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Use of nonparametric regression methods for developing
a local stem form model
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ABSTRACT: A local mean stem curve of spruce was represented using regression splines. Abilities of smoothing spline
and P-spline to model the mean stem curve were evaluated using data of 85 carefully measured stems of Norway spruce.
For both techniques the optimal amount of smoothing was investigated in dependence on the number of training stems
using a cross-validation method. Representatives of main groups of parametric models — single models, segmented
models and models with variable coefficient — were compared with spline models using five statistic criteria. Both

regression splines performed comparably or better as all representatives of parametric models independently of the

numbers of stems used as training data.
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The extensive development of taper models and
stem form equations during the last decades report-
ed in scientific literature has evidenced a continual
interest in this beneficial tool of forest manage-
ment. Stem form models expressed as a functional
dependence of stem diameter at a given height on
this height (SHARMA, PARTON 2009) allow to assess
stem diameter at any height. Consequently, the vol-
ume of any specified log can be calculated and the
assortment structure estimated (Rojo et al. 2005).

The stem form is a result of many factors (Mu-
HAIRWE et al. 1994) including genetic influences
(GoMAT et al. 2011), stand density (SHARMA, PAR-
TON 2009), thinning (SHARMA et al. 2002), pruning
(VALENTI, CAO 1986), water availability (WIKLUND
et al. 1995) and supply of other resources. A huge
number of the factors are stand specific; they influ-
ence almost all trees in a stand in the same way.
Stem curves in a stand — or more generalized in
a locality — tend to have the identical shape and
therefore they can be described by a local stem
curve model.

Mixed-effect models (LEJEUNE et al. 2009; Cao,
WANG 2011) were developed in the last years in

order to match individual stems to a general stem
curve using one or more upper stem diameters. As-
suming a similar stem curve for trees in a locality
a population-specific model can be derived as the
mean stem curve. The local model can be matched
to height and diameter at breast height of an indi-
vidual tree. A number of such models was devel-
oped: simple models of polynomial (BRUCE et al.
1968; KozAx et al. 1969), logarithmic (DEMAER-
SCHALK 1972), trigonometric (THOMAS, PAR-
RESOL 1991), sigmoidal (BiginGg 1984) and other
forms, segmented models (MAX, BURKHART 1976;
Brooks et al. 2008) and various models with vari-
able exponent (NEWBERRY, BURKHART 1986; LEE
et al. 2003). Most of recent works (Rojo et al. 2005;
L1, WEISKITTEL 2010) comparing taper models re-
port the variable-form models to have a superior
performance than the single or segmented models
due to their flexibility.

Non-parametric and spline models are even more
flexible. Splines were used to interpolate an indi-
vidual stem curve from a set of measured diameters
(FIGUEIREDO-FILHO et al. 1996; LAASASENAHO et
al. 2005). Non-parametric and spline regression
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techniques serve also as a regression model of the
mean stem curve. Smoothing spline was used to fit
the stem curve represented as a set of average di-
ameters at relative heights (LApr1 2006; KUBLIN et
al. 2008) or to predict the stem curve if a part of the
stem curve was known (NUMMI, MOTTONEN 2004;
KoskeLA et al. 2006). KUBLIN et al. (2013) used
B-spline to develop a general stem curve model
adaptable to an individual stem.

The objective of this study is to explore possi-
bilities of using two types of regression splines to
develop a model of local mean stem curve. Spline
models are compared to commonly used paramet-
ric models.

MATERIAL AND METHODS

Data. This study used data from 85 Norway spruce
sample trees (Picea abies [L.] Karst.). The trees were
from three even-aged pure plantations with ages
from 50 to 100 years located in the School Forest En-
terprise Kostelec nad Cernymi lesy, Czech Republic.
The diameter at breast height (DBH) ranged from 88
to 438 mm (mean 204 mm), and tree heights ranged
from 10.6 to 37.1 m (mean 21.3 m). Trees were
felled and subsequently diameters outside bark were
measured from the tree base to the top at 0.1-m
intervals. The distances from the tree base were
measured using a steel tape with 0.01-m precision,
and the diameters were measured and recorded with
an electronic calliper with 1-mm precision.

Spline regression models and parameter op-
timization. Two regression splines were used to
model the mean stem curve: smoothing spline and
P-spline. Smoothing spline (SS) is a twice continu-
ous curve that relates the requirement of minimal
curvature with the requirement of the minimal re-
sidual sum of squares. The importance of minimi-
zation of the residual sum of squares is expressed
as smoothing parameter A (AyDpin 2007). P-spline
(PS) is a penalized spline regression estimator
based on B-spline with a flexible number of knots.
To restrict the roughness of the curve k"-order dif-
ference penalty is used (EILERS, MARX 1996). Ex-
cept the smoothing parameter A also the number of
knots is important. Too many knots lead to overfit-
ting and too few knots lead to underfitting.

Both spline models were fitted using the nor-
malized height-diameter data. For both methods
the optimal amount of smoothing must be deter-
mined. This was carried out using the leave-one-
out cross-validation (LOOCYV) approach; the best
\ is the value that minimizes LOOCYV value. For
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smoothing spline A can take any value from the
close range from 0 tol; A = 0 leads to a regression
line, A = 1 leads to spline interpolation. The behav-
iour of SS was examined with 20 values of \: 107¢,
107% ..., 1071, 0.2, 0.4, 0.6, 0.8, 1-107%, 1-1072, ...,
1-1071% The amount of smoothing was optimized
for different numbers of input points expressed
in two ways. Firstly, A was optimized for 1 to
50 stems with measured diameters with inter-
spaces of 2 m (15 to 845 data points). Secondly,
A was optimized for different densities of data
points expressed by interspace lengths between
measured diameters - for several numbers of stem
profiles the interspaces between diameters were
set to 0.1, 0.2, 0.3, 0.4 and 0.5 m. For P-spline A\
can take any non-negative number; with A = 0,
PS becomes a polynomial fit; as A approaches in-
finity, PS becomes a linear regression function.
The set of X values for describing the behaviour
of PS smoothing consists of powers of two with
exponents from —10 to 12. Also the influence of
different numbers of knots must be considered.
Powers of two with exponents from 1 to 9 were
used as the number of knots.

Comparison of taper models. The performance of
spline models is compared with parametric models.
Based on comparison by Rojo et al. (2005) the fol-
lowing models are selected for the comparison. The
model of Cervera (Rojo et al. 2005) and the model
of MAx and BURKHART (1976) were selected as the
best representatives of polynomial and segmented
models, respectively. Because the variable exponent
models are designated as the most accurate models,
two of them were selected for the comparison; the
model of B1 (2000), which is considered as the best in
model comparison, and the model proposed by LEE et
al. (2003). For fitting the models 85 spruce stem pro-
files with 2 m long interspaces were employed.

The parametric models were fitted using the least-
squares method. For fitting the non-linear functions
of variable-exponent taper models, the Levenberg-
Marquardt algorithm was used. The comparison of
models was carried out using the LOOCYV approach.
A single stem is retained as validation data, while all
other stems are used as training data to compute a
regression spline or to fit a taper model. Residuals
are assessed for each position of measured diam-
eters of the validation stem. The residual values of
each validation stem are evaluated using the criteria
listed in Table 1. This procedure is repeated for all
stems, so that every single stem serves as validation
data exactly once.

The models were also fitted using lower numbers of
stems: 5, 10, 20, 40 and 60. For these cases the training
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Table 1. Statistical criteria used for evaluating the accuracy of the models

Abbreviation Statistical criterion Calculation

DB diameter bias 2 Dift,/N

MAR mean absolute residual 2 abs (Diff))/N

SDR standard deviation of residuals % [(Diff, - DB)?/(N - 1)]°*
MSR mean squared residual Z (Diff)*/N

VD volume difference V odel = \/0rig

Diff, difference between predicted and measured diameter in i position

N number of measured diameters

abs — absolute value, Vio

stems were selected randomly from the whole data
set. From the remaining stems, one was randomly
selected for validation. The procedure was repeated
400 times in order to increase the accuracy of criteria
estimation.

Because the variances of the criteria were not equal
in all cases, the Kruskal-Wallis test with Tukey’s hon-
estly significant difference test comparing average
group ranks were used to test the equality of mean
values of the criteria among taper models. Friedman’s
test was used to determine the effect of the number of
data points. To find if the means of diameter bias and
total volume difference are different from zero one-
sample ¢-test was used.

RESULTS
Optimal amount of smoothing

The development of cross-validation (CV) criterion
in dependence on A for smoothing spline is shown in
Fig. 1. The development is very similar for all point
densities. The minimum CV is found with X between
1-10~* and 1-107% in dependence on point density.

x10°
7,

—o— stems: 10; points: 171
—<v— stems: 20; points: 335
6 —&— stems: 30; points: 507
—=4&— stems: 50; points: 845

Cross-validation criterion

14— Stem volume based on stem curve model, Vorig — stem volume based on original measured stem profile

However, within the range the change of CV is negli-
gible. Outside that range the value of CV steeply in-
creases. This tendency is observable in all input point
densities. The same results are obtained in the case of
expressing the point density in terms of the length of
input point interspaces. Because the development of
CV criterion in dependence on A value was observed
in several discrete points only, it can be concluded
that the optimal amount of smoothing is achieved
with A ranging between 1-10~* and 1-107.

It is obvious that the development of CV crite-
rion with changing A in P-splines is strongly depen-
dent on the number of segments (Table 2). With
low numbers of segments the optimal values of A,
having the lowest values of CV criterion, are also
low. For the rising number of knots, the optimal A
also increases. A regression analysis was carried
out describing the dependence of the optimal A on
the number of knots. The A values with the low-
est CV criterion are plotted against their respec-
tive number-of-knots. A regression power function
(\ = B, x nf?_ ) fits nearly exactly all the data points
(B, = 1.526 x 1075, B, = 3; R* = 1.00). For a given num-
ber of knots the optimal value of A is stable for differ-
ent numbers of input points.

Fig. 1. Cross-validation values in
dependence on smoothing param-
eter for smoothing spline. Sepa-
rate lines show the development of
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Table 2. Cross-validation values in dependence on smoothing parameter and number of knots

Number Smoothing parameter

of knots 2-10 28 26 2 22 20 22 24 26 28 210 212
2 2.15 2.16 2.27 2.77 3.76 4.59 5.47 6.35 6.77 6.90 6.93 6.94
4 1.50 1.52 1.66 2.04 2.38 2.71 3.48 4.57 5.74 6.53 6.83 6.92
8 1.14 1.16 1.26 1.48 1.72 2.00 2.36 2.88 3.84 5.04 6.15 6.70
16 1.21 1.22 1.22 1.23 1.28 1.44 1.72 2.09 2.53 3.25 4.38 5.62
32 1.28 1.26 1.24 1.23 1.22 1.22 1.29 1.52 1.87 2.28 2.82 3.77
64 1.62 1.48 1.39 1.30 1.24 1.22 1.21 1.23 1.37 1.67 2.06 2.51
128 3.15 2.08 1.71 1.50 1.38 1.29 1.23 1.22 1.21 1.28 1.50 1.85
256 9.10 4.35 2.52 191 1.63 1.45 1.34 1.26 1.22 1.21 1.23 1.36
512 34.17 12.35 4.95 2.90 2.11 1.76 1.54 1.39 1.30 1.24 1.22 1.21

Comparison with selected parametric models

With rising numbers of stems the values of absolute
diameter errors as well as absolute volume differences
decline. The decline of the error values both for di-
ameters and volume proved significant. The depen-
dence of accuracy on the number of stems differed
for different models. For the model of Br (2000) the
accuracy drop with lower number of stems was very
pronounced. While with 84 training stems its accu-
racy was very good in comparison with other models,
for five stems the performance of the model was very
poor. On the other hand, the model of Lee had the
lowest accuracy among all models with a high num-
ber of stems used, while for a low number of stems
the accuracy of its predictions was comparable with
the other models.

With 84 stems used to derive the model (Table 3,
Fig. 2), both splines represented the mean function
of typical stem curve very well. There was no system-
atic error in diameter prediction nor in volume esti-
mation. The mean errors for both diameter (less than

Table 3. Comparison of taper models based on 84 stems

2 mm) and volume (less than 1%) prediction were
very low. However, the mean absolute residuals as-
sume quite high values, and also the variances of DB
and TVD are high, which corresponds with the high
values of mean absolute volume differences.

Withlowering thenumber of stems (Table4, Fig.3),
the diameter predictions of all models became sig-
nificantly biased. With only five stems used to pa-
rameterize the model no significant diameter bias
was found with the model of Bi, which is caused by
high variance of the prediction errors.

Concerning the criteria expressing the quality of
fit of the curve (MAR, SDR, MSR) two groups of
models with significantly different accuracy can be
distinguished. For a high number of stems used for
model parameterization the segmented polynomial
model of Max and BURKHART (1976), the variable-
exponent model of B (2000), and both spline models
show better results than the single polynomial model
of Cervera and the variable-exponent model of LEE et
al. (2003). With a lower number of trees the most ac-
curate models are the segmented polynomial model

DB (102 m) MAR (102 m) SDR (102 m) MSR (103 m?) TVD (%)
Model
mean + SD

Cervera 0.26 + 1.27° 1.58 + 0.60° 1.88 + 0.56° 0.44 + 0.33 ~122 +6.61°
g\i’;fur' 0.18 + 1.31° 1.32 + 0.68" 1.52 + 0.67" 0.34 + 0.35 ~0.24 + 6.73
Bi 0.01 + 1.09 1.31 + 0.60° 1.55 + 0.62 0.32 + 0.27 ~0.95 + 5.69°
Lee 0.22 + 1.10° 1.56 + 0.50° 1.93 + 0.48 0.43 + 0.25° 0.09 + 5.70°
Smoothing 19, 1 340 1.37 + 0.68 1.56 + 0.65" 0.35 + 0.34 0.59 + 6.75°
spline

P-spline 0.13 + 1.31° 1.31 + 0.67> 1.50 + 0.66 0.33 + 0.34° ~0.29 + 6.69°

for each criterion mean (mean) and standard deviation (SD) are shown, values in a column followed by the same letter

indicate insignificant difference between models, abbreviations of statistical criteria are shown in Table 1
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Fig. 2. Selected taper models based on 84 stems and the validation stem fitted by the model

together with the PS model; lower accuracy was ob-
served with the SS models. The single polynomial
model and both variable-exponent models showed
significantly higher errors.

DISCUSSION

It was stated many times (Max 1976; Max, BUur-
KHART 1976; JIANG et al. 2005) that the single poly-
nomial models are too rigid to conform to the compli-

25 30 35

cated shape of stem curve. This fact proved true also
in this comparison, where the model considered as
the best among the single polynomial models (Rojo

et al. 2005) was outperformed by other models.

The rather complicated variable-exponent model
of B1 (2000) is able to produce accurate predictions if
the model parameter values are derived from a high

number of stem profiles. In the comparison of Rojo

Table 4. Comparison of taper models based on 10 stems

et al. (2005) the models were parameterized using
stem profiles of 203 stems. From this study it results
that the model must be parameterized using at least

DB (102 m) MAR (102 m) SDR (102 m) MSR (103 m?) TVD (%)
Model
mean + SD

Cervera 0.36 + 1.38" 1.69 + 0.67%b 2.01 +0.62° 0.51 + 0.41° ~0.73 + 6.927
Max- 0.21 + 1.33 137 + 0.68 1.58 + 0.67° 0.36 + 0.36° ~0.03 + 6.75%
Burkhart

Bi 0.23 + 2.07° 1.85 +1.52¢ 217 +1.79 0.94 + 3.08 ~0.02 + 8.823b
Lee et al. 0.22 + 1.21 1.70 +0.54%b 2.09 + 0.52 0.51 + 0.30° ~0.09 + 6020
Smooth- 0.29 + 1.43%" 159 +0.71° 1.82 + 0.67° 0.45 + 0.38° 0.79 + 7.10%
ing spline

P-spline 0.18 + 141" 152 +0.70P< 1.74 + 0.66¢ 0.42 + 0.37° ~0.58 + 6.89%"

values in a column followed by the same letter indicate insignificant difference between models; Asterisks in columns DB

and TVD indicate the mean significantly different from zero; abbreviations of statistical criteria are shown in Table 1
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Fig. 3. Selected taper models based on 10 stems and the validation stem fitted by the model

tens of stems. The variable-exponent taper model has
to be fit using non-linear least squared fitting meth-
ods, such as Levenberg-Marquardt algorithm, that do
not assure to provide the unique best solution. With a
high number of parameters in the model or few data
points to be fitted, the methods for model parameter-
ization can be unstable and give inaccurate results
(KuBLIN et al. 2008).

An important result of the comparison is that the
PS model performed at least as well as the mod-
els regarded as the best representatives of three
main groups of taper models. The performance
of the SS model was comparable with the perfor-
mance of PS in most aspects, which is caused by
the similarity of both splines. In the case of a large
number of knots of PS, both splines are asymp-
totically equivalent (WANG et al. 2011). However,
this application is not the case and therefore in
some rare cases the values of the evaluative crite-
ria were higher for SS with statistically significant
difference. For spline models the choice of the
smoothing parameter is crucial (EILERS, MARX
1996; KoskEeLA et al. 2006). Regarding the studies
performed to optimize the A\ value under variable
conditions it can be assumed that the utilized A
approached the optimal amount of smoothing.

J. FOR. SCL, 60, 2014 (11): 464471

The dependence of the optimal amount of
smoothing on the number of knots can be ex-
plained by the knowledge of B-spline properties.
The lower is the number of PS segments, the more
input points influence the shape of the segment and
the lower is the relative effect of a position of each
point. PS consisting of low numbers of segments
are smooth by themselves; only a small amount of
additional smoothing is required.

CONCLUSIONS

Possibilities of non-parametric regression
techniques were investigated. For the purpose
two spline regression techniques were selected:
smoothing spline and P-splines. Both techniques
were used to represent the mean function ex-
pressing the dependence of relative diameter on
relative height.

For both techniques the optimal amount of
smoothing was optimized in dependence on the
number of training stems and on the density of in-
put points. For smoothing spline, the optimal value
of A was approximately 0.99999, independently of
the number of stems. For P-splines, the optimal

469



value of the smoothing parameter is also indepen-
dent on the number of stems, but it is determined
by the number of knots.

The stem curve models represented by optimally
smoothed regression splines were compared with
stem curves modelled by the best representatives
of three main groups of parametric taper models:
a polynomial model, a segmented model and two
variable-exponent models. Both spline models
showed good results. Their performance was sig-
nificantly better that the performance of the poly-
nomial model and that of the variable-exponent
models. The accuracy of stem curves represented
by the second variable-exponent model and the
segmented polynomial model was comparable
with the accuracy of spline models. The advantage
of spline models in contrast to variable-exponent
models is the simplicity and numeric stability of
the model computation. With a decreasing num-
ber of stems incorporated into the regression
model the accuracy declines for all models; how-
ever, with spline models the accuracy drop is not
as strong as with some of the parametric models,
especially the variable-exponent models.
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