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ABSTRACT: The estimation of forest biomass is important for practical issues and scientific purposes in forestry.
The estimation of forest biomass on a large-scale level would be merely possible with the application of generalized
single-tree biomass models. The aboveground biomass data on Masson pine (Pinus massoniana) from nine provinces
in southern China were used to develop generalized single-tree biomass models using both linear mixed model and
dummy variable model methods. An allometric function requiring only diameter at breast height was used as a base
model for this purpose. The results showed that the aboveground biomass estimates of individual trees with identical
diameters were different among the forest origins (natural and planted) and geographic regions (provinces). The linear
mixed model with random effect parameters and dummy model with site-specific (local) parameters showed better
fit and prediction performance than the population average model. The linear mixed model appears more flexible
than the dummy variable model for the construction of generalized single-tree biomass models or compatible biomass
models at different scales. The linear mixed model method can also be applied to develop other types of generalized

single-tree models such as basal area growth and volume models.

Keywords: aboveground biomass; dummy variable model; linear mixed model; Pinus massoniana

Since forest ecosystems play irreplaceable roles
in regulating global carbon balance and mitigating
global climate change, forest biomass monitoring
is becoming more important (Tompro et al. 2010).
It is fundamental for monitoring and assessment
of national forest biomass to develop generalized
single-tree biomass models suitable for large-scale
forest biomass estimation. In recent years, many re-
searchers have attempted to construct generalized
single-tree biomass models applying them to for-
est biomass estimation on a regional, national, even
global level. HANSEN (2002) compared four differ-
ent methods currently being used by the Forest In-

ventory and Analysis (FIA) program of the USDA
Forest Service to estimate the gross volume and
total biomass, and showed that these four methods
produced similar results, but large differences exist-
ed for specific species and diameters, so the author
recommended that FIA would develop a nationally
consistent method for estimating volume and bio-
mass. CHOJNACKY (2002) and JENKINS et al. (2003)
developed a set of national-scale generalized above-
ground biomass equations for main tree species in
the USA. In the countries such as France, Iceland,
Finland and Mexico, the tree biomass or volume
equations of main species were also constructed in
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recent years (SNORRASON, EINARSSON 2006; VAL-
LET et al. 2006; REpoLA et al. 2007; NAVAR 2009).
In Europe, the generalized allometric volume and
biomass equations for five tree species were de-
veloped by MUUKKONEN (2007). In addition, from
the comparison of prediction errors of local, gen-
eralized regional and national tree biomass and
volume equations of 10 species for the boreal for-
est region of west-central Canada, CASE and HALL
(2008) found that there was a concomitant increase
in prediction error from increasing levels of equa-
tion generalization. Now, the development of gen-
eralized national single-tree biomass equations is
actively propelled in China. The practical demand
for regional and provincial forest biomass estima-
tion should be taken into consideration when de-
veloping national-scale generalized biomass equa-
tions. How to construct both national and regional
or provincial generalized models, when the condi-
tions are allowed, and make them compatible with
each other is a crucial problem.

The concept of compatibility is well known, but
the exact meanings under different situations are
not always the same. In this paper, the compatibility
means that the biomass models at different scales
are compatible with each other. That is, the large-
scale sum of estimates from small-scale models is
the same as the estimate from the large-scale mod-
el. The objective of the study is to develop compat-
ible single-tree biomass equations at both national
and regional or provincial scales, and linear mixed
model and dummy variable model methods to pro-
vide possible approaches for solving this problem.

The mixed-effects model approach is a statistical
technique generating improvements in parameter
estimation that has been used in many fields of
study for nearly twenty years. In forestry, studies
using mixed-effects model approaches are relative-
ly recent. LApP1 and BAILEY (1988) described the
use of nonlinear mixed-effects growth curve based
on the Richards model, which was fitted to predict
dominant and codominant tree height, both at the
plot level and at the individual tree level. GREGOIRE
et al. (1995) studied linear mixed-effects modelling
of the covariance among repeated measurements
with random plot effects. ZHANG and BORDERS
(2004) used the mixed-effects modelling method
to estimate tree compartment biomass for inten-
sively managed loblolly pine (Pinus taeda) plan-
tations in the Lower Coastal Plain and Piedmont
of Georgia in the USA. FEHRMANN et al. (2008)
employed the mixed-effects modelling method to
establish single-tree biomass equations for Norway
spruce (Picea abies) and Scots pine (Pinus sylves-
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tris), and compared it with the k-nearest neighbour
approach for biomass estimation. Studies such as
linear mixed model of aerial photo crown width
and ground diameter (LANG 2008), individual basal
area growth model using a multi-level linear mixed
model with repeated measurements (LEI et al.
2009), and modelling dominant height for Chinese
fir (Cunninghamia lanceolata) plantation using a
nonlinear mixed-effects modelling approach (L,
ZHANG 2010) can be cited as recent publications of
mixed-effects models in forestry in China.

In regression analysis, a dummy variable (also
known as indicator variable) takes the values 0,
1 or -1 to indicate the absence or presence of some
categorical effect. Dummy variable processing
is a commonly used method to deal with indica-
tor or categorical variables, which are involved in
all quantitative methods (TANG, L1 2002; L1 et al.
2006; TANG et al. 2008). In regression analyses and
modelling studies, dummy variable models are usu-
ally applied (L1, HoNG 1997; L1 et al. 2008).

For the two kinds of subject-specific model-
ling methods, dummy variable model and mixed-
effects model, the choice of which one should be
used has been a hot debate in biometrics and sta-
tistics (WANG et al. 2008). WANG et al. (2008) made
an empirical comparison of the two approaches to
dominant height modelling, and concluded that
the two kinds of methods were appropriate to con-
struct models with specific or local parameters,
and produced almost the same outcomes; in terms
of height growth description, the dummy variable
method was preferred, and in terms of height pre-
diction, the mixed-effects modelling method might
be appropriate.

Starting from the practical requirements for de-
veloping generalized national single-tree biomass
equations in China, the present study will focus
on the following three aspects: firstly, based on the
aboveground biomass data on Masson pine (Pinus
massoniana), which is one of the two most im-
portant coniferous species in Southern China, the
compatible single-tree biomass equations at differ-
ent scales will be developed using dummy variable
model and linear mixed model methods. Secondly,
the models with origin- and region-specific param-
eters and the population average (PA) model for na-
tional forest biomass estimation will be compared.
Thirdly, the effects of tree origins, growing regions
and the combinations of origins and regions for bio-
mass estimation will be analysed. The results and
conclusions to be presented in this paper will pro-
vide a reference basis for national and provincial
monitoring and assessment of forest biomass.
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MATERIAL AND METHODS

The fit data of 150 sample trees used in this study
were the aboveground biomass measurements of
Masson pine in Southern China, which were ob-
tained from destructive sampling in 2009. The sam-
ple trees were located in Jiangsu, Zhejiang, Anhui,
Fujian, Jiangxi, Hunan, Guangdong, and Guizhou
provinces and Guangxi autonomous region (20 to
35°N, 102-123°E, Fig. 1). The number of sample
trees was approximately distributed by the propor-
tion to the stocking volume of Masson pine forests
in the nine provinces or autonomous region, and
the origins of forests were also taken into account.
Among them, a total of 77 trees were from natural
forests and 73 trees from plantations. The sample
trees were distributed equably in the ten diameter
classes of 2, 4, 6, 8, 12, 16, 20, 26, 32 +, and more
than 38 cm, i.e. 15 trees for each diameter class ex-
cept for 26 cm and 32 cm classes, in which there
were 14 and 16 trees, respectively. In addition, the
sample trees in each diameter class were distrib-
uted by 3-5 height classes as evenly as possible, i.e.
3-5 trees for each height classes. Thus, the sample
trees were representative in the large-scale region.
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Fig. 1. The region from which the
fit data of biomass were collected
in the grey color-filled region. Light
grey lines indicate the provincial
boundaries, and the broken line
indicates the country boundary in

the seas.

Diameter at breast height of each sample tree was
measured in the field. After the tree was felled,
the total length of tree (tree height) and length of
live crown were also measured. The fresh weights
of stem wood, stem bark, branches, and foliage
were measured, and subsamples were selected and
weighed in the field. After taken to the laboratory,
all subsamples were oven dried at 85°C until a con-
stant weight was reached. According to the ratio of
dry weight to fresh weight, each compartment bio-
mass could be computed and the aboveground bio-
mass of the tree was obtained by summation. The
distribution of sample trees by origins, provinces,
and diameter classes is listed in Table 1, and the re-
lations between biomass and diameter for different
origins in the nine provinces are shown in Fig. 2.
In addition, two sets of aboveground biomass
data from Masson pine plantations were used for
validation: (i) data from 50 sample trees collected
by the South Team of the National Biomass Model-
ling Program in 1997 from the Lizhai Forest Farm
of Dexing county in Jiangxi province; and (ii) data
from 295 sample trees collected in 2007 from
Guizhou province for establishment of forestry
tables for Masson pine, which were located in the
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Fig. 2. The relationship between biomass and diameter for different origins in the nine provinces

growing regions of the species and representative
of the population.

Base model

In general, individual tree biomass includes sev-
eral compartments such as stem wood, stem bark,
branches, foliage, and roots (fine roots less than
2 mm in diameter not to be included). However,
the total biomass, especially the aboveground bi-
omass, was mainly concerned for large-scale for-
est biomass monitoring (FAO 2006; MUUKKONEN
2007; TompPoO et al. 2010). The allometric biomass
equation based on one single variable D (diameter
at breast height) was widely used due to predic-
tion precisions (e.g. TER-MIKAELIAN, KORZUKHIN
1997; JENKINS et al. 2003; MUUKKONEN 2007; NA-
VAR 2009; Fu et al. 2011). We also used the follow-
ing allometric function as a base model to construct
different biomass equations in this study:

M =aD"(1 +0) (1)
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where:

M - aboveground biomass,
a, b — parameters,

{ - relative error term.

Model (1) becomes to the following linear form
by logarithmic transformation:

y=a,+bx+g (2)

where:

y —InM,

x —InD,
a,—Ina,

¢ -In(1+0.

Given to the fitting result of model (2), the bio-
mass estimate can be obtained from the following
equation:

M= exp(a, + bx) (3)

However, because some bias resulted from the
logarithmic transformation, bias correction was
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necessary, and the commonly used correction fac-
tor was exp(S?/2) (BASKERVILLE 1972; FLEWEL-
LING, PIENAAR 1981). Then, the corrected estimate
of biomass is as follows:

M= exp(a, + S*/2)D* (4)

In addition, viewing from the practical use, the
ratio estimator for bias correction in logarithmic
regressions presented by SNowbpoN (1991) could
be applied, which might permit the total mean bias
to be zero.

However, the aboveground biomass of a tree is
impacted not only by diameter but also by other
factors, such as origin of the tree and the grow-
ing region. In this paper, the one-variable model
(2) with two general parameters (also known as
global or fixed parameters) was called the popula-
tion average (PA) model. Then, the dummy vari-
able model and the mixed model involving effects
of different tree origins and growing regions were
taken into account. Considering that the allomet-
ric coefficient b in model (2) is almost stable, some
researchers even suggested to use a constant value
(WEST et al. 1999; CHOJNACKY 2002), therefore,
only the impact of local or random effects of differ-
ent origins and regions on parameter a, was stud-
ied in this paper. Forest origins are classified into
2 types: natural and planted, whose codes are 1 and
2, and numbers of sample trees are 77 and 73, re-
spectively. Geographic regions involve 9 provinces
or autonomous region, and the numbers of sample
trees for each region are very different (Table 1 and
Fig. 2). Based on an overall consideration of water,
heat and the number of sample trees, the geograph-
ic regions are classified into 3 types: eastern region
(Jiangsu, Zhejiang, Fujian), south-central region
(Jiangxi, Hunan, Guangdong), and north-western
region (Anhui, Guizhou, Guangxi), whose codes
are 1, 2, and 3, respectively, and the number of sam-
ple trees for each type is 50.

Dummy variable model

The general form of dummy variable model based
on model (2) is as follows:

y=a,+Xaz, +bx +g (5)
where:
z, — dummy variable,

a, — corresponding specific or local parameter
Other symbols are the same as in model (2).
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To make a difference, the parameters in dummy
model corresponding to those in PA model are
called general or global parameters. For obviously
understanding the compatibility of different scale
models and simply comparing with the mixed
models, the processing of dummy variables would
meet Ya, = 0. Under the restricted condition, only
i—1 special parameters need to be estimated, the
last one can be derived from the others.

Because of involving two origins (natural and
planted) and three regions, dummy variable pro-
cessing may include four different situations. The
dummy variable combinations of each situation are
listed in Table 2.

Because model (5) is the typical linear equa-
tion, the ordinary least-squares (OLS) method can
be used to estimate the parameters. It should be
pointed out that the model under the 4% situation
is the full model, based on which we would have
nested models that apply at different scales, just
like the models under the 1 and 2"¢ situations and
the PA model.

Linear mixed model

The general form of linear mixed-effects model
is as follows (SAS 1999; TANG, L1 2002; TANG et al.
2008):

y=x P+zu+e (6)
nxl nxppxl nxq gx1 nxl

where:

y — dependent variable,

P — fixed parameter,

u — random parameter,

x — designed matrix of fixed parameters,

z — designed matrix of random parameters,
e — error matrix.

The mixed model corresponding to model (5) is
expressed as follows:

y=a,+Xuz +bx+g (7)

where:
the expected values of random parameters u, — zero, and
they are independent of each other.

That is E(«,) = 0, and cov(u, u}.) =0fori=j.

Contrasting to the four situations for dummy
variable processing above, the followings are taken
into account in mixed models:

(i) Tree origin is considered as random variable;
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Table 1. The distribution of sample trees of Masson pine in Southern China by origins, provinces, and diameter classes

Diameter classes (cm)

Types
2 4 6 8 12 16 20 26 32 > 38 sum
Jiangsu 1 1 1 1 1 1 1 1 8
Zhejiang 2 2 2 2 2 2 2 2 2 2 20
Anhui 1 1 1 1 1 1 1 1 1 1 10
Fujian 2 2 2 2 2 2 2 2 3 3 22
Provinces Jiangxi 2 2 2 2 2 2 2 2 2 2 20
Hunan 2 2 2 2 2 2 2 2 2 2 20
Guangdong 1 1 1 1 1 1 1 1 1 1 10
Guangxi 2 2 2 2 2 2 2 2 2 2 20
Guizhou 2 2 2 2 2 2 2 2 2 2 20
Natural 6 7 8 7 8 8 7 8 10 8 77
Origins
Planted 9 8 7 8 7 7 8 6 6 7 73
Total 15 15 15 15 15 15 15 14 16 15 150

(ii) Growing region is considered as random
variable;

(iii) Both tree origin and growing region are con-
sidered as random variables;

(iv) The combinations (interactions) of origin and

region are considered as random variables.

The linear mixed-effects model (6) or model (7)
were fitted using the “Linear Mixed Model” func-
tion of “Statistic Analysis” mode in ForStat2.1, in
which the method of restricted maximum likeli-
hood (REML) was implemented for parameter es-
timation (TANG et al. 2008).

Model evaluation

To compare and evaluate the dummy variable
model and linear mixed model, three fit statistics
were used, which were determination coefficient
(R?), sum of square errors (SSE), and mean square
errors (S?). They were calculated by the following
equations:

RZ: 1 - Z()’l—s\’)z/Z(yl—}_’)z (8)
SSE=2(y,- 3 )
§* = SSE (n - p) (10)
where:
Y 3\11. — observed and estimated values of the i" sample
tree,
y  — arithmetic mean of all observed values,
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n — number of sample trees,
p — number of parameters.

The difference between dummy variable model
(or mixed model) and PA model was tested by us-
ing an F-statistic, which was computed and com-
pared with the critical F value to determine if they
were significantly different. The F-statistic was cal-
culated as follows (MENG et al. 2008):

(SSEy, = SSEp )/ (dfy, = dfyyy)

(11)
SSEpyddf oy,

where:

SSE,,,, SSE,,; — sums of square errors of the PA model

PA’
and dummy variable model (or mixed
model), respectively,

— the degrees of freedom of the PA model
and dummy variable model (or mixed

model), respectively.

dfPA’ deM

RESULTS

Using the aboveground biomass data on 150 sam-
ple trees of Masson pine from 9 provinces or au-
tonomous region in Southern China, the PA model
(2) was fitted by the OLS method at first; then the
dummy variable model (5) and linear mixed-effects
model (7) under the afore-mentioned four situations
were fitted through the ForStat2.1 software (TANG
et al. 2008).
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Table 2. The dummy variable combinations for four different situations

Situations Considered factors Combinations z, z, z, z, Z, Z), Zy Z,,
nature 1
1 origin
planted -1
eastern 1 0
2 region south-central 0 1
north-western -1 -1
nature + eastern 1 1 0
nature + south-central 1 0 1
nature + north-western 1 -1 -1
3 origin + region
planted + eastern -1 1 0
planted + south-central -1 0 1
planted + north-western -1 -1 -1
nature x eastern 1 0 0 0 0
nature x south-central 0 1 0 0 0
nature x north-western 0 0 1 0 0
4 origin x region
planted x eastern 0 0 0 1 0
planted x south-central 0 0 0 0 1
planted x north-western -1 -1 -1 -1 -1

215 Zos Zp 21 21y Z139 Zopr Zop — dummy variables

PA model where:
y=InM,
The PA model of aboveground biomass of Mas- x=InD,
son pine in southern China by logarithmic trans-  Fvalue = statistic for significance,

Fig. 3. Distribution of residual errors

formation is as follows: P-value = significance level,
y =—2.2368 + 2.3724x (R* = 0.9865, SSE = 9.7095,  t-values of the parameters a4, and b are — 37.31 and
S$2=0.0656, F = 10,795.94, P = 0.0000) (12)  103.90, respectively.
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The distribution of residual errors of the PA mod-
el (12) is shown in Fig. 3.

The aboveground biomass equation correspond-
ing to model (4) is as follows:

A;I:exp(—2.2368 +0.0328) D374

where:
M - predicted value of aboveground biomass,
D - diameter of the tree.

This is the generalized biomass model to be used
for national forest biomass estimation.

Dummy variable model

The fitting results of dummy variable models un-
der the four situations above (named as models 1,
2, 3, and 4 in order) are listed in Table 3.

It is shown in Table 3 that the differences among
the estimates of specific parameters in models 1, 2
and 3 are rather small because the effects are inde-
pendent in the models; but the estimates of specific
parameters in model 4 are very different from those
in the other three models, because the interactions
of tree origin and growing region are considered
here.

From F-test of the four dummy variable models
and the PA model, the F-values calculated by equa-
tion (11) were 2.30, 1.68, 1.82 and 2.41, respective-
ly. Only model 4 was significantly different from
the PA model at a 0.05 level, and the other three
models were not significantly different from the PA
model at 0.05 and 0.10 levels.

Based on dummy model 4, we can obtain the fol-
lowing nested models contrasting to the PA model,
model 1 and model 2:

PA model:

M =exp(=2.2153 + 0.0313) D3653
Model 1 for the natural forest:

M =exp(-2.2153 + 0.0299 + 0.0313) D*3%3
Model 1 for the planted forest:

M =exp(=2.2153 — 0.0299 + 0.0313) D>3653
Model 2 for region 1:

M =exp(-2.2153 + 0.0369 + 0.0313) D*3653
Model 2 for region 2:

M =exp(-2.2153 + 0.0132 + 0.0313) D*363
Model 2 for region 3:

M =exp(-2.2153 - 0.0501 + 0.0313) D236>3

The regression curves of dummy models for dif-
ferent origins (model 1 above) and for different re-
gions (model 2 above) are shown in Figs. 4 and 5.
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Linear mixed model

The fitting results of linear mixed-effects mod-
els under the afore-mentioned four situations are
listed in Table 4. In addition, from F-test of the four
mixed models and the PA model, the F-values cal-
culated by equation (11) were 2.31, 2.35, 2.27 and
3.36, respectively. Model 4 was significantly differ-
ent from the PA model at a 0.01 level, and mod-
els 2 and 3 were significantly different from the PA
model at a 0.10 level, but mixed model 1 was not
significantly different from the PA model, just like
dummy variable model 1.

Based on mixed model 4, similarly like the dum-
my model, we can obtain the following nested
models contrasting to the PA model, model 1 and
model 2:

PA model:

M =exp(-2.2243 + 0.0313) D23683
Model 1 for the natural forest:

M =exp(=2.2243 + 0.0179 + 0.0313) D?3683
Model 1 for the planted forest:

M =exp(-2.2243 — 0.0179 + 0.0313) D23683
Model 2 for region 1:

M = exp(~2.2243 + 0.0225 + 0.0313) D>3683
Model 2 for region 2:

M =exp(=2.2243 + 0.0069 + 0.0313) D?3683
Model 2 for region 3:

M =exp(-2.2243 — 0.0294 + 0.0313) D23683

DISCUSSION

Comparison of the two kinds of models

It is shown in Tables 3 and 4 that the special and
random parameters of natural type are positive
whereas those of planted type are negative (two
effects cancel each other out). This indicates that
the aboveground biomass of a tree in natural for-
est is larger than that in planted forest when the
tree diameter is the same, but the differences are
not statistically significant. As for region types, the
aboveground biomass of a tree with the same diam-
eter gradually decreases from the eastern region to
south-central and north-western regions, but the
differences are not statistically significant either.
The impacts of tree origin and growing region re-
flected in the mixed models showed the same pat-
tern as in the dummy models. In terms of the three
fit statistics (R?, SEE, and S?), there was no large dif-
ference between mixed-effects model and dummy
variable model. Compared to the PA model, the dif-
ference in F-test results of models 2 to 4 between
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Table 3. The results of dummy variable model (5)

General Specific parameters Fit statistics
Dummy parameters pecticp ! 1S
models a, b a, a, a, a, a, a,  F-value P-value R’ SEE S?
Model 1 -2.2296 2.3692 0.0317 (-0.0317) 5,446.57 0.0000 0.9867 9.5598 0.0650
Model 2 -2.2366 2.3723 0.0408 0.0102 (-0.0510) 3,632.89 0.0000 0.9868 9.4909 0.0650
Model 3 -2.2298 2.3693 0.0301 (-0.0301) 0.0416 0.0062 (-0.0478) 2,745.12  0.0000 0.9870 9.3574 0.0645
Model 4 -2.2153 2.3653 0.1087* -0.0307 0.0117 -0.0350 0.0571 (-0.1118) 1,886.78 0.0000 0.9875 8.9561 0.0626

Bold values — statistically significant at 0.01 level, *statistically significant at 0.05 level. The figures in parentheses are the

dependent special parameters

dummy model and mixed model resulted from the
fact that the dummy model had a lower degree of
freedom than the corresponding mixed model in
which the specific parameters were assumed to
follow a normal distribution, and the number of
independent parameters was decreased. In fact,
in terms of other two criteria independent of the
degree of freedom, R? and SEE, the dummy model
was slightly better than the mixed model, which
was consistent with the conclusion presented by
WANG et al. (2008).

We know that in dummy model the specific pa-
rameters are usually processed and estimated as-
suming the responsible value of one type (usu-
ally the type with the smallest expected value) to
be zero. In this study, the commonly used values
(1, 0) were instead of (1, —1) in dummy model,

which could assure the sum of responsible values
of all types to be zero, just like in mixed model.
For example, in dummy model 1, the estimates of
specific parameters for natural and planted forests
were 0.0317 and —0.0317, respectively, and in mixed
model 1 the estimates of random parameters were
0.0179 and -0.0179, respectively. Although the
same pattern was shown, i.e. the responsible value
of natural forest was higher than that of planted for-
est, the sizes were different: the difference between
the two parameters in dummy model was 0.0634,
but the difference in mixed model was only 0.0358.
The specific parameters of dummy model and the
random parameters of mixed model in models
2—4 showed the same pattern. That means the dif-
ference among specific types reflected in mixed
model is smaller than that in dummy model, which
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Fig. 4. The regression curves of dummy mo-

del 1 for different origins
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Table 4. The results of linear mixed model (7)

Mixed Fixed parameters Random parameters Random effects analyses Fit statistics
models a, b u, u, u, u, u, ug F-value  significant R* SEE &2
Model 1 -2.2327 2.3706 0.0179 -0.0179 1.5764 - 0.9867 9.5594 0.0650
Model 2 -2.2367 2.3724 0.0165 0.0041 -0.0206 1.3273 - 0.9867 9.5565 0.0650
Model 3 -2.2328 2.3706 0.0171 -0.0171 0.0159 0.0030 -0.0189 0.8572/1.2279 - 0.9869 9.4170 0.0645
Model 4 -2.2243 2.3683 0.0642 -0.0180 0.0075 —0.0191 0.0318 -0.0664 1.4668 - 0.9874 9.0785 0.0626

is consistent with the conclusion presented after
a comprehensive comparison of the two kinds of
models by WANG et al. (2008). WANG et al. (2008)
stated that if the variance of random effects were
very large relative to the error variance, the random
parameter estimates would be very close to what
they would be if they were regarded as fixed pa-
rameters; and if the random effects showed a very
small variance, the random parameter estimates
would be very close to zero, i.e. the mixed model
would be very close to the PA model. Thus, they
claimed that the mixed model might be regarded as
a compromise between the dummy model in which
the specific parameters are fixed and the PA model
in which the specific parameter are zero.

In order to show the differences among dummy
model, mixed model and PA model, and to dem-
onstrate the compatibility of the models at differ-
ent scales, the results of aboveground biomass es-

1,200 e Obs-regionl o Obs-region2 a

—— Reg-region 1 ---e-- Reg-region 2 ...e..

1,000

800

600

Biomass (kg)

400

200

Diameter (cm)
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timation (logarithmic transformation) from the PA
model, dummy and mixed models under the four
situations mentioned above are listed in Table 5,
where model 0 means the PA model (12).

It is shown in Table 5 that though the total es-
timate of the PA model is unbiased (total relative
error is equal to 0), the estimates for different ori-
gins, regions, and their combinations have relative
errors lower than + 3%; and the dummy and mixed
models under the four situations can decrease the
errors of estimates for various types, among which
models 1 and 2 improve slightly, and models 3 and
4 improve more; and furthermore, model 4 con-
sidering the interactions of origins and regions is
better than model 3 considering the effects of ori-
gins and regions independently. Dummy model 4 is
equivalent to six models with specific parameters
for the six combinations of origins and regions, and
the specific parameters are all regarded as fixed pa-

Obs-region 3
Reg-region 3

Fig. 5. The regression curves of dummy

model 2 for different regions
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Table 5. The estimation results of the models at different scales for fit data

Estimated values

Scales Observed Relative error (%)
(types) values model 0 model 1 model 2 model 3 model 4 model 0 model 1 model 2 model 3 model 4
N-region 1 105.82 103.04 103.79 104.06 104.79 10581 -2.62 -191 -1.66 -0.96 0.00
N-region 2 104.03 104.80 105.70 105.10 105.83 104.03 0.74 1.60 1.03 1.73 0.00
N-region 3 85.14 84.80 85.50 83.62 84.37 85.15 -0.41 042 -1.79 -0091 0.01
P-region 1 76.40 7714 7634 7816 7742 7640 097 -0.07 2.31 1.34 0.01
P-region 2 76.72 7544 7476 75.65 7492 76.72 -1.67 -256 -1.39 -2.35 0.00
Dummy P-region 3 92.02 94.92  94.04 93.54 92.80 92.01 3.15 2.19 1.65 0.84 | -0.01
model region 1 182.21 180.17 180.13 182.21 182.21 18221 -1.12 -1.14 0.00 0.00 0.00
region 2 180.76  180.25 180.46 180.75 180.75 180.75 -0.28 -0.16 0.00 0.00 0.00
region 3 177.16 179.71 179.54 177.16 177.16 177.16 1.44 1.34 0.00 0.00 0.00
natural 294.98 292.64 294.99 29278 294.99 29499 -0.80 0.00 | -0.75 0.00 0.00
planted 245.15 247.49 245.14 247.35 245.14 245.14 0.96 0.00 0.90 0.00 0.00
total 540.13 540.13 540.13 540.13 540.13 540.13 | 0.00 0.00 0.00 0.00 0.00
N-region 1 105.82 103.04 103.46 103.45 103.84 104.68 -2.62 -2.22 -2.23 -1.86 | —-1.07
N-region 2 104.03 104.80 105.31 104.92 105.38 104.35 0.74 1.23 0.86 1.29 0.30
N-region 3 85.14 84.80 85.20 84.32 84.74 85.02 -0.41 0.06 -0.97 -0.47 | -0.15
P-region 1 76.40 77.14 76.68 7755 77.10 76.74 0.97 0.38 1.51 0.93 0.45
P-region 2 76.72 7544 7505 7553 7514 76.16 -1.67 -217 -1.55 -2.07 | -0.73
Mixed P-region 3 92.02 9492 9442 9436 9393 93.19 3.15 2.61 2.54 2.08 1.27
model region 1 182.21 180.17 180.15 181.00 180.94 18141 -1.12 -1.13 | -0.66 | -0.69 | -0.43
region 2 180.76 180.25 180.37 180.45 180.51 180.51 -0.28 -0.21 | -0.17 | -0.13 | —-0.14
region 3 177.16 179.71 179.62 178.68 178.68 178.21 1.44 1.39 0.86 0.85 0.59
natural 294.98 292.64 293.97 292.69 29396 294.04 -0.80 | -0.34 | -0.78 | -0.35 | -0.32
planted 245.15 247.49 246.16 247.44 246.17 246.09 0.96 0.42 0.94 0.42 0.39
total 540.13 540.13 540.13 540.13 540.13 540.13 0.00 0.00 0.00 0.00 0.00

N-region and P-region — the combinations of natural origin and planted origin and the regions, the types in the rows with

square framed figures — the subjects to be considered as specific or random effects in the model

rameters, thus the total estimates for six types and
the sums by origin or region have no errors (the
relative errors of about + 0.01% in Table 4 resulted
from the computing precision, they are equal to
zero theoretically). However, in mixed model 4, the
impacts of the six combinations of origins and re-
gions are treated as random effects, and the specific
parameters are regarded as random parameters,
thus the total estimates for six types and the sums
by origin or region still have about + 1% relative er-
rors, where the total estimate for the type of plant-
ed-region 3 has the largest relative error 1.27%.
Moreover, whether it is dummy model or mixed
model, the sums of estimates by origin, region or
their combinations are all equal to the total esti-
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mate of the PA model. That is to say that the nation-
al sums of estimates of region-specific models are
the same as the national estimate of the PA model.
Thus, the PA model and the dummy and mixed
models at different scales are compatible.

Analysis and validation of the models

For the dummy model and mixed model, the
choice of which one should be used has been a hot
debate in biometrics and statistics (WANG et al.
2008). Viewing from the practical application, the
choice can be made depending on the number of
subjects/types and the number of samples per type:
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if the number of types is small (less than 10), the
dummy model is preferred; if the number of types
is large, and the number of samples per type is
small, the mixed model is recommended; and if the
number of samples per type is large, then it does
not matter much which model formulation we take
(WANG et al. 2008). For the case in this paper, if we
classify the types by the six combinations of origins
and regions, then the number of samples per type
is lower than 30, which does not meet the need of a
large sample. Furthermore, the sample trees of each
province come from various Masson pine forest
stands which covered different site conditions, tree
origins, stand ages, stand densities, forest catego-
ries, and even species compositions. Even though
the properties of origin and growing region are def-
inite for the sample trees, the selection of sample
trees was random to some extent, thus it was dif-
ficult to represent the “average” level of each type
(origin and region). The purpose is to construct the
“average” biomass models for different types, it is
necessary to analyze the random effects, so tak-
ing the specific parameters as random parameters
in mixed model should be suitable. Though the fit
statistics of dummy model, in which the specific
parameters are regarded as fixed parameters, are
slightly better than in mixed model, when applying
to other data for biomass estimation, the prediction
results may not be as ideal as expected. WANG et
al. (2008) developed dominant height growth equa-
tions using the two models, and found that in terms
of height growth description, the dummy model
was preferred, but in terms of height prediction for
validation data, the mixed model was more appro-
priate. Based on this knowledge, we tend to recom-
mend the mixed model for developing compatible
single-tree biomass models.

To examine the prediction results of the devel-
oped models in this study, the authors used other
aboveground biomass data from Masson pine plan-
tations in Guizhou and Jiangxi provinces for valida-

tion. The prediction results of the models at differ-
ent scales for validation data are listed in Table 6.
It is shown in Table 6 that for validation data the
predicted values of biomass in Guizhou are under-
estimated for all models, and those in Jiangxi are
overestimated; and the predicted results based on
the PA model seem to be better. For the predicted
values of dummy and mixed models, the smaller
the scale, the larger the relative difference; and the
bias of dummy model is larger than that of mixed
model. In brief, the mixed model performed better
than the dummy model for validation data.

From the properties of the models we know that
mixed model is an intermediate form between the
PA model and dummy model. In the PA model, the
difference between various types such as origin and
region was not taken into consideration; in dummy
model, the difference between the types of sample
was reflected by the fixed special parameters; and
in mixed model, the difference was reflected by the
random parameters based on the assumption that
the data was distributed normally, and the random
parameters could cancel out each other with an ex-
pected value of zero. In fact, we can think that in
mixed model the difference among various types
of sample is divided into two parts: one originating
from the difference among types; another resulting
from the random effects. For example, the differ-
ence between the two origins for the sample used
in this study was 6.55% estimated by the dummy
model, but in the mixed model, the difference was
divided into two parts: 3.64% originating from the
difference between natural and planted types, and
the other 2.91% regarded as the random effects. We
can expect that the fewer the sample trees in each
type, the more numerous the random effects will
be, and the mixed model will be closer to the PA
model; and vice versa, the more numerous the sam-
ple trees in each type, the fewer the random effects
will be, and the mixed model will be closer to the
dummy model.

Table 6. The prediction results of the models at different scales for validation data

Predicted values

Data Sample  Observed dummy models mixed models
size values PA model
model 1 model 2 model 4 model 1 model 2 model 4
33,506 32,441 31,792 29,890 32,848 32,472 31,293
Guizhou 295 34,973
(—4.20%) (=7.24%) (=9.09%) (~14.53%) (—6.08%) (=7.15%) (~10.52%)
4,323 4,190 4,375 4,571 4,240 4,347 4,457
Jiangxi 50 4,030
(7.26%) (3.97%) (8.55%) (13.42%) (5.22%) (7.86%) (10.58%)

The figures in parentheses are the relative differences between observed and predicted values of biomass
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Possible limitation of the models

The emphasis of this study is mainly on meth-
odology. The applicability of the developed mod-
els was influenced by the sample size and repre-
sentation. As for the size of the sample, a total of
150 trees from 9 provinces are adequate for devel-
oping a generalized national or regional single-tree
biomass model, but for sub-regional or provincial
models the number of sample trees in each prov-
ince is not sufficient. The reason is that 1-2 trees
for each diameter class in each province are hardly
the average on a provincial level. As for the rep-
resentation of the sample, even though it was re-
quired to select the sample trees by diameter class
and by origin in each province, it was very difficult
to assure the sample representative enough in prac-
tice because of the small sample size and other fac-
tors, which is reflected to some extent in Fig. 2. The
modelling results show that single-tree biomass
in natural forest is higher than that in plantation,
which is probably because of better utilization of
light, heat and water in natural forest. Tree biomass
in the three south-eastern provinces (region 1) is
higher than that in the three central provinces (re-
gion 2), and the tree biomass in the three western
and northern provinces (region 3) is the smallest.
It is probably so because the water and heat con-
ditions in the south-eastern region are better and
the trees have enough growing space; but with the
extension of the geographical region to west and
north, the water and heat conditions are worse,
which impacts the growth and development of the
trees. If the combination of origins and regions is
taken into consideration, the afore-mentioned gen-
eral pattern is maintained no longer. For the natu-
ral type, the tree biomass in region 2 is the smallest,
and for the planted type, the biomass in region 2
is the largest, and the biomass of plantation in re-
gion 2 is larger than that of natural forest. The rea-
son is probably the small size and poor representa-
tion of the sample for each type. Even though the
models considering the combination of origins and
regions and the PA model are different statistically,
the special or random parameters are hardly differ-
ent from zero (Tables 3 and 4), which show that the
general pattern of tree biomass changing with the
origins and regions is uncertain and up for valida-
tion from a larger sample.

The dummy and mixed models used in this study
are of logarithmic linear form which could be ex-
tended to nonlinear models. Because the solution
of nonlinear model is the asymptotic estimates
based on Taylor’s series, the sum of predicted values
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for fit data is not equal to that of observed values.
In addition, the estimation of nonlinear biomass
model involves the heteroscedasticity, i.e. the error
term is multiplicative. All of these issues should be
paid more attention, and for detailed discussion,
see some related references (e.g. LAIRD et al. 1987;
PINHERIO, BATES 2000; MENG, HUuANG 2009).

CONCLUSIONS

Based on the aboveground biomass data on
Masson pine in Southern China, the generalized
single-tree biomass equations suitable for national
and regional forest biomass estimation were de-
veloped using dummy model and linear mixed
model methods, which could solve the compat-
ibility of forest biomass estimates among differ-
ent scales. The fitting results of subject-specific
models showed that the aboveground biomass
estimates of trees with the same diameter varied
to some extent for different origins and for dif-
ferent regions. For the Masson pine in Southern
China, the aboveground biomass of a tree with the
same diameter in natural forest was larger than
that in plantation; and the biomass estimate de-
creased from eastern region (Jiangsu, Zhejiang,
Fujian) to south-central region (Jiangxi, Hunan,
Guangdong) and to north-western region (Anhui,
Guangxi, Guizhou). If considering the origins and
regions together, different patterns would appear:
for natural forests, trees with the same diameter in
eastern regions have the largest biomass; and for
plantations, trees in south-central regions have the
largest biomass. But, because of the limited sample
size, the conclusion above is subjected to valida-
tion from a larger sample.

The mixed model and dummy model methods
provide effective approaches to develop single-tree
biomass equations at different scales, and they may
be applied to construct other generalized models
such as tree volume equations. For more generalized
models, besides the origins and regions, the effect of
tree species could be reflected by special or random
parameters. Thus, we could use all data on different
tree species and construct more generalized models
suitable for all species. The choice between dummy
and mixed models mainly depends upon the sample
size of each type. If the numbers of samples for all
types are large enough, then it does not matter much
which model we choose; if the numbers of samples
are small, then the mixed model would be the bet-
ter choice. Generally speaking, the mixed model is
more flexible and applicable.
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