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Abstract

Mirakhorlou K., Akhavan R. (2017): Forest density and orchard classification in Hyrcanian forests of Iran 
using Landsat 8 data. J. For. Sci., 63: 355–362.

Satellite-based remote sensing is of crucial importance to provide timely and continuous thematic maps for practical 
forestry tasks. There is currently no existing remote sensing-based, large-scale inventory of canopy cover classes (and 
also adjacent orchards) on the full range of Hyrcanian forests. We used the freely available and large-scale coverage 
of Landsat 8 imagery acquired in 2014 to classify three forest density classes as well as non-forest and orchards. The 
supervised classification and support vector machine classifier were selected based on a pre-classification of three 
representative pilot regions. Classified final maps were validated by means of a two-stage sampling and 1,852 field 
samples. The total areas of the dense, semi-dense, sparse forests and orchards were 45, 36, 19 and 1.9% of the total 
studied area, respectively. The overall accuracy and Kappa coefficient of classified maps were 94.8 and 90%, respec-
tively. The methodology introduced to map forest cover in Hyrcanian forests is concluded to enable providing a high 
quality forest database for further research, planning and management.
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Hyrcanian forests are located along the south-
ern part of the Caspian Sea and the north-facing 
aspects of Elborz Mountains in the north of Iran, 
and embrace natural, mixed hardwood and gener-
ally uneven-aged deciduous forests (Akhavan et al. 
2012). They are considered as remnants of the Ter-
tiary era, consist of more than 80 woody species and 
mainly include five main vegetation communities 
of Querco-Buxetum, Querco-Carpinetum, Parrotio-
Carpinetum, Fagetum hyrcanum, and Carpinetum 
orientale. Owing to the necessity of management, 
protection and restoration of these forests, timely 
spatial information on stand density and distribution 
is a prerequisity for forest management programs.

Remotely sensed information provided by satel-
lite missions can provide this information in a con-

tinuous manner, particularly in combination with 
geo-located field-based surveys. The freely avail-
able 8 multispectral sensors from the Landsat 8 
Operational Land Imager (OLI) sensor (185 km 
wide swath and 16 day temporal resolution) are 
assumed to present valuable opportunities for the-
matic mapping of forestry attributes (e.g. density 
and land covers). Moreover, the continuous cover-
age of Landsat legacy archive makes it an outstand-
ing key primary data source for regional analyses, 
particularly in resource-limited and logistically in-
accessible areas (Dube, Mutanga 2015).

Landsat data have been numerously applied to 
distinguish land cover over the past decades, with 
the recent examples being Mirakhorlou (2003), 
Mirakhorlou and Akhavan (2008), Saadat et 
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al. (2011), Salman Mahini et al. (2012), Tazeh 
et al. (2014), and Qin et al. (2015). The classifi-
ers include supervised parametric (e.g. maximum 
likelihood – ML) and non-parametric machine 
learning (neural networks – NN and support vec-
tor machines – SVM) approaches applied for clas-
sification, for which also comparative studies exist 
(Szuster et al. 2011). The ML classifier is one of 
the most efficient parametric methods for image 
classification (Jensen 2005), whereas approaches 
such as NN and SVM are non-parametric and prin-
cipally do not assume normal distribution within 
the data (Lu, Weng 2007; Dixon, Candade 2008). 
However, recent comparative studies have suggest-
ed that the SVM can provide appropriate results 
for classification of Landsat imagery compared to 
traditional remote sensing classifiers such as ML, 
k-nearest neighbour and approximate nearest 
neighbour (Huang et al. 2002; Melganni, Bruz-
zone 2004; Pal, Mather 2005; Mountrakis et 
al. 2011; Yang, Ross 2012).

The objectives of this study were: (i) separation 
of orchards located at the border of or inside the 
forest, (ii) determination of forest density classes, 
(iii) selection of the most appropriate classifier for 
orchard detection and forest density classification 
using Landsat 8 OLI data in the large-scale map-
ping of Hyrcanian forests of northern Iran.

MATERIAL AND METHODS

Study area. The study area encompassed the 
entire Hyrcanian forests in the north of Iran, ex-
tended between 36° to 38°N and 48° to 56°E. These 
forests horizontally expand 800 km in an east-to-
west direction and vertically from coastal plain up 
to 2,700 m a.s.l. tree line where convert to moun-
tainous rangelands. An area of about 6 million ha 

was considered, comprising 93 standard sheets of 
1:50,000 scaled topographic maps provided by the 
National Cartographic Centre – NCC (Fig. 1).

Data and pre-processing. Nine full Landsat 8 
OLI scenes from June, August and October 2014 
were applied. Image pre-processing and classifi-
cation were accomplished using ERDAS Imagine 
software (Version 2014) (Intergraph 2013). Data 
management, spatial analysis and validation were 
done using ArcGIS software, ArcMap (Version 
10.2, 2013). The data were orthofied and geometri-
cally corrected in the NCC using both topographic 
maps of 1:25,000 scale and ASTER Global DEM 
(Version 2, 2011), its scene (60 × 60 km) having ver-
tical root mean square errors (RMSEs) accuracies 
generally between 10 and 25 m and pixel size 25 m 
to improve the precision of the images. Coordinate 
systems WGS1984, 39 and 40 Zones were used for 
georeferencing in the study area. 25 ground control 
points (GCPs) were selected on roads and rivers 
vector layers in each scene. Furthermore, a poly-
nomial nonparametric method was used for the 
removal of inappropriate GCPs, which resulted in 
the RMSEs of 0.18, 0.15, 0.17, 0.20, 0.19, 0.16, 0.19 
and 0.18 pixels for the remaining 21, 20, 22, 23, 21, 
22, 21 and 20 GCPs in the 8 scenes, respectively. 
Atmospheric correction was not necessary because 
the image was quite clear within the study area.

Experimental design. Many factors affect the per-
formance of a classifier, including the selection of 
training and testing data samples as well as input 
variables (Foody et al. 1995). Because the impact of 
testing data selection on accuracy assessment has 
been investigated in many works (e.g. Stehman 
1992), only the selection of training sample and the 
input variable were considered in this study. In or-
der to avoid biases in the confidence level of accu-
racy estimates due to inappropriately sampled test-
ing data (Dicks, Lo 1990), the accuracy measure of 

Fig. 1. Location of the study area in the north of Iran (source: Google)
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each test was estimated from all pixels not used as 
training data. Table 1 shows land cover classes in 
Hyrcanian forests used for classification. It is worth 
saying that the forest density classes in Table 1 were 
selected based on internal guidelines of Forests, 
Range and Watershed Management Organization 
of Iran.

Training and accuracy samples selection. Train-
ing data selection is one of the major factors de-
termining to what degree the classification rules 
can be generalized to unseen samples (Paola, 
Schowengerdt 1995). This factor could be more 
important for obtaining accurate classifications 
than the selection of classifiers. Many studies have 
demonstrated the training constants options, such 
as kernel type and gamma in case of SVM (Huang 
et al. 2002; Melganni, Bruzzone 2004; Pal, 
Mather 2005; Mountrakis et al. 2011; Yang, 
Ross 2012). For polynomial kernels better accura-
cies were achieved on data with three input vari-
ables as the polynomial order P increased from 1 
to 8, suggesting the need for using high-order poly-
nomial kernels when the input data have very few 
variables (Huang et al. 2002). For radial basis func-
tion (RBF) kernels the accuracy increased slightly 
when γ increased from 1 to 7.5. No obvious trend 
of improvement was observed when γ increased 
from 5 to 20. An experiment using arbitrary data 
points revealed that the misclassification error is a 
function of γ (Huang et al. 2002).

In the current study, according to Huang et al. 
(2002), 10% of pilot region pixels were selected as 
training and accuracy samples (Table 2). The train-
ing and accuracy samples were approximately 80 
and 20% of the total samples, respectively. Accu-
racy assessment was performed using RBF kernels 
(γ = 7.5) and accuracy samples.

Classification and accuracy assessment method 
of the pilot regions. Land cover maps of three pilot 
regions (Kordkuy: eastern Hyrcanian range, Noor: 
central Hyrcanian range and Talesh: western Hyr-
canian range) were classified using supervised clas-
sification by means of nine classifiers of SVM, ML, 
NN, minimum distance to mean (MiD), parallel-
epiped (P), Mahalanobis distance (MaD), spectral 

angle mapper (SAM), spectral information diver-
gence (SID) and binary encoding (BE). The accura-
cies of land cover maps were assessed by 1,426 ac-
curacy samples (pixel) using overall accuracy (OA) 
and Kappa coefficient (Richards 2013).

The total results were ranked based on their OA 
and Kappa coefficient values, which resulted in the 
final choice of SVM for the subsequent analyses 
(Table 3).

As such, the SVM classifier returned the highest 
rate of average Kappa coefficient of 0.94 compared 
to other classifiers, which justified its further use 
for the large-area classification.

Classification method of study area. According to 
results of pilot regions in the Hyrcanian forests, the 
images of the study area were classified using the 
supervised classification method and SVM classi-
fier, for which the classes included sparse, semi-
dense and dense forest canopy cover, as well as or-
chard and non-forest classes (Table 1). Then land 
cover maps were extracted.

Sampling design of study area. Many sample 
designs are possible using a sample survey frame-
work (Cochran 1977; Lohr 1999) and here we 
focus on strategies that apply to obtaining field 
measurements for accuracy assessment. The 
large-area accuracy assessments of land cover 
map often employ two-stage sampling (Edwards 
et al. 1998; Nusser, Klaas 2003). This sampling 

Table 2. Number of training and accuracy samples (pixels) 
in pilot regions

Pilot 
region

Land  
cover

Training 
sample

Accuracy 
sample Total

Talesh
forest 942 234 1,176

orchard 602 151 753
non-forest 552 138 690

Noor
forest 813 203 1,016

orchard 516 129 645
non-forest 433 108 541

Kordkuy
forest 764 191 955

orchard 522 130 652
non-forest 471 118 589

Total 5,615 1,426 7,041

Table 1. Definition of land cover classes for Hyrcanian forests data set

Land cover Definition

Forest
dense tree canopy cover > 50%

semi-dense 50% > tree canopy cover > 25%
sparse 25% > tree canopy cover > 5%

Orchard trees of stone fruits and citrus, tea shrubs
Non-forest covered by bushes, shrubs, grasses, crops, rock and bare soil, urban area, water bodies
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method was applied to establish a database of 
sample points as ground truth in the study area 
(6,024,554 ha).

At the first stage, the entire study area was divided 
into 93 primary sample units (PSUs) approximately 
61,500 ha, based on the standard sheets of 1:50,000 
scale topographic maps of NCC. Nevertheless, we 
ensured that all of PSUs covered roughly the same 
amount of study area. Following that, based on field 
visiting 14 PSUs (15%) were randomly selected for 
further sampling (Fig. 2). Individual pixels were 
selected from PSUs at the second stage of sam-
pling. Resource constraints dictated sample size. 
The study team had a goal of field visiting about 
1,800 points within the study area. We expected 
that access would be denied for approximately 
10% of the sample points, indicating 2,000 sample 
points would be needed to achieve 1,800 responses.

According to this reason, at the second stage, a 
systematic grid of 2 × 2 km was designed and ran-
domly overlaid on the selected PSUs. The intersec-
tions of the grids were considered as reference data 
points to assess the accuracy of the classified land 
cover map (Fig. 3). Table 4 shows the number of 
samples and measured samples in each PSU.

Accuracy assessment method of study area 
land cover map. In the majority of accuracy as-
sessment applications, both the map and refer-
ence classifications are crisp and the descriptive 
accuracy analyses employ an error matrix to orga-
nize the data (Stehman 2009). Parameters such 
as overall, user’s and producer’s accuracies (OA, 
UA and PA) are used to summarize the error ma-
trix information (Stehman 2009). However, we 
assessed the accuracies (OA, UA and PA) of land 
cover classes map using measured data samples 
(Table 5).

Fig. 2. Position of primary sample units (PSUs) and selected PSUs in the study area

Table 3. Overall accuracy (OA) and Kappa coefficient of different classifiers of the pilot regions

Region Coefficient
Classifier

BE SID P SAM MiD MaD NN ML SVM

Talesh OA (%) 59.01 93.95 83.20 89.37 96.56 95.35 97.59 97.35 99.18
Kappa 0.164 0.757 0.540 0.646 0.865 0.795 0.907 0.899 0.969

Noor OA (%) 37.37 81.43 30.02 81.21 81.64 85.10 86.61 81.64 95.03
Kappa 0.103 0.663 0.048 0.674 0.675 0.734 0.742 0.688 0.909

Kordkuy OA (%) 17.70 55.66 66.34 70.00 76.83 90.49 91.56 92.68 96.31
Kappa 0.139 0.236 0.445 0.483 0.560 0.822 0.849 0.865 0.936

Average OA (%) 38.03 77.01 59.85 80.19 85.01 90.31 91.92 90.56 96.84
Kappa 0.135 0.552 0.344 0.601 0.700 0.784 0.833 0.817 0.938

BE – binary encoding, SID – spectral information divergence, P – parallelepiped, SAM – spectral angle mapper, MiD – 
minimum distance to mean, MaD – Mahalanobis distance, NN – neural network, ML – maximum likelihood, SVM – sup-
port vector machine
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RESULTS

Validation

The previously described two-stage sampling 
method resulted in drawing 93 PSUs of the study 
area at the first stage, which in turn yielded a con-
sequent number of 1,852 measured sample points 
in 14 PSUs across the land cover map of the Hyr-
canian forests. These dense sample sets were ho-
mogenized and then applied for the final validation 
process of the classified Landsat 8 OLI images.

The accuracy assessment by 1,852 reference sam-
ples showed the overall accuracy and Kappa coef-
ficient of 94.8% and 0.90, respectively (Table 6), i.e. 
the overall error of ± 5.2% for the classified map. 
In addition, the highest user’s and producer’s accu-
racies (ca. 100%) were achieved for non-forest and 
dense forest classes (Table 6).

Surface area of forest density classes, orchard 
and non-forest. The results of classified land cover 
map using the supervised classification method 
and SVM classifier also showed that the total sur-
face areas of three dense, semi-dense and sparse 
forest classes accounted for 738,156, 599,439 and 

Table 7. Surface area of land cover classes in the Hyrcanian forests of Iran in 2014

Non-forest Orchard Sparse forest Semi-dense forest Dense forest Forest in total Total
Area (ha) 4,259,873 114,183 312,903 599,439 738,156 1,650,498 6,024,554

Table 6. Confusion matrix of the final classification for 
land cover classes map, overall accuracy = 94.8%, Kappa 
coefficient = 0.90

DF SDF SF O NF Total UA
DF 376 21 5 0 0 402 93.5
SDF 25 343 15 1 0 384 89.3
SF 3 11 213 9 0 236 90.3
O 0 2 4 82 0 88 93.2
NF 0 0 0 0 742 742 100.0
Total 404 377 237 92 742 1,852 –
PA 93.1 91.0 89.9 89.1 100.0 93.1 –

DF – dense forest, SDF – semi-dense forest, SF – sparse forest, 
O – orchard, NF – non-forest, PA – producer’s accuracy, UA – 
user’s accuracy, number of accurate classified samples in bold

Table 4. Number of samples and measured ground truth 
samples in each primary sample unit (PSU)

PSU No. of samples No. of measured samples
5765II 130 124
5864II 142 132
5964IV 154 143
6063IV 142 127
6163III 154 138
6262I 140 128
6462II 130 126
6562II 154 144
6662I 140 127
6863III 140 128
6963I 142 135
7064II 130 123
7164IV 154 145
7165II 140 132
Total 2,007 1,852

Table 5. Number of measured ground control points 
(GCPs) in each land cover class

Land cover class DF SDF SF O NF Total
GCPs 404 377 237 92 742 1,852

DF – dense forest, SDF – semi-dense forest, SF – sparse 
forest, O – orchard, NF – non-forest

312,903 ha, which corresponded to 45, 36 and 19% 
ratios of the total Hyrcanian forest area, respective-
ly (Table 7). Based on the classification, the total 
surface area of Hyrcanian forests was thus calcu-
lated as 1,650,498 ha in summer 2014.

Fig. 3. Position of samples in primary sample unit 5765II
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Fig. 4 shows the distribution map of Hyrcanian 
forests density classes and non-forest in the north 
of Iran in summer 2014.

DISCUSSION

In this study, we consider the total surface area 
of the Hyrcanian forests of northern Iran using 
Landsat 8 OLI data. We obtained the 1,650,498 ha 
surface area for total sparse, semi-dense and dense 
Hyrcanian forests of Iran in summer 2014 (Table 7). 
Our results showed that the SVM classifier had the 
highest accuracy in the pilot regions (Table 3) fol-
lowed by NN, ML, MaD, MiD, SAM, SID, P and BE, 
respectively. This result is in accordance with the 
results of Gualtieri and Cromp (1998), Huang et 
al. (2002), and Szuster et al. (2011).

Based on the accuracy assessment of the ex-
tracted land cover maps from Landsat 8 images in 
summer 2014, the overall accuracy and Kappa co-
efficient were 94.8 and 0.90, respectively (Table 6), 
which represented the overall error of ± 5.2% that 
would be an acceptable estimated error. It is worth 
saying that the overall accuracies in the previous 
studies on the same study area using ML classi-
fier were about 80 and 96% for 2003 and 2008, re-
spectively (Mirakhorlou 2003; Mirakhorlou, 
Akhavan 2008). Salman Mahini et al. (2012), 
who extracted an eastern Hyrcanian forest map us-
ing the classification method and ML classifier on 
Landsat ETM+ images in 2010, obtained the over-
all accuracy and Kappa coefficient of 91% and 0.70, 
respectively. Rezaee et al. (2008) classified Landsat 
ETM+ derived forest/non-forest maps of Arasba-

ran forest (northwestern Iran) using SVM classi-
fier, and reported the overall accuracy and Kappa 
coefficient of 97% and 0.96, respectively. A further 
example was Tazeh et al. (2014), who used Landsat 
ETM+ images and reported 0.94 and 98% above-
mentioned accuracy diagnostics. Their study also 
revealed 100% user’s accuracy of forest class that 
showed the ability of Landsat images to detect for-
est from other land cover classes. The status quo 
literature generally suggests the ability of Landsat 
imagery for thematic mapping of attributes such 
as forest density, which was also confirmed by our 
findings on a larger spatial scale and by applying a 
substantially higher number of validation samples 
than those from the literatures.

One of the advantages of SVM classifier is to en-
able accurate mapping by the simultaneous use of 
a reference sample as training and validation sam-
ples (i.e. jacknifing). Our results showed no over-
lap between non-forest (i.e. agriculture, residential, 
pasture, bareland and water) and forest density 
classes by returning 100% user’s accuracy. One 
may also note the heterogeneities existing within 
the orchards across the large geographic area of 
this study. The orchards in the low elevation forests 
(100–700 m a.s.l.) of the Hyrcanian forests com-
prise stone fruits in the eastern part, citrus trees 
in central part and tea and tobacco in the western 
part, which are occasionally associated with similar 
spectral reflectance as semi-dense and sparse for-
ests. This was one of the factors that presumably 
had a negative impact on classification accuracy, 
with an example being the reduction of producer’s 
accuracy from 93.1% in dense forest to 89.1% in or-
chard class (Table 6). Nevertheless, the dense forest 

Fig. 4. Hyrcanian forest density classes and non-forest map extracted from Landsat 8 Images in 2014
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class did not show any spectral reflectance overlap 
with the orchard class due to its substantially dens-
er crown cover compared to that of the orchard 
class. Therefore, the classification of dense forest 
class was accomplished with a higher accuracy 
than both semi-dense and sparse forest classes. Of 
further importance was also the dense class, which 
was located in the middle (700–1,800 m a.s.l.) and 
high (1,800–2,200 m a.s.l.) altitudinal range of the 
Hyrcanian forests, occurring where no orchards 
exist, while orchards are commonly established in 
the vicinity of semi-dense and sparse forests.

CONCLUSIONS

One of the main problems in the mapping of our 
Hyrcanian forests in Iran is the interference of for-
ests with orchards. The results of this study showed 
that SVM is the best classifier to separate forests 
from orchards as well as to classify forest density 
classes. Furthermore, the results of this study gen-
erally refuse using common parametric classifiers 
for forest area mapping, which are currently ap-
plied in practical forest inventory in northern Iran. 
On the contrary, our precisely large-scale mapped 
results of Hyrcanian forests in 2014 can be further 
applied to many other studies such as forest car-
bon cycle, ecological restoration and forest plan-
ning and management. We thus further suggest our 
framework to be used in decision-making process-
es as well as for surveys on national and regional 
planning (e.g. conservation, restoration and devel-
opment) in the Hyrcanian forests.
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