
J. FOR. SCI., 61, 2015 (5): 193–199 193

JOURNAL OF FOREST SCIENCE, 61, 2015 (5): 193–199

doi: 10.17221/78/2014-JFS

Deforestation modelling using logistic regression and GIS

M. Pir Bavaghar

Faculty of Natural Resources, Center for Research & Development of Northern Zagros Forests, 
University of Kurdistan, Sanandaj, Iran 

ABSTRACT: A methodology has been used by means of which modellers and planners can quantify the certainty in 
predicting the location of deforestation. Geographic information system and logistic regression analyses were employed 
to predict the spatial distribution of deforestation and detects factors influencing forest degradation of Hyrcanian 
forests of western Gilan, Iran. The logistic regression model proposed that deforestation is a function of slope, dis-
tance to roads and residential areas. The coefficients for the explanatory variables indicated that the probability of 
deforestation is negatively related to slope, distance from roads and residential areas. Although the distance factor 
was found to be a contributor to deforestation, its effect is lower than that of slope. The correlates of deforestation 
may change over time, and so the spatial model should be periodically updated to reflect these changes. Like in any 
model, the quality may be improved by introducing the new variables that may contribute to explaining the spatial 
distribution of deforestation.
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In the northern forests of Iran, deforestation and 
forest degradation are among the most important 
problems that have proved to be a prevailing fac-
tor for flooding, soil erosion, and in general for 
environment and humans (Pir Bavaghar et al. 
2003). Therefore, detecting deforestation and iden-
tifying the factors influencing it are important, as 
this could be one stage in forest conservation, con-
trol of deforestation and is necessary in appropri-
ate forest management planning (Grainger 1993; 
Makinano et al. 2010).

A spatial information system is a logical tool for 
monitoring and evaluating deforestation. The in-
formation of this system may offer a framework to 
develop a variety of powerful models, which could 
help managers to make decisions based on a meth-
odologically robust basis (Felicisimo et al. 2002).

From a planning and management perspective, it 
is important to have a spatial view of where defores-
tation occurred, and its underlying drivers. One of 
the most important methods to detect the factors 
influencing deforestation and their spatial interac-
tion is to model their influence on the landscape 

using spatial data (Serneels, Lambin 2001; Laur-
ance et al. 2002; Nagendra et al. 2003; Mertens 
et al. 2004; Etter et al. 2006).

Knowledge of  the rate and extent of deforesta-
tion and its driving factors is necessary for envi-
ronmental planners and managers (Ludeke et al. 
1990). To understand the deforestation process, 
determination and knowledge of the relationship 
between natural and manmade variables and defor-
estation are an essential step (Linkie et al. 2004).

The changes in land use and land cover together 
with the influence of natural and anthropogenic 
factors have been intensively investigated (Feli-
cisimo et al. 2002; Linkie et al. 2004; Ostapo-
wicz 2005; Amini et al. 2009; Bagheri, Shataee 
2010). However, there is also a need to conduct 
more studies, because the factors influencing de-
forestation are often site-specific (Geist, Lambin 
2002; Linkie et al. 2004). For example, the factors 
influencing deforestation are different on various 
continents (Bawa, Dayanandan 1997) and, even 
when they are the same, they need not be equally 
important. Therefore, the study of deforestation on 
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a site-by-site basis is necessary which could only be 
possible by using the inexpensive geographic infor-
mation system (GIS) software (Linkie et al. 2004). 

Several studies have attempted to understand a de-
forestation rate in the Hyrcanian forests (Rafieyan 
et al. 2003; Pir Bavaghar 2004; Salman Mahini 
et al. 2009; Bagheri, Shataee 2010). But there are 
just a few studies, trying to model these deforesta-
tions according to the factors influencing them. 

All the forests of the Iranian territory became 
nationalized in 1962; therefore forests in Iran are 
basically state-owned. The population growth has 
increased needs for food and crop lands. Conse-
quently, deforestation has occurred in these forests. 
Development of agricultural areas, i.e. converting 
forested areas to tea cultivation and rice fields, live-
stock grazing, urbanization, rural development, 
and expansion of the industrial areas, are the fac-
tors influencing to the largest extent deforestation 
in the northern forests of Iran. Therefore, the ac-
cessibility variables seem to be more important 
than other factors in the study area. 

The objectives of this paper are to detect and ana-
lyze deforestation in watershed basin No. 28 in the 
Caspian forests. This research reveals if deforesta-
tions depend on the physiographic and socio-eco-
nomic factors.

The above process is carried out under the hy-
pothesis that the present deforestation is related 
to physiographic (elevation, slope, aspect) and sur-
rogate socio-economic (distance to roads and resi-
dential areas) factors. 

MATERIAL AND METHODS

Study area. Watershed basin No. 28, part of the 
Hyrcanian forests of Iran, is situated in eastern Gilan 
Province in the south-west of the Caspian Sea (Fig. 1). 

The study region covers approximately 24,000 ha. Ele-
vation ranges from 0 to 2,900 m a.s.l. and slope varies 
from 0 to 250%. The study area is flat in the north and 
rugged mountains cover southern parts. This region 
has a temperate climate and precipitation (the mean 
annual precipitation is about 1,400 mm) is distributed 
throughout the year (Sagheb Talebi et al. 2003).

Hyrcanian forests are mixed and uneven-aged 
deciduous forests. Spot cutting in limited areas has 
been applied in these forests. 

Research data. Data used in this study were: 
– Digital 1:25,000 thematic-topographic maps pro-

duced in 1982, which were extracted based on 
1:20,000 aerial photos acquired in 1967 according 
to the Iranian Forests, Rangelands and Watershed 
Organization (FRWO) order and National Carto-
graphic Centre (NCC) supervision. These maps 
have 63 different data layers including: residential 
areas, roads, railways, forests, ranges, gardens, 
contour lines, etc. 

– Digital thematic-topographic maps dated 2001, 
which were generated based on 1:20,000 aerial 
photos dated 1994. These maps have 63 different 
data layers that are the same as in previous maps. 

Methodology. Deforestation mapping. The layer 
of forest classes was extracted from both 1967 and 
1994 digital maps and then the values of 0 and 1 were 
labelled to non-forest and forest areas, respectively, 
in ArcGIS 9.3 software. This process was done for all 
the map sheets covering the watershed. By compar-
ing forest maps related to the start and end of the 
period (1967 and 1994), deforestation maps were 
obtained. The maps were exported to Idrisi Selva 
software, in 30-m raster-grid format. The flow chart 
of the methodology and processing steps carried out 
in this study is shown in Fig. 2.

Explanatory variables. After extracting contour 
lines from the 3D digital maps of 1:25,000 scale, a 
digital elevation model having a spatial resolution 

Fig. 1. The location of the 
study area in Iran (left) 
and in Gilan (right)
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of 30 m was created. Slope and aspect layers were 
calculated using a digital elevation model (DEM). 
According to Beers et al. (1966) a cosine function 
(Eq. 1) was applied to transform the aspect into 
a number ranging from 0 (southwest-facing) to 2 
(northeast-facing) to create a more direct measure 
of radiation load for statistical analysis. Distances 
to the nearest road and settlement were calculated 
as a series of buffers of 200 m expanding from each 
road segment and settlement centre, respectively. 
Road network and human settlements were derived 
from the digital map dated 1967. These maps were 
converted from vector to raster format with 30-m 
grid cells. 

Cos (45 – Aspect) + 1 	  (1)

Datasets for modelling and validation. Production 
and validation of the logistic regression model were 
performed by a sampling of the geographical and 
environmental space of the study region. To avoid 
biases, the samples were balanced to have the same 
number of positive (deforested) and negative (non-
deforested) cases (Felicisimo et al. 2002). 100 points 
were selected in areas presenting deforestation be-
tween 1967 and 1994, and 100 points in areas that 
remained forested over the same period. These points 
should be separated by at least 1,000 m to reduce the 
effects of spatial autocorrelation. In this study a sepa-

Fig. 2. Flowchart of the 
methods and materials

Fig. 3. Forest maps of watershed 
basin No. 28 for 1967 (a), 1994 (b),  
and the deforestation map in this 
period (c)

(c)
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ration distance of 500 m (at least 500 m) was used in-
stead, because of the relatively limited area in extent 
(Linkie et al. 2004). Each observation is a 30-m grid 
cell containing either deforestation or not. 80% of ob-
servations were allocated to establish the model, and 
20% of them were allocated to the validation model. 
The model has been calibrated using a separate da-
taset, to reduce the likelihood of overestimating the 
predictive ability of the model (Chatfield 1995; 
Wilson et al. 2005). 

Modelling the spatial distribution of deforestation 
using logistic regression. To investigate the correla-
tions that exist between a dichotomous dependent 
variable (deforested/non-deforested) and indepen-
dent variables which cannot be assumed to satisfy the 
required assumptions of discriminant analysis (nor-
mality assumption), a logistic regression model has 
been used (Ludeke et al. 1990). In logistic regression, 
a dependent variable transforms into a logit variable 
(the natural log of the odds of the dependent variable 
occurring or not), and then based on the independent 
variables, maximum likelihood estimation is applied 
to estimate the probability of occurrence of a certain 
event (deforestation) (Rueda 2010). 

The dependent variable used for calibrating the 
model was derived from the analysis of two datasets 
of forest maps. This information was extracted from 
30-m grid cells of forest layers, using Idrisi Selva soft-
ware. The extraction information was exported into 
SPSS 16 software for further analysis. A multivariate, 
spatially explicit model of the deforestation was devel-
oped using the logistic regression (Schneider, Pon-
tius 2001; Serneels, Lambin 2001; Wilson et al. 
2005). The model was used to determine the variables 
that explain the spatial distribution of deforestation.

A logistic model was developed based on the binary 
response variable (one – deforestation; zero – non-
deforestation) (Rivera et al. 2012) and the explanato-
ry variables (elevation, aspect, slope, distance to roads 
and residential areas). Before developing the model, 
the explanatory variables were standardized by divid-
ing values by their root-mean-square because of the 
easier comparison of the relative effect of each vari-
able (Etter et al. 2006). The logistic function gives 
the probability of forest loss as a function of the ex-
planatory variables.

The logistic function (Eq. 2) results bounded be-
tween 0 and 1 as follows:

 	  
(2)

 
where: 
p  – probability of deforestation in the cell, 
E(Y)  – expected value of the binary dependent variable Y, 

β0  – constant to be estimated,
βi 	 – predicted coefficient of each independent variable 

Xi (Schneider, Pontius 2001). 
The amount of the contribution of each fac-

tor to deforestation is described by the regres-
sion coefficients. We could transform the logistic 
function into a linear response with the following 
transformation:

p´= loge(p/1–p)	  (3)
 

hence

p´= (β0+ β1 X1+ β2 X2+ β3 X3)	  (4)

This transformation which allows linear regres-
sion to estimate each βi is called a logit or logistic 
transformation (transformation from Eq. 3 to Eq. 4). 
The final result is a probability score (p) for each cell 
(Schneider, Pontius 2001). Notice that the logit 
transformation of dichotomous data ensures that 
the dependent variable of the regression is continu-
ous, and the new dependent variable (logit transfor-
mation of the probability) is unbounded. Further-
more, it ensures that the predicted probability will 
be continuous within the range from 0 to 1. The final 
step is the classification of these results. 

Validation of the logistic regression model. To in-
dicate the effectiveness and soundness of the model, 
statistical tests of individual predictors including 
goodness-of-fit statistic, and validations of predict-
ed probabilities have been accomplished (Peng et al. 
2002). At first, R square of the model was calculated. 
In this method, R2 is called pseudo R2 because it is 
not computed in the same way as the regular regres-
sion R2 (Ludeke et al. 1990). This R square indicates 
the fitness of the model, but does not give as much 
information as the regular regression R2 about the 
scatter of the data around the fitted line (Ludeke et 
al. 1990). The value of R2 is low in logistic regression 
models because of the binary response variable (Bio 
et al. 1998). For a very good fit of a logistic regression 
model, R2 should have values between 0.2 and 0.4 
(Wilson et al. 2005). The statistical significance of 
individual regression coefficients (βi) was tested us-
ing the Wald chi-square statistic. For testing good-
ness-of-fit, the Hosmer-Lemeshow (H-L) test was 
used in this study. According to the Hosmer-Leme-
show test, the observations are grouped into deciles 
of risk according to a comparison of the observed 
probability with the expected probability within 
each decile. The area under the Receiver Operator 
Characteristic Curve (ROC) is usually used as dis-
crimination ability. ROC was calculated by compar-
ing the predictions of deforestation with the actual 
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ones (Wilson et al. 2005; Etter et al. 2006). These 
values range from 0.5 to 1.0. The value above 0.7 in-
dicates an accurate model fit, above 0.9 indicates a 
highly accurate model (Linkie et al. 2004) and the 
value of 0.5 indicates a random model.

RESULTS

The forest maps of watershed basin No. 28 for 
1967 and 1994 are depicted in Fig. 3. Approximate-
ly 12% (2,902 ha) of the total area was deforested 
during the 27-year period. Therefore, the mean an-
nual deforestation rate was 0.44%.

The coefficients and the value of the area under the 
ROC curve are listed in Table 1. During this period 
the probability of deforestation was significantly and 
negatively determined by slope (Wald = 7.057, df = 1), 
distance to roads (Wald = 4.295, df = 1), and distance 
to residential areas (Wald = 13.651, df = 1). The lo-
gistic regression model proposed that deforestation is 
a function of slope, distance to roads and residential 
areas (Table 1). The coefficients for the explanatory 
variables indicated that the probability of deforesta-
tion is negatively related to slope, distance from roads 
and residential areas (Table 1). Although the distance 
factor was found to be a contributor to deforestation, 
their effects are lower than those of slope. 

Although the logistic regression goodness of fit 
measured by the Nagelkerke R2 statistic is low, the 
significant Chi-square value (54.12, df = 3, P < 0.001) 
and high correct classification percentage (72.5%) 
indicate the perfect fit of the model in explaining the 
relationship between independent and dependent 
variables (Table 1).

The area under the ROC curve of the model was 
0.807, so this model has a good discrimination abil-
ity (Linkie et al. 2004).

The best-fit model of deforestation (Table 1) was 
used to predict the probability of deforestation of the 
remaining areas of the watershed. The probability of 

deforestation ranged from zero to 0.94 (Fig. 4). At the 
final step a classified map was generated based on the 
predicted probability.

DISCUSSION

The deforestation rate of the study area was 0.44% 
per year (2,902 ha). This study has shown the value 
of producing site-specific models based on logistic 
regression that can be used in forest management. 

The deforestation models developed in this study 
can be used to predict future patterns of deforesta-
tion and to identify where to focus stronger protec-
tion for the best results. This analysis found that 
the spatial pattern of forest loss was dependent 
on several physiographic and anthropogenic fac-
tors and that the logistic regression models could 
be used to accurately predict future deforestation 
trends (Linkie et al. 2004). One of these factors 
was slope, which was important during this period 
because the areas with steep slopes tended to in-
clude more rugged terrain and are further from ex-
isting deforestation fronts. This may also partly ex-
plain why low slope forests are the most threatened 
forest type (Linkie et al. 2004). We conclude that 
the areas with lower slopes are more accessible, and 
more suitable for agricultural activities that are the 
most important factors causing deforestation. 

As expected from previous studies (Pir Ba-
vaghar 2004; Wilson et al. 2005; Amini et al. 
2009; Bagheri, Shataee 2010), the position of 
roads and residential areas were important in de-
termining deforestation patterns.

Deforestation has been seen to have a negative re-
lationship with slope, distance from roads and resi-

Table 1. Result of the logit analysis

Variable B S.E Wald Sig Exp (B)
St. Build – 0.051 0.014 13.651 0.000 0.950
St. Road – 0.012 0.006 4.295 0.038 0.998
St. Slope – 0.183 0.069 7.057 0.008 0.833
Constant 2.683 0.565 22.567 0.000 14.629

Chi-square value = 54.125; Nagelkerke R square = 0.383;  
ROC = 0.807, SE = 0.031, Sig = 0.000; Hosmer & Lemeshow test  
Chi-square = 7.433, Sig = 0.491; Correct classification = 72.5%, 
RMSE% = 23%, St. Slope, St. Build & St. Road: Standardized 
value of slope, distance from residential areas and roads

Fig. 4. Probability of deforestation (lighter areas have a 
higher probability of deforestation and are located in a 
relatively flat terrain, these areas also have shorter distances 
to roads and residential areas)
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dential areas. Negative coefficients of these factors 
indicate that higher values are associated with lower 
probabilities of deforestation (Wilson et al. 2005; 
Amini et al. 2009; Bagheri, Shataee 2010). In gen-
eral, a steep slope limits deforestation due to diffi-
culties associated with transportation. The spatial 
patterns of deforestation across this area highlighted 
the critical role of accessibility, with the importance 
of distance to roads and residential areas. These re-
sults reflect the findings of other deforestation as-
sessments (Ludek et al. 1990; Linkie et al. 2004, 
2010; Amini et al. 2009; Bagheri, Shataee 2010). It 
was found that 83% of deforestation occurred within 
a 2-km distance from roads. Similarly, Ludeke et al. 
(1990) also found that deforestation decreased rap-
idly with a distance from roads and there was a steep 
drop in the percentage area deforested beyond 2 km 
from access routes. Wilson et al. (2005) also men-
tioned that 90% of the deforested area is within 2.5 
kilometres from roads. 

The validation analysis showed that the explana-
tory variables included in the model had a suffi-
cient explanatory power to discriminate between 
deforested and non-deforested areas.

The correlates of deforestation may change over 
time and so the spatial model should be periodi-
cally updated to reflect these changes. Like in any 
model, the quality may be improved by introducing 
the new variables that may contribute to explaining 
the spatial distribution of deforestation. 

The results of this analysis are based on the as-
sumption that the existing forest maps are accu-
rate. Furthermore, the accuracy of this assessment 
relies on the quality and accuracy of the maps of 
the explanatory variables included in the model. 
These maps are the most detailed and comprehen-
sive presently available for these forests.

CONCLUSIONS

This study fulfilled its aim by predicting spatial 
patterns of deforestation in the northern forests of 
Iran and understanding the underlying drivers. De-
forestation is indeed as interplay between several 
factors. Accessibility was found to be an important 
variable for explaining the patterns of deforestation 
observed in the study area. The results indicated 
that slope, major roads, and residential areas have a 
strongly significant correlation with deforestation. 
So the results highlighted the critical role of acces-
sibility. The results did not indicate a significant 
relationship with aspect and elevation. The results 
also showed the utility of a statistical modelling ap-

proach to analyse and predict deforestation. The 
logistic regression goodness of fit is low, suggest-
ing that missing variables such as livestock’s role, 
might further explain differences between low and 
high deforestation. In spite of this, the modelling 
approach developed by this study would benefit 
conservation planning (Wilson et al. 2005; Smith 
et al. 2008; Linkie et al. 2010).
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