
tion in Mengjiagang Forest Farm, China. The in-
consistency between our study and others could be 
explained by the differences in site condition and 

in stand structure and age, which can affect the  
H-DBH relationship (Özçelik et al. 2014). 

Our data showed that coefficient estimates and 
model performance criteria varied among three stand 
density levels. The performance of H-DBH models 

Fig. 3. Goodness of fit statistics for 10 ANN models and 6 nonlinear models.The statistic values are shown for both training 
and validation datasets. Model ID from 1 to 10 refers to ANN models with corresponding neuron number in the hidden 
layer. Model ID from 11 to 16 refers to the model of Chapman-Richards, Prodan, Ratskowky, Logistic, Gompertz and 
Power, respectively. RMSE, R2, AIC are root mean square error, coefficient of determination and Akaike's Information 
Criterion, respectively.
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tended to differ between density levels, and this could 
be explained by the variation in local environment and 
stand conditions (Sharma et al. 2004). Stand density 
is an important factor affecting tree growth in conif-
erous species (MÄkinen, IsomÄki 2004). Low stand 
density may reduce the competition among individu-
al trees, which results in advantageous conditions for 
tree growth (Woodruff et al. 2000). Moreover, low 
tree density might increase soil moisture availabil-
ity and generate favorable physiological responses, 
whereby affecting tree growth (Nguyen et al. 2018). 
In accordance with previous studies (Krieger 1998; 
Ritchie et al. 2012), our data indicated that H-DBH 
relationship of P. koraiensis could be conditioned on 
stand density. 

Compared with stand density of 600 trees·ha–1 
and 800 trees·ha–1, tree height in the stand density of 
400 trees·ha–1 tended to be smaller. Similary, Zeide, 
Vanderschaaf (2002) documented that Loblolly 
pine trees in higher density stand were taller than 
those in lower density stand. It is likely that the com-
petition for light between a tree and its neighbors 
may promote the height growth (Dorn et al. 2000). 
According to Lauri et al. (2015), this phenomenon 
can be explained by the biological growth rhythm of 
trees in dense stands that they firstly focus on height 
growth to compete for light, and then use their re-
sources to increase diameter . This strategy may result 
in a higher height variation in small-diameter stand 
compared with those of large-diameter stand. The 
influence of stand density on the H-DBH relation-
ship was also found in many studies (e.g. Krieger 
1998; Staudhammer, LeMay 2000; Ritchie et al. 
2012). For instance, Krieger (1998) constructed  
H-DBH models for 6 stand density levels (from 100 to 
1,100 trees·ha–1) for white spruce species. In our 
study, the difference between AIC and RMSE  val-
ues for model performance were observed (Fig. 3). 
The contradiction of RMSE  and AIC has been also 
reported in previous work (Kingston et al. 2008; 
Luo et al. 2018). Compared with other model perfor-
mance criteria, RMSE  is commonly implemented to 
select the best model (Özçelik et al. 2013; Costa et 
al. 2016, Zang et al. 2016; Ferraz et al. 2018), thus in 
this study, we determined RMSE  as the main good-
ness of fit statistic for mode evaluation. Based on the 
RMSE  values, we suggest using the ANN model with 
10 neurons in the hidden layer for stand density of 
400 trees·ha–1 and 600 trees·ha–1, and the ANN model 
with 7 neurons in the hidden layer for stand density of 
800 trees·ha–1 for H-DBH relationship of Korean pine 

in our study site. In the present study, ANN models 
performed superior to non-linear growth functions 
in explaining H-DBH relationship in P. koraiensis, as 
indicated by small RMSE  for all stand density levels, 
This finding is consistent with previous studies indi-
cating that ANN models can be an effective alterna-
tive to regression analysis, providing an accurate tree 
height estimation for forest inventory (Özçelik et 
al. 2013; Zhi, Gan 2017; Vieira et al. 2018). Besides, 
the model developed in this study showed the bet-
ter overall performance in terms of RMSE compared 
with other approaches in previous studies such as us-
ing nonlinear regression for estimating tree height 
of Crimean juniper with RMSE values ranging from  
1.28 to 1.89 (Özçelik et al. 2013), and using nonlin-
ear mixed effects models for Pinus koraiensis with 
RMSE  values ranging from 1.40 to 2.65 and from 
0.95 to 2.67 in training data and validaton data, re-
spectively (Zang et al. 2016). Although our study re-
ferred only to the specific three stand density levels in 
Mengjiagang Forest Farm, the obtained results could 
be a basis for further research by highlighting the ap-
plicability of ANN models in tree height prediction 
and this would provide forest managers and research-
ers with useful guidelines for predicting tree height of 
Pinus koraiensis in the research site.

CONCLUSIONS

Nonlinear growth functions have been commonly 
used for modeling tree height-diameter relationship. 
This study used 6 non-linear functions and ANN 
models to describe H-DBH relationship of P. koraien-
sis in three different stand densities in Mengjiagang 
Forest Farm, China. Based on RMSE and R2 statistics, 
we showed that the ANN models were superior to all 
examined nonlinear models. Our data suggest that it 
is necessary to establish H-DBH models for different 
stand densities of P. koraiensis to provide more accu-
rate estimates of tree height. The ANN models pro-
vide a new approach for tree height estimation and 
could be implemented at individual tree and stand 
levels for P. koraiensis in this studied region.
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