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Abstract

Magnussen S. (2018): An estimation strategy to protect against over-estimating precision in a LiDAR-based 
prediction of a stand mean. J. For. Sci., 64: 497–505.

A prediction of a forest stand mean may be biased and its estimated variance seriously underestimated when a model 
fitted for an ensemble of stands (stratum) does not hold for a specific stand. When the sampling design cannot support 
a stand-level lack-of-fit analysis, an analyst may opt to seek a protection against a possibly serious over-estimation of 
precision in a predicted stand mean. This study propose an estimation strategy to counter this risk by an inflation of 
the standard model-based estimator of variance when model predictions suggest non-trivial random stand effects, a 
spatial distance-dependent autocorrelation in model predictions, or both. In a simulation study, the strategy performed 
well when it was most needed, but equally over-inflated variance in settings where less protection was appropriate.
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In forest inventories supported by an airborne la-
ser scanning, it has become a widespread practice to 
develop stratum-specific models for the unit-level 
prediction of a forest attribute (Y) of interest using 
a few selected LiDAR metrics (X) correlated with Y 
as predictors (Næsset 2004; Kangas et al. 2016; 
Breidenbach et al. 2018). Here, a unit is synony-
mous with an area commensurate to that of a field 
inventory plot delivering data on Y and a shape that 
facilitates a tessellation of a stand polygon. Stratum-
specific models are typically applied to stands with a 
similar species composition, canopy structure, and 
other attributes used to define a stratum. Stands 
in a stratum are expected to have different condi-
tional means of Y given their X values viz. Y|X and, 
by extension, a non-zero among-stand variance in 
model residuals (Köhl, Magnussen 2014). A pre-
diction of a stand mean and estimating the uncer-
tainty inherent in a prediction is important for an 
efficient management of the forest (Melville et al. 
2015; Saarela et al. 2015a; Kangas et al. 2018). 
While a model may provide a good first-order ap-
proximation to a stand mean, it is also possible that 

a model prediction is biased when the employed 
model does not hold true for the stand in question 
(Claeskens, Hjort 2008; Chambers 2011). In 
theory, models with a random stand-effect in one 
or more of the parameters of a model would mini-
mize this risk (Nanos et al. 2004; Breidenbach, 
Astrup 2012; Maltamo et al. 2012; Fortin et al. 
2016; Mauro et al. 2016; Magnussen, Breiden-
bach 2017; Magnussen et al. 2017). However, in 
practice within stratum sampling designs rarely – if 
ever – affords an estimation of stand effects since 
most stands are either without a representation in 
the sample or only represented once (Junttila et 
al. 2013; Saarela et al. 2015b). Stands represented 
by two or more sample units are rare.

A direct consequence of a bias in a predicted 
mean is that a model-based estimate of the uncer-
tainty (here variance) in a predicted mean will be 
liberal (optimistic). A within-stand positive dis-
tance dependent autocorrelation in actual (true but 
unknown) unit-level model residuals will also con-
tribute to an under-estimation of uncertainty un-
less dealt with (Breidenbach et al. 2016). Simula-
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tion studies have demonstrated the importance of 
obtaining reasonable approximations to an other-
wise non-estimable among-stand variance in Y|X 
and to any spatial autocorrelation in model residu-
als (Magnussen 2016; Magnussen et al. 2016a; 
Magnussen, Breidenbach 2017; Magnussen 
et al. 2017). The same studies (Ibid) and Rao and 
Hidiroglou (2003) proposed estimators that could, 
to various degrees, “capture” simulated stand ef-
fects and thereby mitigate the risk of overestimating 
precision. Yet the simulations also indicated that a 
default – across the board – use of variance estima-
tors designed to capture possible stand effects of not 
be the most efficient estimation strategy. A mixed 
strategy based on information indicative of the pres-
ence (absence) of important among-stand variance 
in Y|X or a spatial autocorrelation in model residu-
als might be better.

In this study, we propose an estimation strategy 
for the assessment of the uncertainty in a model-
based prediction of a stand mean in settings where 
the sampling design does not support the estima-
tion of an among-stand variance in Y|X. To wit: the 
decision to inflate a standard model-based vari-
ance estimator depends on the outcome of a test 
on the significance of: (i) the among-stand variance 
in Y|X; and (ii) the within-stand spatial-autocorre-
lation in model residual errors. The proposed es-
timation strategy is successful when it lowers the 
risk of over-estimating the precision of a predicted 
stand mean. Two indicators obtained from simu-
lated sampling in artificial populations are used to 
assess success: (i) the ratio of expected to empirical 
variance of a prediction of a stand mean, and (ii) 
the achieved coverage rate of nominal 95% confi-
dence intervals.

Results with simulated sampling from 27 artifi-
cial populations support the proposed strategy.

MATERIAL AND METHODS

A proposed estimation strategy. The proposed 
estimation strategy is to use a standard (benchmark) 
estimator of variance for a stand mean only when 
unit-level predictions suggest an absence of stand-
effects in Y|X and an absence of a variance inflating 
autocorrelation in model residual errors. In all oth-
er cases, an inflated estimate of the standard vari-
ance is used as a protection against over-estimating 
precision. The strategy is evaluated with simulated 
sampling from artificial populations, and a linear 
model with two predictors for predicting a stand-
level mean of Y. For the analyst who subscribes to 

the strategy, the variance estimator to use for a pre-
dicted stand mean is in Eq. 1.

Artificial populations and sampling design. 
Each population is composed of N units arranged 
in a square array and subdivided to M = 400 square 
stands each with L units (L = 9, 49, or 121). There-
fore N is 3,600 (L = 9), 19,600 (L = 49), or 48,400 (L = 
121). Random sampling without replacement of one 
unit from each of n randomly selected stands was 
executed with sample sizes n = 50, 100, and 200.

All populations are trivariate (x1, x2, y). The three 
variables are standard Gaussian (mean of zero and a 
variance of one) with a fixed correlation structure: 
ρ(x1, y) = 0.85, ρ(x2, y) = 0.40, and ρ(x1, x2) = 0.50. 
A spatial distance dependent autocorrelation in x 
and y was introduced via first-order autoregressive 
(AR1) processes (Harvey 1981) with a one-unit-
lag correlation coefficient φ1 equal to 0.0, 0.2 or 0.5. 
These levels are relevant to practice (Czaplewski 
et al. 1994; Breidenbach et al. 2008; Viana et al. 
2012; Magnussen et al. 2016b; Mauro et al. 2017). 
The two predictors have identical AR1 lag-one cor-
relation coefficients.

The proposed strategy is evaluated in a factorial 
design with 27 settings (3 stand sizes, L × 3 levels of 
φ1,y × 3 levels of φ1,x) times the above three sample 
sizes. The sampling design does not ensure a spa-
tially balanced sampling (Grafström, Ringvall 
2013) and it has no incidence of multiple observa-
tions from a single stand. Sampling with each of the 
81 combinations of L, φ1,y, φ1,x, and n was replicated 
600 times. Six hundred replications yields an expect-
ed standard error of 1% on an achieved coverage of a 
nominal 95% confidence interval for the actual stand 
mean (coverage is the proportion of estimated con-
fidence intervals that includes the true stand mean) 
(Rao, Hidiroglou 2003).

The simulation of the triplets (y, x1, x2)i,j i,j = 1, …, 
√N
—

 in a population with the above correlations 
and pre-specified AR1 processes is described in 
(Magnussen et al. 2016a). In a first-step, gener-
ate three √N

—
 × √N

—
 matrices with standard Gaussian 

variables, and the appropriate AR1 process along 
rows and columns (Gupta, Nagar 1999), then 
pre-multiply these values – after reformatting to a 
N × 3 matrix – with the square root of a 3 × 3 ma-
trix (Meini 2004) with the above variable correla-
tion coefficients (Chilès, Delfiner 1999). In a last 
step, reformat the generated N × 3 matrix back to a 
√N
—

 × √N
—

 matrix in order to re-establish the original 
(spatial) ordering of the population units. A stand-
ardization to a mean of zero and a variance of one in 
each variable was done prior to sampling. As stated 
above, there are no explicitly induced stand effects 
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in the simulations. Locally, however, the global AR1 
processes may, by chance, generate apparent stand 
effects in X, Y, or both when the average covariance 
among stand units is non-zero (Nanos et al. 2004; 
Finley et al. 2008, 2009), or by spatial confounding 
(Hodges, Reich 2010; Paciorek 2010; Hughes, 
Haran 2013; Thaden, Kneib 2017).

Prediction of a stand mean. Upon completion of 
a sample, the sample data was fitted – by ordinary 
least squares techniques (Draper, Smith 1998) – 
to a unit-level linear model with yi as the depend-
ent variable and x1i and x2i as predictors (i = 1, …, 
n) (Claeskens, Hjort 2008). Accordingly, a predic-
tion of Y for the ith unit (ŷi) is obtained from Eq. 1:

0 1 1 2 2β β βˆ ˆ , 1, ,ˆˆi i i iy x x e i N      � (1)

where:
ei	– �unknown residual error with an assumed mean of 

zero and an assumed normal distribution with vari-
ance σe

2. In all predictions, ei is set to its expected 
value of zero,

β̂k (k = 0, 1, 2)	– least-squares regression coefficient.

For the mth stand, the predicted mean (ỹm) is cal-
culated by Eq. 2:

0 1 1 2 2β̂ β β ,ˆ ˆ  1, , 400m m my x x m M      � (2)

where:
x–1m, x–2m	– means of x1 and x2 in the mth stand.

Proposed estimator of variance. For an analyst 
subscribing to the proposed strategy, the estimator 
of the variance in a ỹm is given in Eq. 3:

        2
1 2 1 2 | , st ndˆ aVar 1, , Σ β 1, ,ˆ δ  σˆ t

m m m m m A yy x x x x     x � (3)

where:
Σ̂(β)	– �standard sample-based estimator of the variance-

covariance matrix of the OLS regression coeffi-
cients β,

δA	 – �binary indictor (1/0) of the assumed statistical sig-
nificance of σ̈ 2ŷ|x, stand,

σ̂ e
2	 – �sample-based estimate of the residual variance 

computed from the empirical residuals êi = ŷi – yi, 
i = 1, …, n,

γWm	– �stand-specific variance inflation factor (≥ 1) due to 
an assumed spatial autocorrelation process in the 
(unknown) model residuals in stand m,

t	 – transpose of a vector or matrix,
σ̈ 2ŷ|x, stand	– �proxy for the among-stand variance in Y|X 

(defined below) which cannot be estimated 
directly from the sample data.

The proxy σ̈ 2ŷ|x, stand is here taken as equal to the 
ANOVA-based ratio ρ̂ŷ of the among-stand vari-

ance to the total variance in ŷ times σ̂ e
2 (Donner 

1986; Searle et al. 1992). Note, the proxy differs 
numerically (slightly) from previously proposed 
proxies (Magnussen 2016; Magnussen, Brei-
denbach 2017). The current proxy is deemed more 
intuitive. When ρ̂ŷ exceeds 1.96 times its standard 
error (Donner 1986), the stand-effects in Y|X are 
deemed statistically significant and δA is set to one, 
otherwise δA = 0.

An autocorrelation in model residuals can arise 
from autocorrelations in X, Y, or both. For the de-
signs used here and in a typical forest inventory, it 
will not be possible to obtain a direct estimate of this 
autocorrelation. Again, we resort to ŷ to provide an 
approximation (Magnussen et al. 2016a). Specifi-
cally, a maximum likelihood estimate (MLE) of the 
AR1 coefficient φ1,m in ŷ (Harvey 1981) was ob-
tained for each stand m = 1, …, M = 400. The infla-
tion of the within-stand residual variance by a non-
null φ̂1,m depends on the among-unit Manhattan 
distances (Black 2006) d and their frequencies – fd 
(Magnussen 2001). The choice of distance met-
ric is not important for the estimation of σ̈ 2ŷ|x, stand, 
and as demonstrated in the results, also unimpor-
tant for the inflation of the residual variance due to 
autocorrelation. The inflation factor γWm was set to 
L–2Σd fd(0.4φ̂ 1m(ŷ))d when φ̂1,m was greater than 1.96 
times its estimated standard error, and otherwise to 
1. Apart from the factor 0.4, the calculation of the 
inflation factor γWm follows standards procedures 
for an AR1 process within a square cluster of size 
L (Magnussen 2001). The factor 0.4 was argued in 
Magnussen (2016).

Hence, if δA = 0 and, by definition, γWm = 1, the esti-
mator in Eq. 3 converts to the standard model-based 
estimator of variance in a model-based prediction of 
a stand mean (Chambers, Clark 2012). For nota-
tional convenience, the standard estimator of vari-
ance will be referred to as Vâr0(ỹm). With δA = 1 and 
γWm ≥ 1, the estimator in Eq. 3 accounts for model 
error variance, among stand variance in Y|X, model 
residual error variance, and autocorrelation among 
within-stand residual errors. With δA = 0 and γWm ≥ 1, 
the estimator in Eq. 3 accounts for model error vari-
ance, model residual error variance, and autocorrela-
tion among within-stand model residual errors. Ei-
ther way, the estimator will be referred to as Vâr1(ỹm).

Evaluation of the estimation strategy. The pro-
posed estimation strategy is successful when it low-
ers the risk of over-estimating the precision of a pre-
dicted stand mean. Two indicators are used to assess 
the success.

First, the estimate of variance in a prediction of a 
stand mean with or without the estimation strategy 

         2 2 2 1
1 2 1 2 | , stand | , standˆ ˆVar 1, , Σ β 1, , δ  γˆ ˆσ σ δ σˆt

m m m m m A y e A y Wmy x x x x L       x x
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is compared to the empirical mean squared error 
(MSE). The MSEs were computed from the 600 rep-
licate (r) estimates of a stand mean (Eq. 4):

   26001
,1

MSE 600ˆ
m m r mr

y y y


   � (4)

where:
ỹm,r	– predicted mean in the rth replicate,
y–m	 – actual stand mean of Y.

Under the assumption of a correct model speci-
fication and independent and identically distribut-
ed model residuals, the ratio R̂0 = Erep, m[Vâr0(ỹm)]/ 
Erep, m[MSE(ỹm)] with expectations taken over repli-
cations (reps) and stands (m = 1, …, M = 400) is one. 
The same holds for the ratio R̂1 based on Vâr1(ỹm). 
When R̂0 < 1 and R̂1 is closer to 1 than R̂0, the pro-
posed estimation strategy should be preferred. 
When R̂0 ≥ 1, the variance with a ratio closest to 
1.0 should be favored. A clear preference may not 
emerge in other situations.

Second, we also use the achieved coverage of nom-
inal 95% confidence interval as an indicator of suc-
cess. A confidence interval for the true stand mean 
of Y is computed on a routine basis in forest invento-
ries supported by airborne laser scanner data (ALS) 
viz. LiDAR data. It is therefore important to assess 
how often a computed nominal confidence interval 
includes the actual stand mean. The relative fre-
quency (in 600 replications) of inclusion is denoted 
coverage – CO95 (Rao, Hidiroglou 2003). A cov-
erage below the nominal (expected) coverage sug-
gest an over-estimation of precision. The proposed 
estimation strategy is successful when achieved 
coverage is closer to the nominal expectation (here 
0.95) than with the standard (benchmark) estimator 
of variance.

RESULTS AND DISCUSSION

Apparent stand effects

Introducing a spatial autocorrelation in a stand-
ard Gaussian variable y, x or both – in a popula-
tion tessellated by stands with units arranged in 
a regular array – generated an apparent among-
stand variance in y|x (viz. the intercept in the lin-
ear model). Across all replications, the mean of 
ANOVA-based estimates of the among-stand vari-
ance in y|x was 0.04 (median 0.0) when the nominal 
AR1 coefficient φ1,y was 0, 0.12 (median 0.14) with 
φ1,y = 0.2, and 0.29 (median 0.35) with φ1,y = 0.5. A 
graphical representation of this trend is in Fig. 1. 
Parallel trends exist for x1 and x2. As expected, from 
the central limit theorem (Dai 2004), the apparent 
among-stand variance in y|x decreased with stand-
size. The decline was approximately linear within 
the limits of the test settings with a slope of –0.6% 
per increase of one units in stand size. An autocor-
relation in x also modified (confounded) the ap-
parent among-stand effects in y|x. In a non-linear 
exponential (log-linear) regression model with an 
intercept, stand size, φ1,x, and φ1,y as explanatory 
variables, the regression coefficient of 0.99 to φ1,x 
was highly significant t̂  = 10.28 indicating an in-
crease in σ̂ 2y|x, stand of approximately 13% for every 
0.1 increase in φ1,x. The effect of an increase of 0.1 
in φ1,y was approximately four times stronger.

The success of the proposed estimation strategy 
for the variance of a predicted stand mean depends 
on how well σ̈ 2ŷ|x, stand approximates σ̂ 2y|x, stand. Fig. 2 
indicates the achievements. Although the correla-
tion was 0.7, it becomes clear that there are several 
cases with a non-trivial over-estimation; foremost 

Fig. 1. Examples of apparent among-stand variance in y|x introduced by a spatial autocorrelation in y
Means of y in 400 stands in a 20 × 20 array are indicated with gray tones (minimum is black, maximum is white). The 
examples are with a stand-size of 49 units in a square array. The strength of the AR1 coefficient (φ1) in y and the ANOVA 
estimate of the apparent among-stand variance in y|x (i.e. σ̂ 2y|x, stand) is indicated

φ1,y = 0.5, σ̂ 2y|x, stand = 0.1126 φ1,y = 0.2, σ̂ 2y|x, stand = 0.0257 φ1,y = 0, σ̂ 2y|x, stand = 0.0026



J. FOR. SCI., 64, 2018 (12): 497–505	 501

in settings with φ1,x > φ1,y where the overestimation 
appears to increase with the absolute difference be-
tween φ1,x and φ1,y. On average, σ̈ 2ŷ|x, stand over-esti-
mated σ̂ 2y|x, stand by 38%. Stand size and sample size 
had no statistically significant effect on the infla-
tion. Results would not have improved with previ-
ously proposed proxies (Magnussen 2016; Mag-
nussen, Breidenbach 2017). The overestimation, 
with φ1,x  > 0 and φ1,y = 0, was expected since a posi-
tive φ1,x will, as detailed above, generate stronger 
apparent among-stand variances in predictions of ŷ 
than in y. The restriction σ̈ 2ŷ|x, stand ≡ 0, when ρ̂ŷ was 
less than or equal to 1.96 times its standard error, 
did not provide an effective protection against an 
overestimation because ρ̂ŷ was deemed significant 
in all cases with either φ1,y or φ1,x greater than or 
equal to 0.2. A correction would require a de-cor-
relation of within-stand predictions (Kessy et al. 
2018). It was considered, but deemed impractical. 
In settings with the smallest stand size (9 units), 
and no autocorrelation in y or x, the ρ̂ŷ was ac-
cepted as greater than zero in approximately one 
in every six tests of significance. In stands with 49 
units, the frequency dropped to one in ten, and to 
zero in the stands with 121 units.

The proposed proxy for – an otherwise non-es-
timable within-stand AR1 coefficient – in model 
residual errors (φ̂1m,ŷ) was only (on average) mod-
erately correlated (0.67) with the empirical MLE 
estimates of the autocorrelation parameter (φ̂1m,ê). 
On average (over stands and replications), the 
proxy was 2.6 times too small. Fig. 3 illustrates 
the association between the proxy and its target. 
The underestimation suggests, at first glance, an 
increase to the multiplier 0.4 (Magnussen et al. 
2016a) applied to the autocorrelation in predic-
tions of Y. However, when the simulations were re-
peated with a multiplier of 1.0 only minor changes 

in the averages taken over stands and replications 
were noted. For example, achieved coverages, with 
a mean change of 0.3% changed by less than 1% in 
two out of three cases. Where changes were larger 
they were in the direction of over-coverage. None 
of the differences were statistically significant dif-
ferent from 0 at the 5% level of uncertainty (Holm 
1979). Hence, a user can freely choose a multiplier 
between 0.4 and 1.0. The under-estimation of the 
autocorrelation in model residuals leads to a re-
duction of the inflation factor γWm applied to the 
residual variance (cf. Eq. 3). Across the 81 settings, 
the inflation based on actual empirical model re-
siduals would have been 1.7 whereas it was 1.2 
when derived from the proxy.

The ratio R̂1 of the expected variance Vâr1(ỹm) – 
obtained under the proposed estimation strategy – 
to the actual mean squared error, was, as intended, 
always greater than or equal to the ratio R̂0 generated 
from the benchmark variance estimator Vâr0(ỹm). 
They were almost equal (1.135 and 1.127) and nearly 
perfectly correlated in settings with no autocorrela-
tion in x and y (Fig. 4). The positive deviation from 
1.0 follows from the expectation of a quadratic form 
(Searle 1982). For the same reason, both ratios 
also increased with a decreasing stand size and a 
decreasing sample size. In settings with a nominal 
AR1 process in both x and y of 0.2, the R̂0 dropped 

Fig. 2. The ANOVA-based estimates of the apparent 
among-stand variance in y|x (σ̂ 2y|x, stand) plotted against the 
proposed proxy (σ̈ 2ŷ|x, stand)
A one-to-one line is provided for orientation

σ̂ 2 y|
x,

 st
an

d

σ̈ 2ŷ|x, stand

φ1,x = 0, φ1,y = 0
φ1,x = 0, φ1,y = 0.2
φ1,x = 0, φ1,y = 0.5
φ1,x = 0.2, φ1,y = 0
φ1,x = 0.2, φ1,y = 0.2
φ1,x = 0.2, φ1,y = 0.5
φ1,x = 0.5, φ1,y = 0
φ1,x = 0.5, φ1,y = 0.2
φ1,x = 0.5, φ1,y = 0.5

Fig. 3. Maximum likelihood estimates of the first-order 
autoregressive coefficient in empirical model residuals (φ̂1,ê) 
plotted against proposed proxy (φ̂1,ŷ)

φ1,x = 0, φ1,y = 0
φ1,x = 0, φ1,y = 0.2
φ1,x = 0, φ1,y = 0.5
φ1,x = 0.2, φ1,y = 0
φ1,x = 0.2, φ1,y = 0.2
φ1,x = 0.2, φ1,y = 0.5
φ1,x = 0.5, φ1,y = 0
φ1,x = 0.5, φ1,y = 0.2
φ1,x = 0.5, φ1,y = 0.5

φ̂1,ŷ

φ̂ 1,
ê

Fig. 4. Scatterplot of ratios R̂1 and R̂0 (cf. text for details) 
in settings with equal spatial autocorrelation in x and y
A gray dashed line indicates a target ratio of 1.0

R̂0

R̂ 1

φ1,x = φ1,y = 0.0
φ1,x = φ1,y = 0.2
φ1,x = 0, φ1,y = 0.5
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to 0.70 whereas R̂1 = 1.14 remained close to the value 
in settings without a spatial autocorrelation. Here, 
stand size and sample size effects became less pro-
nounced. Increasing the lag-one autocorrelation in 
x and y to 0.5 caused a drop in R̂0 to 0.31. Again, R̂1 
with a value of 1.12 remained close to the value in 
settings without a spatial autocorrelation. Thus, in 
settings where the strength of a spatial autocorrela-
tion in the dependent and the explanatory variables 
are comparable, the proposed estimation strategy 
appears to work as intended by providing protection 
against an over-estimation of precision.

With different strength of the spatial autocorrela-
tion in x and y the performance of R̂1 became un-
even. In settings with a nominal positive autocorre-
lation in y but none in x, both ratios were below 1 
(Fig. 5) yet with R̂1 closer to 1.0 than R̂0, and R̂0 de-
creasing much faster with an increase in φ1,y than 
R̂1. The estimation strategy seems preferable also 
in these settings. A different picture emerges when 
a positive autocorrelation is restricted to x. Then 
R̂1 is 1.45 (φ1,x = 0.2) and 2.64 (φ1,x = 1.64) with R̂0 
at 0.98 and 0.80. In these two settings, the estima-
tion strategy is quite conservative with more pro- 
tection – against over-estimating precision – than 
needed. The performance of R̂1 in settings with φ1,x > 
φ1,y > 0 and φ1,y > φ1,x > 0 is displayed in Fig. 6. The 
ratios for the standard estimator of variance came 
to 0.58 and 0.37, respectively. Corresponding val-
ues for R̂1 came to 1.95 and 0.85. Thus, in one case 
(φ1,y > φ1,x > 0) the estimation strategy seems to 

work, in the other (φ1,x > φ1,y > 0), the strategy pro-
vides a conservative estimate of variance.

Without access to estimates of φ1,y and the 
among-stand variance in y|x, an analyst must resort 
to φ̂1,y and ρ̂ŷ or other means to get an idea about 
the need for a protection against a possible serious 
over-estimation of precision of a predicted stand 
mean. The proposed estimation strategy appears 
to provide a critical protection when the standard 
variance estimator fails. The possible prospect of 
an over-protection ought to be a lesser detractor 
than a gross over-estimating of precision.

Results on coverage of nominal 95% confidence in-
tervals (CO95) are in Table 1 as marginal Tobit regres-
sion estimates of CO95 in nine combinations of φ1,x, 
φ1,y (Johnston, DiNardo 1997). They are marginal 
with respect to stand- and sample-size, which had 
similar effect on the two sets of coverage values – 
test: Hausman’s specification test (Hausman 1978). 
Moreover, their effect-sizes were an order of magni-
tude weaker than those associated with φ1,x or φ1,y. As 
expected, the results reflect, to a large degree, those 
for the ratios R̂0 and R̂1. With the estimation strategy, 
coverage stays above 0.90 and it provides the desired 
protection when φ1,x = φ1,y > 0 but also provides too 
much protection in settings with φ1,x > φ1,y ≥ 0. For 
confidence intervals computed with the standard es-
timator of variance, the coverage is poor in settings 
with a positive autocorrelation in y.

In simulations with random stand-effects in the 
intercept of a linear model linking Y to X and a possi-
ble autocorrelation in Y, X, or both, the performance 
of the standard (benchmark) estimator of variance 
was worse than depicted here (Magnussen 2016; 

R̂ 1

R̂0

Fig. 5. Scatterplot of ratios R̂1 and R̂0 (cf. text for details) 
in settings with a positive spatial autocorrelation in either 
x or y but not both. A gray dashed line indicates a target 
ratio of 1.0

φ1,x = 0.0, φ1,y = 0.2
φ1,x = 0.0, φ1,y = 0.5
φ1,x = 0.2, φ1,y = 0.0
φ1,x = 0.5, φ1,y = 0.0

Fig. 6. Scatterplot of ratios R̂1 and R̂0 (cf. text for details) in 
settings with unequal but positive spatial autocorrelation 
in x and y. A gray dashed line indicates a target ratio of 1.0

R̂0

R̂ 1

φ1,x > φ1,y > 0.0
φ1,y > φ1,x > 0.0

Table 1. Marginal Tobit regression estimates and standard 
errors of coverage in nominal 95% confidence interval 
obtained with a standard estimator of variance Vâr0(ỹm) 
and the variance obtained with the proposed estimation 
strategy Vâr1(ỹm). Estimates of standard errors are in pa-
rentheses

φ1,x φ1,y

CÔ95

via Vâr0(ỹm) via Vâr1(ỹm)

0.0 0.0 0.93 (0.01) 0.95 (0.02)
0.0 0.2 0.91 (0.01) 0.93 (0.03)
0.0 0.5 0.78 (0.01) 0.91 (0.03)
0.2 0.0 0.95 (0.01) 0.98 (0.02) 
0.2 0.2 0.89 (0.01) 0.96 (0.02) 
0.2 0.5 0.76 (0.01) 0.93 (0.03)
0.5 0.0 0.92 (0.01) 1.00 (0.00)
0.5 0.2 0.85 (0.01) 0.99 (0.01)
0.5 0.5 0.71 (0.01) 0.96 (0.02)
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Magnussen et al. 2016a; Magnussen, Breiden-
bach 2017). In practical applications with actual 
stand effects, the proposed strategy can be expected 
to be least as attractive as in the settings tested here 
because the correlation between X and Y will then 
generate apparent stand effects in predictions of y.

CONCLUSIONS

In forest enterprise inventories – supported with 
census data of LiDAR metrics from an airborne la-
ser scanning and correlated with the attribute of in-
terest – it is now a common practice to predict the 
value of key forest inventory attributes for every 
unit (viz. pixel or ALS plot) in a stand from a subset 
of LiDAR metrics (Næsset 2004; Maltamo et al. 
2010; Fernández-Landa et al. 2018). Due to cost 
restrictions on sample sizes in forest inventories 
(Junttila et al. 2013), a fitted model is typically 
stratum-specific and assumed to provide unbiased 
stand-level predictions. For stratum-level summa-
ries, statistics, and inference the success of LiDAR 
is recognized (Wulder et al. 2013; Melville et al. 
2015; Gregoire et al. 2016). At the scale of forest 
stands, however, predictions from a higher-level 
model may be biased, and textbook estimators of 
uncertainty may grossly over-estimate precision 
due to unaccounted stand effects, spatial autocor-
relations, or both. The proposed estimation strat-
egy did not address the bias problem. The proposed 
strategy is also relevant for strata with seemingly 
homogenous stands even if the within-stand spa-
tial autocorrelation may be weak or zero because 
a within-stand homogeneity promotes the among-
stand variance which can constitute an even greater 
problem than autocorrelation per se (Magnussen 
et al. 2016a; Magnussen, Breidenbach 2017).

The proposed estimation strategy is tied to a line-
ar model linking Y to X. Alternative area-based and 
single-tree models are also sensitive to the impact 
stand effects and spatial autocorrelation (Mauro 
et al. 2017). Strategies to counter over-estimating 
precision are warranted also in these cases. Finite 
mixture modelling (Zhang et al. 2004), robust var-
iance estimation (Binder 1983), or ANOVA-based 
estimation of an among-stand variance derived 
from clusters of stands with two to four field sam-
ples, may provide avenues towards refined estima-
tion strategies.

The prospect of grossly over-estimating precision 
of a predicted stand mean, ought to act as a suffi-
cient motivator for continued efforts to address the 
small area estimation problem in forest inventories.
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