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Abstract: Oak decline phenomenon has recently led to considerable dieback within Zagros forests, western Iran. In 
the present study, Landsat imagery (2005 to 2016) and synoptic station data were used to study the forest dieback 
in Dorood, Lorestan province. Sixteen vegetation indices were calculated and values in each year were obtained. 
The correlations between the index and climatic parameters of rainfall, temperature and relative humidity were 
investigated. Results showed that the correlation of some indices with rainfall and the correlation of other indices 
with temperature were more than 70%. Optimized soil adjusted vegetation index had 80% correlation with annual 
rainfall and the modification of normalized difference water index was correlated with average annual temperature 
by 75%. Using the numerical value changes of the indices, a map of forest cover change was prepared in four classes; 
healthy, weak, moderate and severe dieback and the process of its change were compared with the trend of variations 
in regard with rainfall values in the study period. There was a close relationship between changes in the area of forest 
cover dieback and rainfall and temperature values.

Keywords: oak; decline; Landsat; Lorestan; vegetation index

Oak decline phenomenon has recently led to 
considerable dieback within Zagros forests, west-
ern Iran. In general, factors involved in the decline 
of forest trees include predisposing factors, con-
tributing or inciting factors (Sallé et al. 2014). 
Contributing factors act as the main factor of forest 
decline. These factors are severe and intense dis-
orders that can occur as biological factors such as 
severe drought (Andersson et al. 2011).

These factors are themselves either directly af-
fected by climate change or indirectly influenced by 
the conditions of their host trees. According to the 
fifth report of the Intergovernmental Panel on Cli-
mate Change (IPCC 2014), in future, many natural 
ecosystems affected by climate change will undergo 
major structural changes. Generally, the results of 

the findings suggest that climate change, especial-
ly rainfall reduction and increasing temperatures 
around the world, has led to the loss of forest cover 
(Azizi et al. 2015; Thiele et al. 2017). Some fac-
tors such as drought cause severe and short-term 
damage, but if two contributing and predisposing 
factors are in the same line, then improvement will 
be slower very much (Prieto-Recio et al. 2015).

The Zagros forests of Iran with the main species of 
oaks are semi-arid and occur over an area of about 
six million ha and account for almost 44% of Iran’s 
forests (Sagheb Talebi et al. 2014). These forests 
were affected by oak decline phenomenon during the 
past decade. This issue has become a topic of numer-
ous researches in many scientific resources as one of 
the critical issues in forests of Iran (Hosseinzadeh, 
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Pourhashemi 2015; Zandebasiri et al. 2017). For 
sustainable management and conservation of forest 
resources, it is necessary to know the amount and 
location of deforestation, its speed and area, and 
monitoring of the effects of drought on forest cover 
reduction.

Monitoring of the effects of drought with regard 
to high economic costs, the extent of natural areas 
and the impassable regions create many problems, 
since the preparation of information through field 
operations requires a huge amount of time and 
costs, usually alternative approaches with lower 
costs and acceptable accuracy level are used.

Considering the above-mentioned issues and the 
change in climate parameters as well as the published 
reports on oak forest decline in the Zagros region, it 
seems that monitoring of forest cover health change, 
which is the goal of this research, is necessary.

MATERIAL AND METHODS

The study area. The study area is located in 
Dorood forests, a part of Zagros forests, in the 
southeast of Lorestan province, Iran (48°59'54''E to 
49°07'54''E and 33°23'36''N to 33°28'24''N; Fig. 1). 
The minimum and maximum elevations were 1,054 
and 3,075 m a.s.l., respectively. The study area covers 
660 km2 of mountainous stands with average slope 

of 38%. Approximately 50% of the area is covered by 
forests, most of which are pure Brant’s oak (Quercus 
brantii Lindley) stands.

Satellite data and preliminary preprocessing. 
Eight consecutive images of August from 2005 to 
2012 from ETM + Landsat 7 and four OLI Landsat 
8 image data from 2013 to 2016 were downloaded 
from the United States Geological Survey (https://
earthexplorer.usgs.gov/). All images were acquired 
in the second half of the summer season. The initial 
errors including atmospheric (FLAASH algorithm), 
radiometric (radiometric calibration) and SLC-off 
gap-fill algorithm were corrected by the ENVI pro-
gram (Version 5.3, 2015) (Safari et al. 2018).

Land use classification. Supervised classifi-
cation methods including maximum likelihood 
(Morgan et al. 2015) and the three linear, radial, 
and polynomial kernels of the support vector ma-
chine (Ustuner et al. 2015) were used to classify 
the land use of satellite images of 2005.

During the summer of 2016, 45 field samples were 
collected. 30 samples were used for training in the 
supervised classification methods and 15 samples 
were used for accuracy assessment. Overall accura-
cy and Kappa index were calculated from the confu-
sion matrix, and the method with smaller error was 
used as a suitable method for land use classification.

Vegetation indices used. Vegetation reflec-
tance in the range of near and mid-infrared op-

Fig. 1. The location of the study area
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tical spectrum has been widely used in the veg-
etation cover studies. Indices extracted from this 
spectrum range are attributed to a wide variety of 
plant growth and plant abilities associated with 
water content, pigments, sugars, and carbohy-
drates (Batten 1998; Foley et al. 1998; Safari et 
al. 2017). In this study, 16 well-known vegetation 
indices were used for the purpose of studying for-
est cover changes (Table 1).

The principal component analysis was used to re-
duce the number of indices into some components. 
For selecting a suitable number of components, 
those components with eigenvalue greater than one 
were selected. Those indices which had the highest 
correlation with the derived components were con-
sidered as the most important indices for land use 
classification. Climate data were also acquired from 
a local climate station regarding the time interval of 
the study. The time interval between two sequential 
imaging dates was considered for extraction of an-
nual rainfall, average annual temperature and an-
nual relative humidity.

Preparation of forest cover health change map 
and assessing the impact of climate parameters. 
To derive the cover change layer, the pixel values of 
selected indices were sequentially subtracted from 
2005 to 2016, as well as in four periods of 2005 to 
2007, 2005–2010, 2005–2013, and 2005–2016. The 
pixels with positive subtraction are considered 
as healthy forests and zeros are considered as no 
change. Pixels with negative values were divided 
into three categories, including weak, moderate, 
and severe dieback. In this way, the map of for-
est cover change during the study time interval 
was developed. The value of climate parameters in 
these intervals was also extracted and interpreted 
by the results of forest cover change.

RESULTS

Different supervised classification methods were 
used for land use classification. Table 2 represents 
the results of comparing the classification meth-
ods. The overall accuracy of the methods ranged 
from 84 to 92% while Kappa index ranged between 
83 and 91%. The most accurate method was maxi-
mum likelihood which was selected to derive the 
land use map for the next analyses.

After deriving the land use map (in 2005), using 
the map, a spatial subset of all images was extracted 

and forest changes were assessed only in the sub-
set. Then, the average value of each vegetation in-
dex was extracted for each year in the forest subset 
(Table 3).

The results of Pearson correlation matrix showed 
a high correlation between the studied indices (Ta-
ble 4), so that the two indices – green vegetation 
index (GVI) and optimized soil adjusted vegetation 
index (OSAVI) with 13 others had the highest cor-
relation coefficient.

Table 5 shows the share of each index in the 
first and second factor. With respect to the higher 
weight of more variables, the 90.0 criterion was 
considered as the threshold for selecting variables. 
Accordingly, OSAVI, renormalized difference veg-
etation index, soil adjusted vegetation index, GVI 
and modified triangular vegetation index were 
placed in the first group and sum green index and 
modification of normalized difference water index 
(MNDWI) were placed in the second group.

Using the principal component analysis, 16 study 
indices were reduced to seven indices including 
five indices belonging to the first group and two in-
dices belonging to the second group. Investigating 
the relationship between the indices and climatic 
parameters showed that the indices which lie in 
the first group had a high correlation with annual 
rainfall and indices in the second group had a high 
correlation with the average annual temperature 
(Table 6).

According to the results, OSAVI and MNDWI 
indices were selected to study the forest cover 
changes in the study area. The OSAVI value change 
map was prepared for the periods 2005–2007, 
2005–2010, 2005–2013, and 2005–2016 and the 
numerical value of the index was distinguished in 
four classes of a healthy forest, a forest with weak, 
moderate and severe dieback (Figs 2a–d).

Table 2. Overall accuracy and Kappa ratio evaluation of 
classification methods

Classification method Overall 
accuracy (%)

Kappa 
index (%)

Maximum likelihood 92.02 91
Linear kernel –
support vector machines 86.90 86

Polynomial kernel –
support vector machines 84.62 83

Radial basis kernel –
support vector machines 84.33 83

https://doi.org/10.17221/61/2018-JFS
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Table 3. Average values of the study indices in each year

Vegetation 
index

Year
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

DVI 0.069 0.074 0.073 0.066 0.067 0.069 0.062 0.072 0.065 0.069 0.064 0.073
EVI 0.097 0.102 0.103 0.092 0.094 0.100 0.087 0.099 0.095 0.099 0.094 0.106
GDVI 0.091 0.097 0.095 0.089 0.089 0.091 0.084 0.096 0.086 0.090 0.084 0.094
GNDVI 0.414 0.429 0.439 0.405 0.413 0.419 0.431 0.426 0.440 0.407 0.441 0.424
GRVI 2.461 2.561 2.631 2.403 2.448 2.485 2.573 2.530 2.631 2.417 2.643 2.525
GVI 0.031 0.035 0.036 0.028 0.031 0.032 0.030 0.034 0.033 0.030 0.032 0.035
IPVI 0.645 0.651 0.655 0.638 0.643 0.647 0.644 0.647 0.654 0.645 0.655 0.653
LAI 0.291 0.309 0.310 0.272 0.280 0.300 0.255 0.297 0.282 0.298 0.279 0.321
MNDWI –0.405 –0.412 –0.425 –0.407 –0.400 –0.413 –0.435 –0.418 –0.439 –0.420 –0.452 –0.417
MTVI 0.055 0.059 0.060 0.049 0.052 0.055 0.047 0.056 0.054 0.056 0.053 0.062
NDVI 0.290 0.302 0.311 0.275 0.285 0.294 0.288 0.295 0.308 0.290 0.310 0.306
OSAVI 0.129 0.135 0.138 0.122 0.126 0.130 0.124 0.132 0.132 0.129 0.132 0.136
RDVI 0.196 0.207 0.209 0.186 0.191 0.197 0.184 0.202 0.196 0.195 0.195 0.208
SAVI 0.107 0.113 0.114 0.102 0.105 0.108 0.101 0.111 0.107 0.107 0.106 0.114
SGI 0.066 0.066 0.062 0.067 0.065 0.064 0.057 0.066 0.056 0.067 0.054 0.065
TDVI 0.888 0.894 0.899 0.880 0.885 0.890 0.887 0.891 0.898 0.887 0.899 0.897

DVI – difference vegetation index, EVI – enhanced vegetation index, GDVI – green difference vegetation index, GNDVI – 
green normalized difference vegetation index, GRVI – green ratio vegetation index, GVI – green vegetation index, IPVI – 
infrared percentage vegetation index, LAI – leaf area index, MNDWI – modification of normalized difference water index, 
MTVI – modified triangular vegetation index, NDVI – normalized difference vegetation index, OSAVI – optimized soil 
adjusted vegetation index, RDVI – renormalized difference vegetation index, SAVI – soil adjusted vegetation index, SGI – 
sum green index, TDVI – transformed difference vegetation index

Table 4. Results of factor analysis (eigenvalues and corresponding variance of factors)

Initial eigenvalues Extraction sums of squared loadings
ComponentTotal percentage 

of variance
cumulative 
percentage total percentage 

of variance
cumulative 
percentage

62.00 62.00 9.92 62.00 62.00 9.92 1
95.98 33.98 5.44 95.98 33.98 5.44 2
99.01 3.03 0.48 – – – –

Subsequently, the map of the change process cre-
ated with the OSAVI index was compared with the 
process of rainfall change during the above-men-
tioned periods, which is shown in Table 7.

After preparing the map of forest cover changes 
using the MNDWI index, the forest health status 
was evaluated over the period 2014–2015 (Fig. 3a). 
At this period, the greatest difference in the aver-
age annual temperature occurred between two 
consecutive years in the studied 12 years. So that, 
the temperature in 2015 increased by about 1.7°C 
compared to 2014. On the other hand, the average 
three-year temperatures in the 12-year period of 
the study have an increasing trend. Therefore, the 
effects of the temperature rise process in the form 

of a map of forest cover changes in the period of 
2005–2016 were investigated (Fig. 3b).

The changes in the area of forest cover health due 
to the influence of the average annual temperature 
change are summarized in Table 8.

DISCUSSION

The study of forest cover change showed that 
forest dieback is related to changes in climate pa-
rameters. As the highest average annual rainfall oc-
curred in the period 2005–2007, the OSAVI index 
change did not show much dieback in this period. 
However, in the period 2005–2010 with a decline 

https://doi.org/10.17221/61/2018-JFS
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Table 7. The trend of forest cover health change affected by rainfall in the studied periods

Period
Average 

precipitation 
(mm)

Average 
precipitation since 

2005 (mm)

Healthy 
forest area

Area of forest cover decline
low severity moderate severity high severity

(km2) (%) (km2) (%) (km2) (%) (km2) (%)
2005–2007 769.38 769.37 327.96 97.23 7.85 2.33 1.31 0.39 0.18 0.05
2005–2010 485.18 627.27 262.29 78 47.53 14.13 21.87 6.50 4.6 1.37
2005–2013 513.16 589.24 175.31 52.56 82.29 24.67 60.71 18.2 15.24 4.57
2005–2016 670.59 609.58 292.68 87.76 30.59 9.17 8.74 2.62 1.51 0.45

in rainfall, there was a 19% decline in the area of 
healthy forests. With the continuation of the de-
cline in rainfall in comparison with the average an-
nual long-term interval, in the period from 2005 to 
2013, although rainfall slightly increased in this pe-
riod in comparison with the previous one, we still 
witness a continuing drought. This greatly affected 
the dieback of trees at this time interval, so that the 
area of the healthy forest decreased about 45% in 
2005–2007 and about 25% in 2005–2010. In the pe-
riod 2005–2016, rainfall increased significantly in 
comparison with the previous two periods. There-
fore, in this period, the forest cover health condi-
tion improved significantly in the period from 2005 
to 2013, with the healthy forest area rising by about 
35% in the period from 2005 to 2013. 

The results showed that with increasing rain-
fall in the last three years from 2005 to 2016, the 
condition of forest trees improved in comparison 
with the previous period (2005 to 2013). However, 
when tree dieback is once affected by contributing 
factors, this increases their susceptibility to pests 
and other diseases. For this reason, despite the im-
provement of the forest cover condition in the last 
three years, we still see the dieback of oak trees in 
some areas. Some of the contributing and inciting 
factors cause severe and short-term damage, and if 
they stop, trees can recover relatively quickly, but if 

Table 5. Weight of matrix indices

Vegetation index Component 1 Component 2
DVI 0.798 0.587
EVI 0.868 0.441
GDVI 0.680 0.663
GNDVI 0.530 –0.810
GRVI 0.520 –0.818
GVI 0.961 –0.029
IPVI 0.827 –0.547
LAI 0.868 0.440
MNDWI –0.118 0.929
MTVI 0.942 0.284
NDVI 0.827 –0.547
OSAVI 0.992 –0.120
RDVI 0.980 0.193
SAVI 0.966 0.255
SGI 0.082 0.991
TDVI 0.828 –0.546

DVI – difference vegetation index, EVI – enhanced vegetation 
index, GDVI – green difference vegetation index, GNDVI – 
green normalized difference vegetation index, GRVI – green 
ratio vegetation index, GVI – green vegetation index, IPVI – 
infrared percentage vegetation index, LAI – leaf area index, 
MNDWI – modification of normalized difference water index, 
MTVI – modified triangular vegetation index, NDVI – nor-
malized difference vegetation index, OSAVI – optimized soil 
adjusted vegetation index, RDVI – renormalized difference veg-
etation index, SAVI – soil adjusted vegetation index, SGI – sum 
green index, TDVI – transformed difference vegetation index

Table 6. Correlation coefficients of the selected indices with climatic parameters

Vegetation index
Relative humidity Average temperature Precipitation

6 months annual 6 months annual 6 months annual
GVI 0.59 0.52 0.32 0.07 0.43 0.71
MTVI 0.64 0.67 0.67 0.19 0.38 0.76
OSAVI 0.63 0.64 0.13 0.05 0.50 0.80
RDVI 0.62 0.61 0.30 0.17 0.40 0.76
SAVI 0.62 0.61 0.34 0.22 0.38 0.75
MNDWI 0.00 0.00 0.63 0.75 0.32 0.12
SGI 0.07 0.06 0.53 0.71 0.25 0.00

GVI – green vegetation index, MTVI – modified triangular vegetation index, OSAVI – optimized soil adjusted vegetation 
index, RDVI – renormalized difference vegetation index, SAVI – soil adjusted vegetation index, MNDWI – modification 
of normalized difference water index, SGI – sum green index
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Table 8. The trend of forest cover health change under the influence of temperature during the studied periods

Period
Average 

temperature 
(°C)

Increase 
of temperature 

in the period (°C)

Healthy 
forest area

Area of forest cover decline
low severity moderate severity high severity

(km2) (%) (km2) (%) (km2) (%) (km2) (%)
2014–2015 17.02 1.1 244.71 72.47 76.89 22.77 14.07 4.14 2 0.59
2005–2016 17.65 1.7 326.84 96.04 11.39 3.35 1.47 0.43 0.17 0.6

Fig. 2. Forest cover health change using the optimized soil adjusted vegetation index for the periods 2005–2007 (a), 
2005–2010 (b), 2005–2013 (c), 2005–2016 (d)

the predisposing, contributing and inciting factors 
are aligned, then the recovery will be much slower 
(Prieto-Recio et al. 2015). Hence in the study 
area, due to the absence of proper management and 

underlying planning, oak forests face many prob-
lems and the lack of necessary studies and investi-
gations in this area increases the above problems. 
Since knowing the amount and location of dieback, 
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0	 0.75	1.5	 3	 4.5	 6

kilometre kilometre

0	 0.75	1.5	 3	 4.5	 6

kilometre kilometre
0	 0.75	1.5	 3	 4.5	 6

(a)� (b)

(c)� (d)

Healthy forest Low severity decline Moderate severity decline High severity decline

Decline class:
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its speed and area and its causes and reasons is es-
sential; the results of this research can be of great 
help for the sustainable management and conser-
vation of forest resources in the study area.

CONCLUSIONS

The correlation analysis of the selected indices 
with climatic parameters at the annual and 6-month 
scale showed that the OSAVI index and annual rain-
fall had a correlation of about 80% and the MNDWI 
index was correlated about 75% with average annual 
temperature. Furthermore, the correlation of indices 
with the desired climate parameters in the 6-month 
interval is less than annual. This means that the ef-
fects of climate factors in the long run are more tan-
gible. Based on the prepared map of the forest cover 
health changes, a close relationship between chang-
es in the dieback of forest cover area and changes in 
rainfall and temperature values was observed.
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