
J. FOR. SCI., 64, 2018 (1): 17–24	 17

JOURNAL OF FOREST SCIENCE, 64, 2018 (1): 17–24

doi: 10.17221/111/2017-JFS

Adaptive k-tree sample plot for the estimation  
of stem density: An empirical approach

Hormoz SOHRABI*

Department of Forestry, Faculty of Natural Resources, Tarbiat Modares University, Tehran, Iran
*Corresponding author: hsohrabi@modares.ac.ir

Abstract

Sohrabi H. (2018): Adaptive k-tree sample plot for the estimation of stem density: An empirical approach.  
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Available budgets for the inventory of non-commercial woodlands are small. Therefore, there has been increased 
interest in using distance methods, such as k-tree sampling, which are faster than fixed plot sampling. In low-density 
woodlands, large search areas for k nearest trees contradict any practical advantage over sampling with fixed area 
plots. Here, a modification of a k-tree sample plot with an empirical approach to estimating the number of trees per 
unit area in low-density woodlands is presented. The standard and modified k-tree sample plots have been tested in 
one actual and three simulated forests with different spatial patterns. The modified method was superior to other 
combinations of methods in terms of relative bias and relative efficiency. Considering statistical and practical aspects 
of sampling for tree density, the modified method is more promising than is the standard one.
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k-Tree sampling is one of the distance sampling 
methods based on point-to-tree distance measure-
ments (Kleinn, Vilčko 2006b). It is also known as 
the fixed count (Sheil et al. 2003; Magnussen 2015) 
or plotless method (Engeman et al. 1994). This sam-
pling method is a practical field method for forest 
inventories and ecological surveys (Kleinn, Vilčko 
2006a). Contrary to fixed area plots, the number of 
trees included at each sampling location is fixed which 
can considerably reduce the time for field assessments 
in certain forest structures (Sheil et al. 2003). While 
bias still remains a problem with this method, effi-
ciency of the method entices many researchers and 
practitioners into accepting the inherent bias (Kle-
inn, Vilčko 2006a). The difficulties in determin-
ing the inclusion probabilities of the k sampled trees 
(Kleinn, Vilčko 2006b) preclude the use of the (de-
sign-unbiased) Horvitz-Thompson estimator.

A large number of density estimators have been 
proposed to mitigate the bias problem (Morisita 
1957; Diggle 1977; Byth 1982; Patil et al. 1982; 
Engeman et al. 1994). Some of these methods require 

measuring distances to a large number of additional 
trees (Kleinn, Vilčko 2006b), and others need in-
tensive stochastic simulations of spatial patterns that 
emulate the distribution of observed point-to-trees 
and tree-to-tree distances (Nothdurft et al. 2010). 
Also, many of these estimators are difficult to com-
prehend and implement without advanced statistical 
training (Haxtema et al. 2012). Others again are im-
practical for field work (Magnussen et al. 2011).

For the k-tree sampling method, a sample point 
is selected and the distance from the point to the k 
nearest individual is measured. Using this method, 
k is the fixed number of trees in each sampling plot 
and rk is the distance from the sample point to the 
kth individual. With Prodan’s k-tree estimator the 
density – N (number of trees per hectare) is com-
puted as Eq. 1 (Prodan 1968):
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Because the virtual plot is considered as the 
smallest circle possible, it leads to a large bias. 



18	 J. FOR. SCI., 64, 2018 (1): 17–24

However, considering half a tree (k – 0.5) in enu-
meration, empirically it has been proposed to less-
en the overestimate.

Eberhardt (1967) proposed another empirical 
estimator that counts k – 1 individuals. The plot-
based per-hectare estimator for the number of 
trees per hectare is as follows (Eq. 2): 
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Kleinn and Vilčko (2006a) tried to reduce the 
estimation bias by adjusting the effective number 
of trees enclosed in a circle with a radius equal to 
the distance to the k (or k + 1) nearest tree or the 
radius of this circle. The plot-based per-hectare es-
timator for the number of trees per hectare is as 
follows (Eq. 3) (Kleinn, Vilčko 2006a):
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Despite the lack of a practical and theoretically 
unbiased estimator, as a rapid sampling for forest 
measurement, interest in this method persists. In 
low-density woodlands, k-tree distance sampling 
may result in a greater amount of effort than does 
plot sampling. In low-density woodlands, some-
times one is required to use a large “search area” 
to find the expected k trees. Searching a larger area 
intensifies practical difficulties in identifying the kth 
individual. As the search area becomes larger, the 
procedure of searching for the kth tree around the 
sample point (Batcheler, Craib 1985) becomes 
time-consuming. According to Zhang and Cham-
bers (2004), censoring to a maximum search dis-
tance requires a likelihood approach to the estima-
tion in order to handle the censoring correctly, and 
a large sample size is required for an accurate esti-
mate of the proportion of censored samples (Mag-
nussen et al. 2011). Such a burden eliminates any 
practical advantage of this method over sampling 
with fixed area plots.

The objective of this article is to present a simple 
modification of the k-tree distance sampling meth-
od for dealing with the problem of large search 
areas in low-density woodlands. Also, the perfor-
mance of the new approach has been examined in 
different real and simulated forest stands.

MATERIAL AND METHODS

Data. Our test data for the simulation of the 
standard and modified k-tree sampling consists 
of four maps with different patterns. One real tree 

map originated from the Zagros oak woodlands in 
Central Iran, for which a total of 3,027 trees with a 
crown width more than 1.5 m in an area of 60.0 ha 
(1,000 × 600 m) were mapped (Fig. 1). For analys-
ing the possibility of generalization of the estima-
tion approaches, another three tree maps (with 
the same overall density) were generated to exhibit 
Poisson and two (Fig. 2a) variations of clustered 
tree patterns (Figs 2b, c).

The computer program STG (Version 4.1, 1997) 
was used to generate these artificial tree maps 
(Stoyan 2006). For the Poisson forest, tree posi-
tions were generated using the Poisson Point Pro-
cess, with the intensity set to 50 trees per hectare. 
For generating the two artificial cluster arrange-
ments, Matérn processes were used. For low and 
high clustered maps, the mean number of points 
per cluster and the overlapping probability of 
neighbouring clusters of the Matérn Point Process 
were set 2.0, 0.5, 8.0 and 0.5, respectively.

A new approach. A new method is a modifica-
tion of the k-tree distance sampling method. The 
work will begin by determining a random point for 
use as the plot centre. For laying out these points 
as a sampling unit, one can use one of the sampling 
designs, like simple random or systematic sam-
pling. After this, the sampling proceeds as follows 
(Fig. 3):
(i)	� If a circular plot with the radius rmin is surveyed 

without encountering any trees, that plot is tal-
lied as empty (Fig. 3a). rmin is the distance that is 
considered to search for reaching the first tree;

(ii)	� If at least one tree is tallied in the plot with rmin 
radius, and k trees are tallied within the rmax 
radius plot, the distance to k (or k + 1) tree is 
recorded (Figs 3c, d), rmax is the farthest distance 
that is searched to reach the kth tree.

(iii)	�If the plot with rmax radius is surveyed before 
k trees are tallied, then sampling stops and the 
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Fig. 1. Actual tree map used for sampling simulation. 
Field data, including 60.0 ha and 3,027 trees (50.5 trees 
per hectare)
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plot is recorded as containing ki’ trees (Fig. 3b). 
ki’ is the number of trees on a circular plot with 
r = rmax and always ki’ < k.

Deciding on the maximum and minimum radi-
uses of the plot in order to limit the search area 
requires a preliminary estimate of the density of the 
target population. For a population with higher tree 
density, we need a smaller plot size. The two limit-
ing radiuses can be calculated using Eqs 4 and 5:

min
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where:
rmin	– minimum radius (m) for the search area,
D’	 – density for the target population.
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where:
rmax – maximum radius (m) for the search area.

D’ can be achieved from previous research in the 
study area or similar forest stands, or by conduct-
ing a pilot study. It is important to give serious con-
siderations to the value of D’.

The number of sampling units that may fall into one 
of the above situations mentioned in the procedures 
for using the modified k-tree sampling depends on 
the prior density estimation for the target population.

The density of trees in plot for each of the three 
situations is determined as follows:
(i)	� For the plot that has been surveyed, up to rmin 

without encountering any tree, the estimated 
density of that sample unit is equal to zero;

(ii)	� If the k-tree is encountered before rmax is reached, 
the plot radius is the distance of the sample point 
to the k or the average of the distance to k and  
k + 1 tree. Prodan, Eberhardt or Kleinn’s formu-
las can be used for the density estimation;

(iii)	�If the plot is surveyed to the maximum radius 
and less than k number trees are tallied, the fol-
lowing parameters exist: If ki’ trees are tallied, the 
density of the sample unit is as follows (Eq. 6):
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Fig. 3. Four different situations encountered for the modi-
fied adaptive approach. First, the inner circle with the radius 
rmin is surveyed. If no trees are recorded before reaching 
rmin, the plot is recorded as an empty plot with N = 0 and 
r = rmin (a), if there is at least one tree closer than the rmin 
distance, but less than k trees are recorded in the rmax 
distance, the plot radius is rmax with ki’ trees (b), if k trees 
are tallied before reaching rmax, the distance to k or k + 1 is 
recorded as the plot radius (c, d)

Fig. 2. Simulated tree maps used for sampling simulation. 
Poisson (a), low clustered (b), high clustered (c) simulated 
forests with 60 ha area and 3,027 trees (50.5 trees per 
hectare)
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where:
Di – number of trees in 1 m2 for ith sample unit.

Regardless of the portion of sample units that fall 
into one of these three situations, stand parame-
ters, like the average tree density, can be calculated 
by considering each sample unit as an independent 
observation and using common estimators.

Determining bias. The statistical performance 
in terms of bias can be analysed using simulation 
to determine the difference between the true value 
and the expected estimated value under a defined 
sampling strategy. In our research, we did this for 
the number of stems per hectare (density). While 
the true value for the number of stems is known 
for all maps, we used a simulated sampling proce-
dure under a simple random sampling design with 
10,000 replications to find the approximate true 
mean. We considered a 10-m buffer to avoid edge 
effects. The apparent relative bias of the estimate of 
parameter θ was calculated by Eq. 7:

ˆB̂ias 100 ( ( ) ) /E     � (7)

where:
E	– mathematical expectation,
θ̂	– estimate of the parameter,
θ	– true value of the parameter.

Because the k-tree sampling method involves 
bias, the estimation precision should be compared 
under the assumption of bias. As such, we used a 
standardized root mean square error (sRE) to make 
the results comparable (Kleinn, Vilčko 2006a). 
The sRE was calculated as follows (Eq. 8):
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where:
var – variance.

The comparison of biases includes Eberhardt’s 
(1967), Prodan’s (1968), and Kleinn’s (Kleinn, 
Vilčko 2006a) estimators. The Eberhardt estima-
tor leaves out one tree while the Prodan estimator 
leaves out one-half of a tree, and the radius of the 
virtual circular plot for both of the methods is the 
distance to the kth tree. The Kleinn estimator uses 
all k trees, but the plot radius of the imagined cir-
cular plot is the geometric mean of the distances to 
the kth and kth + 1 tree. We chose these estimators 
among all reported empirical estimators because of 
their simplicity and easy application.

For a comparison of relative efficiency, we mod-
ified Wiegert’s (1962) procedure which consid-
ers variance and cost of a method. Based on this 
formula, the best method is the one with the 
smallest product of relative cost and relative vari-
ance. Instead of cost, we used the relative average 
search area and sRE was the relative variance. All 
programming and calculations were done with the 
R software (Version 3.3.2, 2016).

RESULTS

Bias

For the bias analysis, the Prodan, Eberhardt and 
Kleinn estimators of stem density were compared 
for the standard (SM) and modified (MM) method 
of k-tree sampling for k values from 2 to 12. Re-
garding the Poisson forest, and k > 5, both methods 
using the Eberhardt estimator (SME, MME) and 
the modified method using the Kleinn estimator 
(MMK) yielded the smallest bias. For each meth-
od, Prodan estimator produced the largest positive 
bias. As we expected, for all cases, the percent of 
bias decreased with increasing k. However, for k 
values that were greater than six, the decrease is 
negligible. In general, the modified method pro-
duced a smaller bias than did the standard method 
(Fig. 4).

Similar to the above results, in both low (cluster 
1) and high cluster (cluster 2) simulated forests, the 
modified method, with all of the estimators, pro-
duced the smallest bias. Again, we can see that the 
rate of decrease in bias for k values of more than six 
is negligible. In each method, the bias percentage of 
the Prodan estimator was the highest and the bias 
percentage for Eberhardt is the lowest. The bias for 
the Kleinn estimator was between the other esti-
mators (Fig. 4).

For the actual map, the results were similar to 
those of the Poisson forest, but with a higher per-
cent of bias. We see that MME produced the small-
est bias results. Again, the rate of decrease in bias 
for k values of more than six is negligible (Fig. 4).

Standardized root square error

We illustrate three important results in Fig. 5. 
First, as expected, the sRE of the estimates de-
creased with increasing k values. However, this de-
crease for k > 6–8 was negligible. Second, sRE val-
ues for the modified method in Poisson and weakly 
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Fig. 4. Estimated relative bias of the number of stems per hectare with the standard and the modified k-tree distance 
sampling methods for k = 3, ..., 12 trees using different estimators: Poisson forest (a), cluster 1 forest (b), cluster 2 forest 
(c), actual forest (d)
k – fixed number of trees in each sampling plot, SMP, SME, SMK – standard method with Prodan, Eberhardt and Kleinn 
estimator, MMP, MME, MMK – modified method with Prodan, Eberhardt and Kleinn estimator

Fig. 5. Comparison of the standardized root squared error (sRE) for the estimation of the number of stems per hectare 
for the standard and modified k-tree sampling for k = 3, ..., 12 trees using different estimators: Poisson forest (a), cluster 
1 forest (b), cluster 2 forest (c), actual forest (d)
k – fixed number of trees in each sampling plot, SMP, SME, SMK – standard method with Prodan, Eberhardt and Kleinn 
estimator, MMP, MME, MMK – modified method with Prodan, Eberhardt and Kleinn estimator
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clustered forests were slightly higher than they are 
with the standard method, but the difference de-
creased with increasing k values. For all estimators, 
the sRE of SM for a smaller k was higher than is the 
MM in actual and strongly clustered forests, but for 
k > 6, they are similar. Conversely, in the actual for-
est, for all estimators, sRE of MM was higher for 
smaller k and for k > 6, resulting in similar values. 
Third, for a given method, the Kleinn estimator 
produced the smallest and the Prodan estimator 
produced the highest sRE for all k values. The sRE 
of the Eberhardt estimator is very close to the re-
sults from the Prodan estimator.

Efficiency

For the MM method, the line represents the av-
erage search area in different forests. Fig. 6 shows 
that the search area using the standard method on 
the Poisson forest is the highest. Also, we can see 
that the stronger clustering in the spatial pattern 
for the trees can result in a reduction of the search 
area. In other words, the degree of clustering is 
negatively correlated with the search area for dif-
ferent k values. For smaller k values, the difference 
between the methods, especially in clustered for-
ests, is negligible. For higher values, in Poisson and 
less clustered forests, the average search area of 
MM is smaller than for SM. But, the average search 
area of these methods is similar for strongly clus-
tered areas and actual forests (Fig. 6).

A comparison of the Wiegert value as an index 
of efficiency (smaller values indicate a more effi-
cient approach) of the SM and MM methods us-
ing different estimators showed that for smaller k 
values, there is no considerable difference between 
the methods. But for k values greater than five, the 

MM was more effective than was the SM method. 
For intermediate k values (5–8), applying MM to 
the Kleinn and Eberhardt estimators appears to be 
the most efficient approach (Fig. 7).

DISCUSSION

We presented a simple modification of the k-tree 
sampling method to alleviate the problem of re-
quiring a large search area for the inventory of low-
density woodlands. We simulated sampling meth-
ods with different estimators in an actual tree map 
from the Zagros oak woodlands in Central Iran, in 
addition to using three artificially generated tree 
maps with different spatial patterns. Our results 
showed that our modified method was superior to 
the standard method in terms of relative efficiency, 
across all of the actual and simulated maps. But, 
the results did not suggest a clear superiority of any 
of the three investigated estimators (Eberhardt, 
Prodan, Kleinn).

For the studied woodlands (both real and simu-
lated), the modified method resulted in a lower bias 
than did most of the standard sampling methods, 
while also having a higher root square error. This 
means that the modified sampling method gener-
ated more variable results than the standard meth-
od of k-tree sampling. Hence, to achieve a target 
precision, more sampling points are needed with 
the modified method. To assess the advantages and 
limitations of the proposed method, the estimators 
should be compared on the basis of the total sam-
pling time required to estimate tree density with a 
given accuracy and precision.

Although, the main objective of the modified sam-
pling method was a reduction in the search area, a 
reduction in the apparent bias of ensuing estimates 
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of stem density was also achieved by the modified 
sampling method. In both methods (SM, MM), the 
Eberhardt estimator produced the smallest amount 
of bias, while the estimator was nearly unbiased 
in Poisson patterns. Other researchers have also 
reported the use of Eberhardt estimator as an un-
biased method for Poisson patterns (Lynch 2003; 
Kleinn, Vilčko 2006a). In all maps, MM reduced 
the estimate of bias to one-half of the estimate of 
bias by the SM. We should however note that even 
by applying the modified method, there is a bias. 
The reduction in bias is a result of combining plot 
and k-tree methods. As a result, considering a lim-
ited radius for the plot survey puts the sampling 
method into a plot-sampling category. Fixing the 
maximum and minimum search radius has a strong 
influence on the results with respect to the perfor-
mance of the modified sampling scheme.

Obviously, the performance of k-tree sampling 
depends on the spatial pattern of the population 
to a large extent (Kleinn, Vilčko 2006b), where 
marked differences were observed in the perfor-
mance of k-tree sampling between Poisson and 
clustered patterns. This confirms Lessard’s et al. 
(2002) and Kleinn and Vilčko’s (2006a) find-
ings. Also, the heterogeneity of the forest stands 

can highly affect the results. Considering sRE, the 
SM performs better than does the MM. The main 
reason is that applying MM will result in many 
zero values that increase the standard deviation 
of density estimates. One possible solution might 
be to consider two different k values for the k-tree 
sampling instead of the min and max radii for the 
search area.

The attractiveness of k-tree sampling is not due 
to the method’s statistical performance, but rather 
to its practicality and ease of implementation (Kle-
inn, Vilčko 2006a). But, sometimes, due to a large 
search area for reaching k, any practical advantage 
over sampling with fixed area plots is eliminated. 
We found that using the proposed MM with the 
Eberhardt estimator is superior to the combination 
of the standard method and three estimators. 
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