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Abstract

Magnussen S. (2018): An estimation strategy to protect against over-estimating precision in a LiDAR-based
prediction of a stand mean. J. For. Sci., 64: 497-505.

A prediction of a forest stand mean may be biased and its estimated variance seriously underestimated when a model
fitted for an ensemble of stands (stratum) does not hold for a specific stand. When the sampling design cannot support
a stand-level lack-of-fit analysis, an analyst may opt to seek a protection against a possibly serious over-estimation of
precision in a predicted stand mean. This study propose an estimation strategy to counter this risk by an inflation of
the standard model-based estimator of variance when model predictions suggest non-trivial random stand effects, a
spatial distance-dependent autocorrelation in model predictions, or both. In a simulation study, the strategy performed

well when it was most needed, but equally over-inflated variance in settings where less protection was appropriate.
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In forest inventories supported by an airborne la-
ser scanning, it has become a widespread practice to
develop stratum-specific models for the unit-level
prediction of a forest attribute (Y) of interest using
a few selected LiDAR metrics (X) correlated with Y
as predictors (NESSET 2004; KANGAS et al. 2016;
BREIDENBACH et al. 2018). Here, a unit is synony-
mous with an area commensurate to that of a field
inventory plot delivering data on Y and a shape that
facilitates a tessellation of a stand polygon. Stratum-
specific models are typically applied to stands with a
similar species composition, canopy structure, and
other attributes used to define a stratum. Stands
in a stratum are expected to have different condi-
tional means of Y given their X values viz. Y|X and,
by extension, a non-zero among-stand variance in
model residuals (KOHL, MAGNUSSEN 2014). A pre-
diction of a stand mean and estimating the uncer-
tainty inherent in a prediction is important for an
efficient management of the forest (MELVILLE et al.
2015; SAARELA et al. 2015a; KANGAS et al. 2018).
While a model may provide a good first-order ap-
proximation to a stand mean, it is also possible that
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a model prediction is biased when the employed
model does not hold true for the stand in question
(CLAESKENS, HjorT 2008; CHAMBERS 2011). In
theory, models with a random stand-effect in one
or more of the parameters of a model would mini-
mize this risk (NANOs et al. 2004; BREIDENBACH,
AsTRUP 2012; MALTAMO et al. 2012; FORTIN et al.
2016; MAURO et al. 2016; MAGNUSSEN, BREIDEN-
BACH 2017; MAGNUSSEN et al. 2017). However, in
practice within stratum sampling designs rarely — if
ever — affords an estimation of stand effects since
most stands are either without a representation in
the sample or only represented once (JUNTTILA et
al. 2013; SAARELA et al. 2015b). Stands represented
by two or more sample units are rare.

A direct consequence of a bias in a predicted
mean is that a model-based estimate of the uncer-
tainty (here variance) in a predicted mean will be
liberal (optimistic). A within-stand positive dis-
tance dependent autocorrelation in actual (true but
unknown) unit-level model residuals will also con-
tribute to an under-estimation of uncertainty un-
less dealt with (BREIDENBACH et al. 2016). Simula-
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tion studies have demonstrated the importance of
obtaining reasonable approximations to an other-
wise non-estimable among-stand variance in Y|X
and to any spatial autocorrelation in model residu-
als (MAGNUSSEN 2016; MAGNUSSEN et al. 2016a;
MAGNUSSEN, BREIDENBACH 2017; MAGNUSSEN
et al. 2017). The same studies (Ibid) and Rao and
HipiroGLou (2003) proposed estimators that could,
to various degrees, “capture” simulated stand ef-
fects and thereby mitigate the risk of overestimating
precision. Yet the simulations also indicated that a
default — across the board — use of variance estima-
tors designed to capture possible stand effects of not
be the most efficient estimation strategy. A mixed
strategy based on information indicative of the pres-
ence (absence) of important among-stand variance
in Y|X or a spatial autocorrelation in model residu-
als might be better.

In this study, we propose an estimation strategy
for the assessment of the uncertainty in a model-
based prediction of a stand mean in settings where
the sampling design does not support the estima-
tion of an among-stand variance in Y|X. To wit: the
decision to inflate a standard model-based vari-
ance estimator depends on the outcome of a test
on the significance of: (i) the among-stand variance
in Y|X; and (if) the within-stand spatial-autocorre-
lation in model residual errors. The proposed es-
timation strategy is successful when it lowers the
risk of over-estimating the precision of a predicted
stand mean. Two indicators obtained from simu-
lated sampling in artificial populations are used to
assess success: (i) the ratio of expected to empirical
variance of a prediction of a stand mean, and (ii)
the achieved coverage rate of nominal 95% confi-
dence intervals.

Results with simulated sampling from 27 artifi-
cial populations support the proposed strategy.

MATERIAL AND METHODS

A proposed estimation strategy. The proposed
estimation strategy is to use a standard (benchmark)
estimator of variance for a stand mean only when
unit-level predictions suggest an absence of stand-
effects in Y] X and an absence of a variance inflating
autocorrelation in model residual errors. In all oth-
er cases, an inflated estimate of the standard vari-
ance is used as a protection against over-estimating
precision. The strategy is evaluated with simulated
sampling from artificial populations, and a linear
model with two predictors for predicting a stand-
level mean of Y. For the analyst who subscribes to
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the strategy, the variance estimator to use for a pre-
dicted stand mean is in Eq. 1.

Artificial populations and sampling design.
Each population is composed of N units arranged
in a square array and subdivided to M = 400 square
stands each with L units (L = 9, 49, or 121). There-
fore Nis 3,600 (L =9), 19,600 (L = 49), or 48,400 (L =
121). Random sampling without replacement of one
unit from each of # randomly selected stands was
executed with sample sizes n = 50, 100, and 200.

All populations are trivariate (x,, x,, y). The three
variables are standard Gaussian (mean of zero and a
variance of one) with a fixed correlation structure:
p(x,, ¥) = 0.85, p(x,, ¥) = 0.40, and p(x,, x,) = 0.50.
A spatial distance dependent autocorrelation in x
and y was introduced via first-order autoregressive
(AR1) processes (HARVEY 1981) with a one-unit-
lag correlation coefficient ¢, equal to 0.0, 0.2 or 0.5.
These levels are relevant to practice (CZAPLEWSKI
et al. 1994; BREIDENBACH et al. 2008; VIANA et al.
2012; MAGNUSSEN et al. 2016b; MAURO et al. 2017).
The two predictors have identical AR1 lag-one cor-
relation coefficients.

The proposed strategy is evaluated in a factorial
design with 27 settings (3 stand sizes, L x 3 levels of
¢,, %3 levels of ¢, ) times the above three sample
sizes. The sampling design does not ensure a spa-
tially balanced sampling (GRAFSTROM, RINGVALL
2013) and it has no incidence of multiple observa-
tions from a single stand. Sampling with each of the
81 combinations of L, Gy P and 7 was replicated
600 times. Six hundred replications yields an expect-
ed standard error of 1% on an achieved coverage of a
nominal 95% confidence interval for the actual stand
mean (coverage is the proportion of estimated con-
fidence intervals that includes the true stand mean)
(RAao, HIDIROGLOU 2003).

The simulation of the triplets (y, x,, xz)l.,}. ij=1,..
VN in a population with the above correlations
and pre-specified AR1 processes is described in
(MAGNUSSEN et al. 2016a). In a first-step, gener-
ate three VN x VN matrices with standard Gaussian
variables, and the appropriate AR1 process along
rows and columns (GuprTA, NAGAR 1999), then
pre-multiply these values — after reformatting to a
N x 3 matrix — with the square root of a 3 x 3 ma-
trix (MEINT 2004) with the above variable correla-
tion coefficients (CHILES, DELFINER 1999). In a last
step, reformat the generated N x 3 matrix back to a
VN x VN matrix in order to re-establish the original
(spatial) ordering of the population units. A stand-
ardization to a mean of zero and a variance of one in
each variable was done prior to sampling. As stated
above, there are no explicitly induced stand effects
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in the simulations. Locally, however, the global AR1
processes may, by chance, generate apparent stand
effects in X, Y, or both when the average covariance
among stand units is non-zero (NANOS et al. 2004;
FINLEY et al. 2008, 2009), or by spatial confounding
(HobpGEs, REicH 2010; PAcIOoREK 2010; HUGHES,
HARAN 2013; THADEN, KNEIB 2017).

Prediction of a stand mean. Upon completion of
a sample, the sample data was fitted — by ordinary
least squares techniques (DRAPER, SMITH 1998) —
to a unit-level linear model with y, as the depend-
ent variable and Xy and x,; as predictors (i = 1, ...,
n) (CLAESKENS, HJORT 2008). Accordingly, a predic-
tion of Y for the i™ unit () is obtained from Eq. 1:

P, =By +Bx, +P,x,, +e,i=1...,N (1)

where:

e, — unknown residual error with an assumed mean of
zero and an assumed normal distribution with vari-
ance ¢”. In all predictions, e, is set to its expected
value of zero,

Bk (k=0,1,2) — least-squares regression coefficient.

For the m™ stand, the predicted mean (y) is cal-
culated by Eq. 2:

5}m :BO—"_Bl'flm+B2f2m’m:1""’M:400 (2)
where:
X, %,, — Means ofx1 and x, in the mth stand.

Proposed estimator of variance. For an analyst
subscribing to the proposed strategy, the estimator
of the variance in a y, is given in Eq. 3:

Vér(f/m) = (L Xips X2 )t x 2A:(B) X (Lflm"YZm ) +3, Gé\x, stand T 3)
+ (63 - 8/4629\.\-. stand )YWmEI
where:

i(B) — standard sample-based estimator of the variance-
covariance matrix of the OLS regression coeffi-
cients B,

— binary indictor (1/0) of the assumed statistical sig-
nificance of G;Ix' stand’

02 - sample-based estimate of the residual variance

computed from the empirical residuals &, = 7, — y,
i=1,..,n

Y., — Stand-specific variance inflation factor (> 1) due to
an assumed spatial autocorrelation process in the
(unknown) model residuals in stand m,

t — transpose of a vector or matrix,

(5';‘% «ana — Proxy for the among-stand variance in Y|X
(defined below) which cannot be estimated

directly from the sample data.
The proxy 6;lx’ «and 18 here taken as equal to the

ANOVA-based ratio f)y of the among-stand vari-
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ance to the total variance in j times 62 (DONNER
1986; SEARLE et al. 1992). Note, the proxy differs
numerically (slightly) from previously proposed
proxies (MAGNUSSEN 2016; MAGNUSSEN, BREI-
DENBACH 2017). The current proxy is deemed more
intuitive. When p, exceeds 1.96 times its standard
error (DONNER 1986), the stand-effects in Y|X are
deemed statistically significant and §, is set to one,
otherwise §, = 0.

An autocorrelation in model residuals can arise
from autocorrelations in X, Y, or both. For the de-
signs used here and in a typical forest inventory, it
will not be possible to obtain a direct estimate of this
autocorrelation. Again, we resort to j to provide an
approximation (MAGNUSSEN et al. 2016a). Specifi-
cally, a maximum likelihood estimate (MLE) of the
ARI coefficient ¢, in j (HARVEY 1981) was ob-
tained for each stand m = 1, ..., M = 400. The infla-
tion of the within-stand residual variance by a non-
null (T)Lm depends on the among-unit Manhattan
distances (BLACK 2006) d and their frequencies - f,
(MAGNUSSEN 2001). The choice of distance met-
ric is not important for the estimation of éyzﬁlxv stand?
and as demonstrated in the results, also unimpor-
tant for the inflation of the residual variance due to
autocorrelation. The inflation factor y,, was set to
L3, f,(0.4¢,, ()¢ when (f)l,m was greater than 1.96
times its estimated standard error, and otherwise to
1. Apart from the factor 0.4, the calculation of the
inflation factor v, follows standards procedures
for an ARI1 process within a square cluster of size
L (MAGNUSSEN 2001). The factor 0.4 was argued in
MAGNUSSEN (2016).

Hence, if § , = 0 and, by definition, y,, =1, the esti-
mator in Eq. 3 converts to the standard model-based
estimator of variance in a model-based prediction of
a stand mean (CHAMBERS, CLARK 2012). For nota-
tional convenience, the standard estimator of vari-
ance will be referred to as Var,(j,). With 8, = 1 and
Ywim 2 L the estimator in Eq. 3 accounts for model
error variance, among stand variance in Y|X, model
residual error variance, and autocorrelation among
within-stand residual errors. With 6, =0andy,, >1,
the estimator in Eq. 3 accounts for model error vari-
ance, model residual error variance, and autocorrela-
tion among within-stand model residual errors. Ei-
ther way, the estimator will be referred to as Var,(j, ).

Evaluation of the estimation strategy. The pro-
posed estimation strategy is successful when it low-
ers the risk of over-estimating the precision of a pre-
dicted stand mean. Two indicators are used to assess
the success.

First, the estimate of variance in a prediction of a
stand mean with or without the estimation strategy
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is compared to the empirical mean squared error
(MSE). The MSEs were computed from the 600 rep-
licate (r) estimates of a stand mean (Eq. 4):

J ~ _ 600 / - — \2
MSE(3,)=600">"(5,,~7,) (4)
where:

9., — predicted mean in the rt replicate,
y,, — actual stand mean of Y.

Under the assumption of a correct model speci-
fication and independent and identically distribut-
ed model residuals, the ratio f?o = Erep, m[Vﬁro(ffm)]/
E., IMSE(y )] with expectations taken over repli-
cations (reps) and stands (m = 1, ..., M = 400) is one.
The same holds for the ratio IAQI based on Var,(j,).
When R < 1 and R, is closer to 1 than R, the pro-
posed estimation strategy should be preferred.
When I§0 > 1, the variance with a ratio closest to
1.0 should be favored. A clear preference may not
emerge in other situations.

Second, we also use the achieved coverage of nom-
inal 95% confidence interval as an indicator of suc-
cess. A confidence interval for the true stand mean
of Yis computed on a routine basis in forest invento-
ries supported by airborne laser scanner data (ALS)
viz. LiDAR data. It is therefore important to assess
how often a computed nominal confidence interval
includes the actual stand mean. The relative fre-
quency (in 600 replications) of inclusion is denoted
coverage — CO,, (Rao, HIDIROGLOU 2003). A cov-
erage below the nominal (expected) coverage sug-
gest an over-estimation of precision. The proposed
estimation strategy is successful when achieved
coverage is closer to the nominal expectation (here
0.95) than with the standard (benchmark) estimator
of variance.

P, =0.5,6% g = 0.1126

ylx, stand

$,,=02,62

ylx, stand

RESULTS AND DISCUSSION
Apparent stand effects

Introducing a spatial autocorrelation in a stand-
ard Gaussian variable y, & or both — in a popula-
tion tessellated by stands with units arranged in
a regular array — generated an apparent among-
stand variance in y|x (viz. the intercept in the lin-
ear model). Across all replications, the mean of
ANOVA-based estimates of the among-stand vari-
ance in y|x was 0.04 (median 0.0) when the nominal
ARI1 coefficient ¢, , was 0, 0.12 (median 0.14) with
¢,, =02, and 0.29 (median 0.35) with ¢,,=05 A
graphical representation of this trend is in Fig. 1.
Parallel trends exist for x, and x,. As expected, from
the central limit theorem (Da1 2004), the apparent
among-stand variance in y|x decreased with stand-
size. The decline was approximately linear within
the limits of the test settings with a slope of —0.6%
per increase of one units in stand size. An autocor-
relation in & also modified (confounded) the ap-
parent among-stand effects in y|x. In a non-linear
exponential (log-linear) regression model with an
intercept, stand size, ¢, , and 9, as explanatory
variables, the regression coefficient of 0.99 to ¢, ,
was highly significant # = 10.28 indicating an in-
crease in 67, of approximately 13% for every
0.1 increase in ¢, .. The effect of an increase of 0.1
in ¢, , was approximately four times stronger.

The success of the proposed estimation strategy
for the variance of a predicted stand mean depends
on how well 67, approximates 63 . . Fig. 2
indicates the achievements. Although the correla-
tion was 0.7, it becomes clear that there are several
cases with a non-trivial over-estimation; foremost

=0.0257 ¢, =0, 62 =0.0026

y|x, stand —

Fig. 1. Examples of apparent among-stand variance in y|x introduced by a spatial autocorrelation in y

Means of y in 400 stands in a 20 x 20 array are indicated with gray tones (minimum is black, maximum is white). The
examples are with a stand-size of 49 units in a square array. The strength of the AR1 coefficient (¢,) in y and the ANOVA
estimate of the apparent among-stand variance in y|x (i.e. 632/|x, «tang) 18 indicated

500

J. FOR. SCL, 64, 2018 (12): 497-505



g L4 (pl.x: O’ q)l,y: 0

0.06
 ,=0,¢,=02
- 0.04 ¢ 41,704, =05
g £ ¢,,=02,¢, =0
U 0.02 v, =02,¢, =02

0 ¢, =02,¢, =05
5 ¢,,=05¢, =0

o, =050, =02
2¢,,=05¢, =05

0. 0.02 0.04 0.06

9
Gﬁ|x, stand

Fig. 2. The ANOVA-based estimates of the apparent
among-stand variance in y|x (G plotted against the
proposed proxy (6;

; )
y|x, stand
|%, stand)

A one-to-one line is provided for orientation

in settings with ¢, , > ¢, where the overestimation
appears to increase with the absolute difference be-
tween ¢, and ¢, . On average, éy%pc, stang OVer-esti-
mated 6;}6, «tana PY 38%. Stand size and sample size
had no statistically significant effect on the infla-
tion. Results would not have improved with previ-
ously proposed proxies (MAGNUSSEN 2016; MAG-
NUSSEN, BREIDENBACH 2017). The overestimation,
with ¢, . >0and ¢, =0, was expected since a posi-
tive ¢, will, as detailed above, generate stronger
apparent among-stand variances in predictions of j
than in y. The restriction 6;% and = 0, when ﬁj was
less than or equal to 1.96 times its standard error,
did not provide an effective protection against an
overestimation because p; was deemed significant
in all cases with either ¢,, or ¢, , greater than or
equal to 0.2. A correction would require a de-cor-
relation of within-stand predictions (Kessy et al.
2018). It was considered, but deemed impractical.
In settings with the smallest stand size (9 units),
and no autocorrelation in y or «, the f)y was ac-
cepted as greater than zero in approximately one
in every six tests of significance. In stands with 49
units, the frequency dropped to one in ten, and to
zero in the stands with 121 units.

The proposed proxy for — an otherwise non-es-
timable within-stand AR1 coefficient — in model
residual errors @’m,y) was only (on average) mod-
erately correlated (0.67) with the empirical MLE
estimates of the autocorrelation parameter ((T)lm,é)'
On average (over stands and replications), the
proxy was 2.6 times too small. Fig. 3 illustrates
the association between the proxy and its target.
The underestimation suggests, at first glance, an
increase to the multiplier 0.4 (MAGNUSSEN et al.
2016a) applied to the autocorrelation in predic-
tions of Y. However, when the simulations were re-
peated with a multiplier of 1.0 only minor changes
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4 ek, = 0, ¢, = 0

o A ¢, =0, 9, = 0.2
«¢,,.=0, 9, = 0.5
20, =02, P, = 0
v¢,,=02, P, = 0.2
c¢,, =02, P, = 0.5
o ¢, =05 9, = 0

o ¢, =05 9, = 0.2
a ¢, =05 P, = 0.5

Q
—
S

Fig. 3. Maximum likelihood estimates of the first-order
autoregressive coefficient in empirical model residuals (‘i’l,g)
plotted against proposed proxy ((I)w)

1.5
1.3 ° P = q)Ly =0.0

i N Ad,=6¢,,=02
1.1 ﬁ mA F) * ¢, =0,¢, =05
0.9 -

Fig. 4. Scatterplot of ratios f?l and f?o (cf. text for details)
in settings with equal spatial autocorrelation in x and y

A gray dashed line indicates a target ratio of 1.0

in the averages taken over stands and replications
were noted. For example, achieved coverages, with
a mean change of 0.3% changed by less than 1% in
two out of three cases. Where changes were larger
they were in the direction of over-coverage. None
of the differences were statistically significant dif-
ferent from O at the 5% level of uncertainty (HoLm
1979). Hence, a user can freely choose a multiplier
between 0.4 and 1.0. The under-estimation of the
autocorrelation in model residuals leads to a re-
duction of the inflation factor vy, applied to the
residual variance (cf. Eq. 3). Across the 81 settings,
the inflation based on actual empirical model re-
siduals would have been 1.7 whereas it was 1.2
when derived from the proxy.

The ratio f€1 of the expected variance Var,(y,) -
obtained under the proposed estimation strategy —
to the actual mean squared error, was, as intended,
always greater than or equal to the ratio f?o generated
from the benchmark variance estimator Vﬁro(&m).
They were almost equal (1.135 and 1.127) and nearly
perfectly correlated in settings with no autocorrela-
tion in # and y (Fig. 4). The positive deviation from
1.0 follows from the expectation of a quadratic form
(SEARLE 1982). For the same reason, both ratios
also increased with a decreasing stand size and a
decreasing sample size. In settings with a nominal
AR1 process in both x and y of 0.2, the f€0 dropped
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;-(5) K ©,,=00,¢, =02
15 Mok & 1= 00,¢,,=05
1.0F===- % oo * ¢, =02, ¢, = 0.0
i , 09, =05¢, =00
0.20.40.60.81.01.21.41.6
R

Fig. 5. Scatterplot of ratios Iél and IQO (cf. text for details)
in settings with a positive spatial autocorrelation in either
x or y but not both. A gray dashed line indicates a target
ratio of 1.0

to 0.70 whereas f?l = 1.14 remained close to the value
in settings without a spatial autocorrelation. Here,
stand size and sample size effects became less pro-
nounced. Increasing the lag-one autocorrelation in
x and y to 0.5 caused a drop in IAQO to 0.31. Again, &1
with a value of 1.12 remained close to the value in
settings without a spatial autocorrelation. Thus, in
settings where the strength of a spatial autocorrela-
tion in the dependent and the explanatory variables
are comparable, the proposed estimation strategy
appears to work as intended by providing protection
against an over-estimation of precision.

With different strength of the spatial autocorrela-
tion in « and y the performance of f%l became un-
even. In settings with a nominal positive autocorre-
lation in y but none in &, both ratios were below 1
(Fig. 5) yet with f?l closer to 1.0 than IAi’O, and f%o de-
creasing much faster with an increase in ¢, than
R,. The estimation strategy seems preferable also
in these settings. A different picture emerges when
a positive autocorrelation is restricted to x. Then
R, is 145 (¢, = 0.2) and 2.64 (¢, , = 1.64) with R,
at 0.98 and 0.80. In these two settings, the estima-
tion strategy is quite conservative with more pro-
tection — against over-estimating precision — than
needed. The performance of f?l in settings with ¢, >
¢,,>0 and ¢,,>¢,, >0is displayed in Fig. 6. The
ratios for the standard estimator of variance came
to 0.58 and 0.37, respectively. Corresponding val-
ues for R1 came to 1.95 and 0.85. Thus, in one case
(q;l'y> ¢,, > 0) the estimation strategy seems to

25 '
n‘.. : °d, . >¢, > 0.0
<4 1.5 : A q)l,y > (Pl,x > 0.0
0.5 2" '
0.2 0.6 1.
R

Fig. 6. Scatterplot of ratios I?l and 1§0 (cf. text for details) in
settings with unequal but positive spatial autocorrelation
inx and y. A gray dashed line indicates a target ratio of 1.0
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Table 1. Marginal Tobit regression estimates and standard
errors of coverage in nominal 95% confidence interval
obtained with a standard estimator of variance Var,(7,)
and the variance obtained with the proposed estimation
strategy Var, (7, ). Estimates of standard errors are in pa-

rentheses
Cé95
Pre Py via Var,(7,) via Var,(7,)
00 0.0 0.93 (0.01) 0.95 (0.02)
0.0 0.2 0.91 (0.01) 0.93 (0.03)
00 05 0.78 (0.01) 0.91 (0.03)
02 00 0.95 (0.01) 0.98 (0.02)
02 02 0.89 (0.01) 0.96 (0.02)
02 05 0.76 (0.01) 0.93 (0.03)
05 0.0 0.92 (0.01) 1.00 (0.00)
05 02 0.85 (0.01) 0.99 (0.01)
05 05 0.71 (0.01) 0.96 (0.02)

work, in the other (¢, , > ¢, > 0), the strategy pro-
vides a conservative estimate of variance.

Without access to estimates of ¢, and the
among-stand variance in y|«, an analyst must resort
to (I)Ly and [3); or other means to get an idea about
the need for a protection against a possible serious
over-estimation of precision of a predicted stand
mean. The proposed estimation strategy appears
to provide a critical protection when the standard
variance estimator fails. The possible prospect of
an over-protection ought to be a lesser detractor
than a gross over-estimating of precision.

Results on coverage of nominal 95% confidence in-
tervals (CO,,) are in Table 1 as marginal Tobit regres-
sion estimates of CO,, in nine combinations of P
¢, (JouNnsTON, DINARDO 1997). They are marginal
with respect to stand- and sample-size, which had
similar effect on the two sets of coverage values —
test: Hausman’s specification test (HAusMAN 1978).
Moreover, their effect-sizes were an order of magni-
tude weaker than those associated with ¢, or¢, .As
expected, the results reflect, to a large degree, those
for the ratios Ro and Rl. With the estimation strategy,
coverage stays above 0.90 and it provides the desired
protection when ¢, = ¢,,>0 but also provides too
much protection in settings with ¢, > ¢,, 2 0. For
confidence intervals computed with the standard es-
timator of variance, the coverage is poor in settings
with a positive autocorrelation in y.

In simulations with random stand-effects in the
intercept of a linear model linking Y'to X and a possi-
ble autocorrelation in Y, X, or both, the performance
of the standard (benchmark) estimator of variance
was worse than depicted here (MAGNUSSEN 2016;
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MAGNUSSEN et al. 2016a; MAGNUSSEN, BREIDEN-
BACH 2017). In practical applications with actual
stand effects, the proposed strategy can be expected
to be least as attractive as in the settings tested here
because the correlation between X and Y will then
generate apparent stand effects in predictions of y.

CONCLUSIONS

In forest enterprise inventories — supported with
census data of LIDAR metrics from an airborne la-
ser scanning and correlated with the attribute of in-
terest — it is now a common practice to predict the
value of key forest inventory attributes for every
unit (viz. pixel or ALS plot) in a stand from a subset
of LiDAR metrics (N&£SSET 2004; MALTAMO et al.
2010; FERNANDEZ-LANDA et al. 2018). Due to cost
restrictions on sample sizes in forest inventories
(JUNTTILA et al. 2013), a fitted model is typically
stratum-specific and assumed to provide unbiased
stand-level predictions. For stratum-level summa-
ries, statistics, and inference the success of LIDAR
is recognized (WULDER et al. 2013; MELVILLE et al.
2015; GREGOIRE et al. 2016). At the scale of forest
stands, however, predictions from a higher-level
model may be biased, and textbook estimators of
uncertainty may grossly over-estimate precision
due to unaccounted stand effects, spatial autocor-
relations, or both. The proposed estimation strat-
egy did not address the bias problem. The proposed
strategy is also relevant for strata with seemingly
homogenous stands even if the within-stand spa-
tial autocorrelation may be weak or zero because
a within-stand homogeneity promotes the among-
stand variance which can constitute an even greater
problem than autocorrelation per se (MAGNUSSEN
et al. 2016a; MAGNUSSEN, BREIDENBACH 2017).

The proposed estimation strategy is tied to a line-
ar model linking Y to X. Alternative area-based and
single-tree models are also sensitive to the impact
stand effects and spatial autocorrelation (MAURO
et al. 2017). Strategies to counter over-estimating
precision are warranted also in these cases. Finite
mixture modelling (ZHANG et al. 2004), robust var-
iance estimation (BINDER 1983), or ANOVA-based
estimation of an among-stand variance derived
from clusters of stands with two to four field sam-
ples, may provide avenues towards refined estima-
tion strategies.

The prospect of grossly over-estimating precision
of a predicted stand mean, ought to act as a suffi-
cient motivator for continued efforts to address the
small area estimation problem in forest inventories.
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