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ABSTRACT: Based on two species of Coastal Mangrove in Hainan of China, Sonneratia Apetala Buch-Ham and 
Sonneratia caseoli, we estimated the density of the two species to evaluate the efficiency of adaptive cluster sampling 
(ACS), simple random sampling (SRS) and traditional systematic sampling (SYS). Our initial experimental designs for 
ACS consisted of 5 unit areas, 6 initial sampling proportions, 4 initial sample sizes and 5 criterion values in 1,000 rep-
etitions. From the aspect of factors influencing efficiency, we analysed the efficiency of ACS in various designs. We 
also compared the efficiencies of the three methods on the indexes of the relative error, the variance of density estima-
tor and the relative sampling efficiencies. We found that ACS yielded smaller variance than the traditional sampling 
methods. ACS was a powerful sampling method when a population was spatially aggregated. We also determined the 
optimum unit area for the two species studied using the two estimators (HT and HH) of adaptive cluster sampling. 
They were 20 m2 (2 × 10 m), 15 m2 (3 × 5 m) for S. Apetala Buch-Ham and 25 m2 (5 × 5 m), 15 m2 (3 × 5 m) for S. 
caseolari, respectively.

Keywords: adaptive cluster sampling; Horvitz-Thompson estimator; Hansen-Hurwitz estimator; simple random 
sampling; systematic sampling 

The mangroves, known as a long-term adapta-
tion to tidal and flood impacts and the tropical, 
subtropical coastal shelterbelt, have a huge role in 
disaster reduction. Studies of mangroves, including 
tall trees and low shrubs, face significant sampling 
challenges for sustainable resource management, 
monitoring and assessments. Previous attempts to 
estimate the distribution and abundance of man-
groves have used a variety of techniques, each 
with its own underlying assumptions, biases, and 
limitations. Sampling mangroves may often pro-
duce estimation problems because of the rarity and 
patchy distribution of many species of mangroves. 

The problems are that many sampling units contain 
zero plant detections, and some sampling designs 
become highly inefficient because little informa-
tion is provided on the species.

Adaptive cluster sampling (ACS) first proposed 
by Thompson (1990) can provide more efficient 
estimates and higher rates of encountering rare 
and clustered distribution species than compara-
ble traditional sampling designs (Brown, Manly 
1998; Smith et al. 2004). ACS allows the inclusion 
of additional sampling units (e.g. quadrats) in the 
immediate neighbourhood of any quadrat in which 
the target species is found. Thompson (1990) also 
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proposed the modified unbiased estimators such 
as Horvitz-Thompson (HT) and Hansen-Hurwitz 
(HH) for ACS. The advantages of ACS over tra-
ditional sampling designs such as simple random 
sampling (SRS) and systematic sampling (SYS) are 
believed to be twofold: (1) an increase in sampling 
efficiency resulting in more precise estimates of 
population parameters, and (2) an increase in the 
number of observations of the target species may 
result in more reliable estimates of other popula-
tion parameters such as species richness and com-
position, and relative abundance. These advantages 
should be pronounced especially for rare and clus-
tered populations such as mangroves. 

ACS is often used in some research areas in which 
the number of targets is of natural distribution but 
is difficult to determine. The research on the appli-
cation of ACS develops rapidly, and has been used 
increasingly in many fields such as biological envi-
ronment, forestry and fishery survey. Brown (1994) 
surveyed some biological species by ACS, mainly 
including the patchy distribution of rare plants and 
the number of tree species. Philippi (2005) used 
the ACS to estimate the abundance of low density 
plant population within a local area. He compared 
the ACS sampling efficiency in 1 m2 and 4 m2 of the 
different area of sampling unit, and compared the 
estimation precision of HH and HT. The conclusion 
was that the variance of HT estimation was less than 
HH; the estimation results in 1 m2 and 4 m2 of the 
initial sampling units were both reasonable. Many 
scholars believe that the ACS yields good results in 
the surveying of forest resources, particularly in the 
cluster and patchy distribution of the population 
(Roesch 1993; Smith et al. 1995). Magnussen et 
al. (2005) simulated the sampling efficiency of eigh-
teen artificial spatial populations of deforestation 
polygons with each 200 × 200 km2 using ACS and 

SRS designs, and the result was that the sampling er-
ror of ACS was 30% lower than that of SRS.

Although many scholars carried out relevant 
researches on the ACS method, and made some 
case studies, their researches were usually a com-
parison between the results of ACS technology and 
traditional sampling only under certain conditions 
(such as one or two fixed unit areas) (Roesch 1993; 
Smith et al. 1995; Magnussen et al. 2005; Philip-
pi 2005). For ACS, different initial sample sizes, 
unit areas and criterion values (C) will all affect the 
results of estimation. Therefore it is necessary to 
further conduct the estimation effects in a variety 
of sampling designs, and then to obtain more ef-
ficient ACS designs and summarize the evolution 
of sampling results. The content of the research 
presented here is to take the coastal mangroves 
for the study area from Hainan Province of south-
ern China, simulate the sampling of two mangrove 
coastal species Sonneratia Apetala Buch-Ham and 
Sonneratia caseolari based on the real distribution 
data in the investigated area, and to estimate the 
density for evaluating the efficiency of ACS, SYS 
and SRS designs. 

MATERIAL AND METHODS

Study area

The Dongzhaigang Mangrove Natural Reserve 
is located in the northeast of Hainan Province, 
32 km from Haikou (Fig. 1). The geographic coor-
dinates are 19°38'–20°01'N and 110°34'–110°38'E. 
The altitude is about 10–80 m a.s.l., with gradient 
3–7°. The terrain is high in the north and low in 
the south. The reserved areas are located in the 
northern fringe of a tropical monsoon climate. The 

Fig. 1. The location of the Dong-
zhaigang Mangrove Natural Reserve 
in Hainan Province of Southern 
China
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average annual temperature is 17.1°C, the highest 
temperature is 37.51°C and the lowest tempera-
ture is 3°C. The average annual sunshine is 2,200 h; 
the average annual rainfall 1,700–1,933 mm, more 
than 80% concentrated in May–October. All these 
climatic and geographic factors undoubtedly had a 
significant effect on the types of species composi-
tion of the mangrove family.

The reserved areas, with a lot of rare plants, are the 
mangrove provenance base, where there are S. Buch-
Ham, S. caseolari, Bruguiera sexangula, B. gymnor-
rhiza, B. s. var. rhynochopetala, Rhizophora stylosa, 
Ceriops tagal, Kandelia candel and so on. 

Six plots of different sizes were established us-
ing typical sampling because the mangrove spe-
cies are distributed at the Hegang village in Haikou 
Dongzhaigang Mangrove Natural Reserve on the 
coast of the Qiongzhou channel, where S. Apetala 
Buch-Ham, S. caseolaris and Kandelia candel com-
munities are present. Finally one of the plots was 
selected for simulation sampling designs consider-
ing its size is the largest one out of the six plots 
and its study area is 60 m × 100 m where is mostly 
S. Apetala Buch-Ham and S. casolaris. The two tree 
species are good species of mangrove forest and 
are naturally distributed in low salinity and muddy 
tidal flats. The height of S. Apetala Buch-Ham is 
generally about 10–15 m, diameter at breast height 
(DBH) is about 10–25 cm. S. casolaris height is 
about 5–8 m and DBH 4–15 cm.

Survey in the field

The trees were examined in the plot consisting of 
60 quadrats (each 10 m × 10 m in size) distributed 
as adjacent grid in the mangrove community. 

In order to measure the quadrat accurately, the 
ropes were pulled out along one side of the tidal 
flat, a pole was inserted at every 10-m interval, 
and taking the straight line of direction toward the 
mangrove forest by a compass where poles were 
set. Finally the borders of the plot were enclosed 
through benchmarking and by plastic ropes.

The origin was at the corner of each quadrat, 
through which two straight lines were perpendicu-
lar to the axes (x-axis, y-axis). The trees were mea-
sured, including locations, species name, height, 
DBH (by calliper), crown diameter (by tape), clear 
length (by a measuring rod) in each quadrat. Data 
on locations of S. Apetala Buch-Ham and S. caseo-
laris were extracted to use for a simulation study in 
the experiment. The spatial distributions of inves-
tigated trees are described in Fig. 2. The dots rep-
resent plants as Fig. 2 shows the actual coordinates 
x and y (in m) of S. Apetala Buch-Ham and S. ca-
seolaris which appear rare and in spatial clustered 
distribution within the plot.

Adaptive cluster sampling

With an adaptive sampling scheme the procedure 
of selecting units to be included in the sample may 
depend on values of the variable of interest observed 
during the survey, i.e. the sampling is “adapted” to 
the data (Thompson 1990). ACS then operates 
under the rule that when the observed value of an 
initially sampled unit satisfies criterion conditions 
of interest (C), additional units in some pre-defined 
neighbourhoods will be added to the sample. Then, 
if any of these additional units satisfy C, the units 
in their neighbourhoods are added to the sample 
as well, and so on (Fig. 3). This process is iterated 
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Fig. 2. The two species distributions: (a) the distribution of Sonneratia Apetala Buch-Ham and (b) the distribution 
of Sonneratia caseolari (x and y axes are the coordinate of the plot and the unit in m)
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until no units satisfying C are encountered (Turk, 
Borkowski 2005).

All neighbouring quadrats that collectively meet 
the criterion (e.g. y > 0) are called a network. The 
quadrats bordering each network that fail to meet 
the criterion are called edge quadrats. Network 
plus edge quadrats constitute the ACS cluster. Note 
that if any of the quadrats in a network is included 
in the initial random sample, the entire cluster will 
ultimately be included. In addition, it is important 
to note that any quadrat selected in the original 
sample that does not meet the criterion (i.e., y = 0)  
is considered a network of size 1. The grouping of 
quadrats into networks constitutes a partitioning 
of the initial population based on the size of the 
initial random sample. 

Estimators

To estimate means and variances of interest, the 
modified Hansen-Hurwitz and Horvitz-Thompson 
estimators for ACS are described as follows.

A modified Hansen-Hurwitz type of estimator (HH)
According to Thompson (1990, 2002), an unbi-

ased estimator of the population mean (ŷHH) formed 
by modifying the Hansen-Hurwitz estimate:

ŷHH = 1  
n

∑wi	 (1) 
          

n 
i=1

The variance of ŷHH is:

Var (ŷHH) =     N – n      
n

∑(wi – ŷHH)2	 (2) 
                  Nn (N – 1)  i=1

where:
N 	– total number of sample units (quadrats) in the pop-

ulation,
n 	 – quadrats sampled, 
wi 	– represents the average of the observations in the 

i-th network, define wi = yi/xi, xi – number of units 
in the i-th network, yi – observation values of the 
i-th network.

A modified Horvitz-Thompson type of estimator (HT)
Thompson (1990) presented the modified Hor-

vitz-Thompson estimator, taking full advantage of 
probability of three kinds of units’ network inclu-
sion in the sample (initial sample units, initial sam-
ple units’ neighbourhood units which satisfy C, and 
edge units).

ŷHT =   1   
v

∑ yk 	 (3) 
           N 

k=1  ak

αk = 1 – [(N – xk)/( N )]	 (4) 
                 n            n

αik = 1 – [
 (N – xj) + ( N  – xk) – ( N  – xj – xk)]	

(5)                    n               n                n 
                            ( nN

 )
Var (ŷHT) =  1  [ 

v

∑
v

∑ yj yk
 ( αjk   – 1)]	 (6) 

                  N 2  j=1 k≠j     αjk    αjαk

where:
ŷHT	–  an unbiased estimator of the population mean 

using the modified Horvitz-Thompson estimate,
v 	 – number of distinct networks in the sample, 
N 	 – total number of sample units (quadrats) in the 

population,
n 	 – quadrats sampled,
yk 	 – observation values of the network that includes unit k, 
yj 	 – observation values of the network that includes unit j, 
αk 	 – probability of the K-th network inclusion in the 

sample, i.e. partial inclusion probability, 
αjk 	– probability that the initial sample contains at least 

one unit in each of the networks j and k.

Simulation

Simulation can be useful for evaluating sampling 
designs because it permits experimental compari-
son across populations and designs (Brown 2003; 
Morrison et al. 2008). In practice, it is often in-

Fig. 3. ACS sampling procedure example with one clus-
ter: (a) an initial sample unit and (b) cluster obtained 
by adding adaptively. The one initial quadrat is squared 
and indicated with diagonal stripes, additional quadrats 
within intersected network are indicated with wavy lines, 
and edge quadrats are stippled if the criterion condition 
(e.g. y > 0 tree in a quadrat)

(a)		  (b)
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feasible to analytically derive the sampling distri-
bution for estimators across a range of populations 
and designs. Simulation study makes it possible to 
evaluate the sampling distribution of estimators 
based on a lot of repeated samplings. Comparisons 
across multiple populations and a broad range of 
designs can result in robust recommendations 
(Morrison et al. 2008).

Sampling designs

According to the characteristic of the rare, ag-
gregate population, and the result of the smallest 
relative error of density estimator in many repeti-
tions, the least initial sampling fraction was 0.06. 
The smallest initial unit area was 2 × 5 m.

The quantity of units that could be selected in dif-
ferent unit sizes was 600, 400, 300, 240 and 200. The 
network did not expand mainly when C increased 
to 4 or 5. As the C continued to increase, the initial 
population was close to that of SRS. So the largest 
criterion value was no more than 5. Thus, criterion 
values (Ca) were set to be 1, 2, 3, 4 and 5, respec-
tively. When the value of a selected unit was equal 
to or higher than the criterion value (C > Ca), addi-
tional unit cross-shaped neighbourhood would be 
added to the sample.

Selecting the amount of units consisted of sam-
ples from a population. The results reckoned by dif-
ferent samples were different and also differed from 
the true value. Thus, the simulated results obtained 
by the sample only once cannot confirm whether 
the sampling method is good or not. We should 
compare various sampling methods and as many 
repetitions as possible. 

The relative errors of the mean density estimated 
by HH and HT were respectively smaller than 5% 
in different repetitions and unit areas designs. The 
mean density estimated was to be invariable as rep-
etitions increased to 1,000. Sampling designs were 
as follows:
– The conditions that the initial sampling fraction 

and C were invariant: various unit areas impacting 
on efficiency were analysed and compared, and a 
regular pattern was obtained. Sampling was simu-
lated using ACS in five types of unit area designs 
[10 m2 (2 × 5 m), 15 m2 (3 × 5 m), 20 m2 (2 × 10 m), 
25 m2 (5 × 5 m), 30 m2 (3 × 10 m)] and six initial 
sampling fractions (6, 8, 10, 12, 14 and 16%).

– Provided that the initial sample size and C were 
invariant: sampling was also simulated using ACS 
in five types of unit area design [10 m2 (2 × 5 m), 
15 m2 (3 × 5 m), 20 m2 (2 × 10 m), 25 m2 (5 × 5 m), 

30  m2 (3 × 10 m)]. According to previous survey 
experience and considering that the final sample 
size has enlarged, the lowest limit of the initial 
sample size was 15 and four kinds of initial sample 
sizes were 15, 25, 35 and 45. The optimal unit area 
was obtained in which the sampling was the most 
efficient.

Evaluated indicators

The survey data were imported into the software 
SAMPLE (it can be downloaded at http://www. 
lsc.usgs.gov/aeb/davids/acs/) to simulate sampling. 
The sampling without replacement was replicated 
1,000 times in the process. The shape of sample 
unit was square or rectangle, and neighbourhood 
was cross-shaped. To evaluate the performance of 
sampling designs, we used measures of design ef-
ficiency such as the variance of density estimator, 
relative error of density estimator and the relative 
sampling efficiencies. The relative sampling effi-
ciencies (RE) are the ratio of variance from a tradi-
tional sampling design to variance from the candi-
date design with the final sample size equal among 
the two designs. The final sample size is fixed for 
conventional designs, but is random in adaptive de-
signs. Thus, for adaptive designs the expected sam-
ple size was the average of final sample sizes over 
1,000 simulations. The variance of density estima-
tor (E(v)) and the relative error of density estimator 
are other measures of efficiency and precision. The 
relevant formulas are as follows:

Density estimator and variance in the i times 
sampling are ui and vi (i =1, 2, …, n), respectively:

µi = N ŷHT, HH	 (7) 
       A

where:
ŷHT, HH	 – estimated values of the population mean using 

HT and HH estimate method, respectively,
N 	 – total number of sample units in the population,
A 	 – total study area.

E(μ̂i) =
  

n

∑µi	 (8) 
           

 
i=1 

                  n

E(μ̂i) expresses the mean density estimated in 
certain repetitions and n represents the number of 
repetitions.

The variance of estimator is:

Var (μ̂i) =  A
2 Vari (ŷHT, HH)	 (9) 

                N 2
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Then the variance of estimator in m times repeti-
tions is:

E(v) =  

n

∑var (μ̂)
	 (10) 

          

 
i=1 

                       n

The relative sampling efficiencies:

Efficency (μ̂) = E–y(vi)/Eμ̂i 
(vi)	 (11)

where:
μ̂	 – estimated population mean using ACS,
E–y(vi)	 – variance of density estimated using the traditional 

methods in the same final sample size of ACS,
E

μ̂i 
(vi)	 – ACS variance of density estimated. An effi-

ciency > 1 indicates that ACS would be more 
precise than SRS or SYS and an efficiency < 1 
indicates that the reverse is true – that SRS or 
SYS would be more precise than ACS.

The formula of the relative error of density estimator:
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Fig. 4. The ACS variance in various unit areas, criterion values and initial sampling fractions for S. Apetala Buch-Ham 
(a–f ) represent different initial sampling fractions at unit areas and criterion values, respectively
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RESULTS AND DISCUSSION

Unit areas, initial sampling proportions and cri-
terion values impacting on the variance

We would know that the HT and HH estima-
tors of ACS for the mean relative errors of density 
estimated were 1.313 and 1.235% for S. Apetala 
Buch-Ham and 2.082 and 1.95% for S. caseolari 
in 6 initial sampling proportions and 5 unit areas 
when C were 1 to 5, which were all smaller than 
5%. The difference between the density estimated 
and the real density was small, and the biggest rela-
tive errors were 4.425% for S. Apetala Buch-Ham 
and 4.446% for S. caseolari. The relative errors were 
much smaller for various unit areas. The HT and 
HH estimators for the density variances were simi-
lar in various simulation sampling designs. The HT 
estimator of S. Apetala Buch-Ham, for instance, in-
creased with the increase of C in a certain unit area 
and initial sampling fraction. The estimator vari-
ance decreased as the unit area increased when C 
was 1. If C were 2 and 3, the estimator variances in 
various unit areas differed, while the trends were to 
decrease. When C was 4 or 5, the trends of variance 
were rising (Fig. 4). 

For the results in Fig. 4, generally speaking, the 
smaller the C, the more units added to the sample. 
Thus the variances were smaller and the estimations 
were more accurate. Because of less units sampled, 
the variances increased as we increased C. 

From general structures for further analysis, 
since the population is divided into different unit 
areas, the larger the unit area, the larger the unit 
value and the more easily a huge network could be 

formed. Besides, the numbers of networks formed 
in both different unit areas and different C are dif-
ferent. The larger the C, the more networks will 
be formed. Thus, for a certain unit area, when C is 
small, there are more units being included in the 
network and the larger networks are easily formed, 
while the size of a network would be smaller with 
the increase of C and the number of networks. The 
total variances of the population consist of the vari-
ances within networks and the variances between 
networks. The variance within networks decreased 
as a result of the decrease of network size. This was 
to result in a smaller variance proportion of the to-
tal variance in the network. The proportion of pop-
ulation variance comprised of within network vari-
ance might be the most important factor affecting 
sampling efficiency (Smith et al. 1995). For ACS, 
the greater the proportion of population variance 
comprised of within network variance was, the 
more efficient the sampling design was (Christ-
man 1997, 2000; Brown 2003).

In a certain unit area, the proportion of population 
variance comprised of within network variance de-
creased as the C values increased, which increased 
the sample variance too. In a certain C, with the 
increase of unit area, the proportion of population 
variance increased, but the variance decreased.

The above factors influencing the sampling effect 
interacted and correlated. When C increased, the 
factors such as network size, proportion of popu-
lation variance comprised of within network vari-
ance and the amount of effective information in the 
sample, affecting ACS sampling effect were getting 
smaller and smaller, because the factor influenced 

Table 1. Estimates and relative efficiency (RE) when C = 1 and the initial proportion and unit size were 6% and 10 m2 

for the two species

Species

SRS SYS ACS

density variance
REa

density variance
REa

density variance number  
of units(trees·ha–1) (trees·ha–1) (trees·ha–1)

S.ABH (HH) 0.0621 0.0012 5.88 0.0622 0.000722 3.54 0.06227 0.000204 292

S.ABH (HT) 0.06145 0.0011 8.73 0.0621 0.0011 5.52 0.06208 0.000126 292

S.C (HH) 0.0143 0.000110 2.62 0.0145 0.0000669 1.59 0.014632 0.000042 111

S.C (HT) 0.01445 0.000106 3.57 0.01447 0.000106 2.17 0.014102 0.0000297 111

SRS – simple random sampling, SYS – systematic sampling, ACS – adaptive cluster sampling, SABH (HH) or (HT) – esti-
mates for Sonneratia Apetala Buch-Ham species using the HH or HT method, SC (HH) or (HT) – estimates for Sonneratia 
caseolari species using the HH or HT method, REa = Var(SRS) /Var(ACS), REb = Var(SYS) /Var(ACS)

Relative error of density estimator =  Mean of density estimated – Real total density	 (12) 
                                                                                   Real total densiy
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by unit area was becoming lesser. As C was 4 or 5, 
the range of factor variation and the effect on ACS 
sampling efficiency were reduced, and then the su-
periority of ACS was not notable. The overall sur-
vey for ACS was close to the traditional SRS. In a 
certain initial sampling proportion, the variance in-
creased as the unit area increased. This was because 
the initial sampling size decreased with the unit area 
increasing and the final efficiency information was 
getting less. According to each factor, its change rule 
and sampling results, we could conclude that when 
C was 1, the sampling efficiency was best based on 
the results (Fig. 3). So it was optimum for C = 1.

From simulation at a certain unit area, the mean 
HH and HT estimators were both close to the real 
density in each initial sampling proportion, and 
there were no significant changes as initial sam-
pling proportions increased, while the variances of 
density estimated by HH and HT decreased. The 
real density of S. Apetala Buch-Ham and S. caseo- 
lari was 0.0623 trees·ha–1 and 0.0145 trees·ha–1, 
respectively. Relative to HT, the amplitude of fluc-
tuation for the results obtained by HH was smaller 
than HT and the density of HH was closer to the 
true value (Table 1). This result was similar to that 
of Talvitie et al. (2005). 

For the two estimators (HT and HH), the vari-
ance decreased as the initial sampling proportion 

increased in a certain unit area and C (Fig. 4). But 
since HH estimator does not consider the prob-
ability of the units included in the network, the in-
fluence of network change on sampling result was 
weaker for HH than HT owing to different unit areas 
and C. Comparing HT with HH, the variance of HT 
estimator was smaller when the unit area was large 
in a certain initial proportion and C. Table 1 shows 
the result of one design for the condition C = 1, the 
initial proportion and unit size were 6% and 10 m2. 
The variance of HT (0.000126) was smaller that of 
HH (0.000204) for S.ABH (S. Apetala Buch-Ham). 

Unit areas, initial sampling proportions 
and criterion values impacting on relative 

efficiencies (RE)

Generally, ACS was compared with traditional 
sampling techniques by the relative efficiency pre-
sented by Thompson and Seber (1996), the ratio 
of variance from traditional sampling method and 
ACS (e.g. variance of SRS divided by variance from 
ACS design). When the ratio was greater than 1, 
the efficiency of ACS was higher in the same final 
sample size. The relative efficiencies of ACS (HT 
or HH) and the traditional methods were usually 
greater than 1 in various initial sampling propor-
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Fig. 5. The ACS relative errors of mean of density estimator at different initial sample sizes by HH and HT estimated 
methods in various unit areas. (a) ACS relative error of HT estimator for S. Apetala Buch-Ham at different initial 
sample sizes and various unit areas, (b) ACS relative error of HH estimator for S. Apetala Buch-Ham at different 
initial sample sizes and various unit areas, (c) ACS relative error of HT estimator for Sonneratia caseolari at different 
initial sample sizes and various unit areas, (d) ACS relative error of HH estimator for Sonneratia caseolari at different 
initial sample sizes and various unit areas
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tions, unit areas and C. For example, REa > 1 and 
REb > 1 in Table 1. These indicated the efficiency of 
ACS was higher than SRS and SYS in the same final 
sample size of 292 and 111.

The efficiency of the traditional methods in-
creased more quickly as the initial sampling pro-
portions increased, while the superiority of ACS 
contributed more and more weakly. So it was ex-
cellent to sample 6% initially from the population 
when ACS made full use of advantages relative to 
the traditional methods. 

As for SYS and SRS in the same sample size, the 
efficiency of the former was higher when the sam-
ple size was large. In a certain sample size, with the 
increase of unit area, the relative efficiency of SYS 
increased. In a certain unit area, along with the 
sample size reduced the relative efficiency of SYS 
was reduced. Therefore, SYS reached a higher rela-
tive efficiency based on the larger sample size.

Reasonable unit areas in the same initial 
sample size

The design was conducted in the same initial 
sample size and repeated sampling 1,000 times 
when C was 1. The mean relative errors of HT and 
HH were about 1% in four kinds of initial sample 
sizes (15, 15, 35 and 45).

We simulated several sampling efficiencies in dif-
ferent unit areas and initial sampling sizes based on 
the relative errors of density estimation in four unit 
areas.

Fig. 5 shows that as the unit area increased, the 
relative errors of HH and HT presented roughly the 
same change rule. From the visual point of view, the 
unit area changed from 10 m2 to 15 m2 with greater 
relative error and variation of density. The relative 
errors and variations of density decreased with four 
initial sample sizes as the unit area increased. 

As for HT estimation for S. Apetala Buch-Ham, 
the simulation sampling was perfect when the unit 
area was 20 m2 (Fig. 5a). As for HH estimation, when 
the unit area was 15 m2, the relative error was re-
duced quickly (Fig. 5b). So the sampling effect was 
best when the unit area was 15 m2. That meant the 
relative error of density was larger when the unit 
area was smaller than 15 m2. While the unit area was 
larger than 15 m2, though the relative error was re-
duced, the range of the relative error decreased too. 
And at the same time, with unit area increasing, the 
final sample size would increase significantly as well. 
That would lead to a higher sampling cost. Similarly, 
for S. caseolaris, sampling was perfect when the unit 

area was 25 m2 for HT estimation (Fig. 5c), while 
15 m2 for HH estimation (Fig. 5d).

CONCLUSIONS AND SUGGESTIONS

The above analyses show that in a certain unit 
area, the initial sampling proportion and C, the 
variance of HT estimator is lower than that of the 
HH estimator, and the variance of ACS is generally 
lower than that of SRS and SYS.  

Density estimators using ACS are very close to the 
real values. The final sample sizes of SRS and SYS are 
the same as those of adaptive sampling (HH and HT 
estimators). We know from the above analyses that: 

(i) ACS is more efficient than the traditional SRS 
and SYS and SYS is more efficient than SRS,

(ii) for the two estimators, the sampling efficien-
cy based on the modified HT is greater than that 
based on the modified HH estimator.

In ACS designs, the variance estimated by the 
modified HT estimator is smaller usually than that 
estimated by the modified HH estimator. However, 
the modified HT estimator usually deviates from 
the real density more than the modified HH es-
timator and this might be related to the network 
structure of population. For a population with dif-
ferent network structure, the efficiency of each 
estimator should be studied further. At the same 
time, the modified HT estimator is usually more 
complex than the modified HH estimator. So in 
sampling designs or practical investigation appli-
cations, we should choose a reasonable sampling 
estimator, not blindly pursuing minimum variance. 
With varied forms of neighbourhood, the neigh-
bourhood’s form affects both the network size and 
the final sample size for ACS designs. And only 
the cross-shaped neighbourhood is used here. The 
neighbourhood of ACS impacting on the sampling 
efficiency can be further studied.

The uncertainty of the final sample size is one of 
the main existing problems for ACS. Although there 
has been some related research, the final sample size 
cannot be accurately predicted. Therefore, further re-
search on controlling the final sample size of ACS is 
to be carried out. And how to cooperate the ground 
sampling technology and 3S techniques more closely 
with each other is also continued to be explored.
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