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Since forest ecosystems play irreplaceable roles 
in regulating global carbon balance and mitigating 
global climate change, forest biomass monitoring 
is becoming more important (Tomppo et al. 2010). 
It is fundamental for monitoring and assessment 
of national forest biomass to develop generalized 
single-tree biomass models suitable for large-scale 
forest biomass estimation. In recent years, many re-
searchers have attempted to construct generalized 
single-tree biomass models applying them to for-
est biomass estimation on a regional, national, even 
global level. Hansen (2002) compared four differ-
ent methods currently being used by the Forest In-

ventory and Analysis (FIA) program of the USDA 
Forest Service to estimate the gross volume and 
total biomass, and showed that these four methods 
produced similar results, but large differences exist-
ed for specific species and diameters, so the author 
recommended that FIA would develop a nationally 
consistent method for estimating volume and bio-
mass. Chojnacky (2002) and Jenkins et al. (2003) 
developed a set of national-scale generalized above-
ground biomass equations for main tree species in 
the USA. In the countries such as France, Iceland, 
Finland and Mexico, the tree biomass or volume 
equations of main species were also constructed in 
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recent years (Snorrason, Einarsson 2006; Val-
let et al. 2006; Repola et al. 2007; Návar 2009). 
In Europe, the generalized allometric volume and 
biomass equations for five tree species were de-
veloped by Muukkonen (2007). In addition, from 
the comparison of prediction errors of local, gen-
eralized regional and national tree biomass and 
volume equations of 10 species for the boreal for-
est region of west-central Canada, Case and Hall 
(2008) found that there was a concomitant increase 
in prediction error from increasing levels of equa-
tion generalization. Now, the development of gen-
eralized national single-tree biomass equations is 
actively propelled in China. The practical demand 
for regional and provincial forest biomass estima-
tion should be taken into consideration when de-
veloping national-scale generalized biomass equa-
tions. How to construct both national and regional 
or provincial generalized models, when the condi-
tions are allowed, and make them compatible with 
each other is a crucial problem.

The concept of compatibility is well known, but 
the exact meanings under different situations are 
not always the same. In this paper, the compatibility 
means that the biomass models at different scales 
are compatible with each other. That is, the large-
scale sum of estimates from small-scale models is 
the same as the estimate from the large-scale mod-
el. The objective of the study is to develop compat-
ible single-tree biomass equations at both national 
and regional or provincial scales, and linear mixed 
model and dummy variable model methods to pro-
vide possible approaches for solving this problem.

The mixed-effects model approach is a statistical 
technique generating improvements in parameter 
estimation that has been used in many fields of 
study for nearly twenty years. In forestry, studies 
using mixed-effects model approaches are relative-
ly recent. Lappi and Bailey (1988) described the 
use of nonlinear mixed-effects growth curve based 
on the Richards model, which was fitted to predict 
dominant and codominant tree height, both at the 
plot level and at the individual tree level. Gregoire 
et al. (1995) studied linear mixed-effects modelling 
of the covariance among repeated measurements 
with random plot effects. Zhang and Borders 
(2004) used the mixed-effects modelling method 
to estimate tree compartment biomass for inten-
sively managed loblolly pine (Pinus taeda) plan-
tations in the Lower Coastal Plain and Piedmont 
of Georgia in the USA. Fehrmann et al. (2008) 
employed the mixed-effects modelling method to 
establish single-tree biomass equations for Norway 
spruce (Picea abies) and Scots pine (Pinus sylves-

tris), and compared it with the k-nearest neighbour 
approach for biomass estimation. Studies such as 
linear mixed model of aerial photo crown width 
and ground diameter (Lang 2008), individual basal 
area growth model using a multi-level linear mixed 
model with repeated measurements (Lei et al. 
2009), and modelling dominant height for Chinese 
fir (Cunninghamia lanceolata) plantation using a 
nonlinear mixed-effects modelling approach (Li, 
Zhang 2010) can be cited as recent publications of 
mixed-effects models in forestry in China.

In regression analysis, a dummy variable (also 
known as indicator variable) takes the values 0, 
1 or –1 to indicate the absence or presence of some 
categorical effect. Dummy variable processing 
is a commonly used method to deal with indica-
tor or categorical variables, which are involved in 
all quantitative methods (Tang, Li 2002; Li et al. 
2006; Tang et al. 2008). In regression analyses and 
modelling studies, dummy variable models are usu-
ally applied (Li, Hong 1997; Li et al. 2008). 

For the two kinds of subject-specific model-
ling methods, dummy variable model and mixed-
effects model, the choice of which one should be 
used has been a hot debate in biometrics and sta-
tistics (Wang et al. 2008). Wang et al. (2008) made 
an empirical comparison of the two approaches to 
dominant height modelling, and concluded that 
the two kinds of methods were appropriate to con-
struct models with specific or local parameters, 
and produced almost the same outcomes; in terms 
of height growth description, the dummy variable 
method was preferred, and in terms of height pre-
diction, the mixed-effects modelling method might 
be appropriate.

Starting from the practical requirements for de-
veloping generalized national single-tree biomass 
equations in China, the present study will focus 
on the following three aspects: firstly, based on the 
aboveground biomass data on Masson pine (Pinus 
massoniana), which is one of the two most im-
portant coniferous species in southern China, the 
compatible single-tree biomass equations at differ-
ent scales will be developed using dummy variable 
model and linear mixed model methods. Secondly, 
the models with origin- and region-specific param-
eters and the population average (PA) model for na-
tional forest biomass estimation will be compared. 
Thirdly, the effects of tree origins, growing regions 
and the combinations of origins and regions for bio- 
mass estimation will be analysed. The results and 
conclusions to be presented in this paper will pro-
vide a reference basis for national and provincial 
monitoring and assessment of forest biomass.
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MATERIAL and METHODS

The fit data of 150 sample trees used in this study 
were the aboveground biomass measurements of 
Masson pine in southern China, which were ob-
tained from destructive sampling in 2009. The sam-
ple trees were located in Jiangsu, Zhejiang, Anhui, 
Fujian, Jiangxi, Hunan, Guangdong, and Guizhou 
provinces and Guangxi autonomous region (20 to 
35°N, 102‒123°E, Fig. 1). The number of sample 
trees was approximately distributed by the propor-
tion to the stocking volume of Masson pine forests 
in the nine provinces or autonomous region, and 
the origins of forests were also taken into account. 
Among them, a total of 77 trees were from natural 
forests and 73 trees from plantations. The sample 
trees were distributed equably in the ten diameter 
classes of 2, 4, 6, 8, 12, 16, 20, 26, 32 +, and more 
than 38 cm, i.e. 15 trees for each diameter class ex-
cept for 26 cm and 32 cm classes, in which there 
were 14 and 16 trees, respectively. In addition, the 
sample trees in each diameter class were distrib-
uted by 3–5 height classes as evenly as possible, i.e. 
3–5 trees for each height classes. Thus, the sample 
trees were representative in the large-scale region. 

Diameter at breast height of each sample tree was 
measured in the field. After the tree was felled, 
the total length of tree (tree height) and length of 
live crown were also measured. The fresh weights 
of stem wood, stem bark, branches, and foliage 
were measured, and subsamples were selected and 
weighed in the field. After taken to the laboratory, 
all subsamples were oven dried at 85°C until a con-
stant weight was reached. According to the ratio of 
dry weight to fresh weight, each compartment bio-
mass could be computed and the aboveground bio-
mass of the tree was obtained by summation. The 
distribution of sample trees by origins, provinces, 
and diameter classes is listed in Table 1, and the re-
lations between biomass and diameter for different 
origins in the nine provinces are shown in Fig. 2.

In addition, two sets of aboveground biomass 
data from Masson pine plantations were used for 
validation: (i) data from 50 sample trees collected 
by the South Team of the National Biomass Model-
ling Program in 1997 from the Lizhai Forest Farm 
of Dexing county in Jiangxi province; and (ii) data 
from 295 sample trees collected in 2007 from 
Guizhou province for establishment of forestry 
tables for Masson pine, which were located in the 

Fig. 1. The region from which the 
fit data of biomass were collected 
in the grey color-filled region. Light 
grey lines indicate the provincial 
boundaries, and the broken line 
indicates the country boundary in 
the seas.
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Fig. 2. The relationship between biomass and diameter for different origins in the nine provinces

growing regions of the species and representative 
of the population.

Base model

In general, individual tree biomass includes sev-
eral compartments such as stem wood, stem bark, 
branches, foliage, and roots (fine roots less than 
2 mm in diameter not to be included). However, 
the total biomass, especially the aboveground bi-
omass, was mainly concerned for large-scale for-
est biomass monitoring (FAO 2006; Muukkonen 
2007; Tomppo et al. 2010). The allometric biomass 
equation based on one single variable D (diameter 
at breast height) was widely used due to predic-
tion precisions (e.g. Ter-Mikaelian, Korzukhin  
1997; Jenkins et al. 2003; Muukkonen 2007; Ná-
var 2009; Fu et al. 2011). We also used the follow-
ing allometric function as a base model to construct 
different biomass equations in this study:

M = aDb(1 + ζ) 	 (1)

where:
M – aboveground biomass,
a, b – parameters, 
ζ – relative error term. 

Model (1) becomes to the following linear form 
by logarithmic transformation:

y = a0 + bx + ς 	 (2)

where:
y  – ln M,
x  – ln D,
a0  – ln a,
ς  – ln (1 + ζ). 

Given to the fitting result of model (2), the bio-
mass estimate can be obtained from the following 
equation:

M ̂  = exp(a0 + bx) 	 (3)

However, because some bias resulted from the 
logarithmic transformation, bias correction was 
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necessary, and the commonly used correction fac-
tor was exp(S2/2) (Baskerville 1972; Flewel-
ling, Pienaar 1981). Then, the corrected estimate 
of biomass is as follows: 

M ̂  = exp(a0 + S2/2)Db 	 (4)

In addition, viewing from the practical use, the 
ratio estimator for bias correction in logarithmic 
regressions presented by Snowdon (1991) could 
be applied, which might permit the total mean bias 
to be zero.

However, the aboveground biomass of a tree is 
impacted not only by diameter but also by other 
factors, such as origin of the tree and the grow-
ing region. In this paper, the one-variable model 
(2) with two general parameters (also known as 
global or fixed parameters) was called the popula-
tion average (PA) model. Then, the dummy vari-
able model and the mixed model involving effects 
of different tree origins and growing regions were 
taken into account. Considering that the allomet-
ric coefficient b in model (2) is almost stable, some 
researchers even suggested to use a constant value 
(West et al. 1999; Chojnacky 2002), therefore, 
only the impact of local or random effects of differ-
ent origins and regions on parameter a0 was stud-
ied in this paper. Forest origins are classified into 
2 types: natural and planted, whose codes are 1 and 
2, and numbers of sample trees are 77 and 73, re-
spectively. Geographic regions involve 9 provinces 
or autonomous region, and the numbers of sample 
trees for each region are very different (Table 1 and 
Fig. 2). Based on an overall consideration of water, 
heat and the number of sample trees, the geograph-
ic regions are classified into 3 types: eastern region 
(Jiangsu, Zhejiang, Fujian), south-central region 
(Jiangxi, Hunan, Guangdong), and north-western 
region (Anhui, Guizhou, Guangxi), whose codes 
are 1, 2, and 3, respectively, and the number of sam-
ple trees for each type is 50.

Dummy variable model

The general form of dummy variable model based 
on model (2) is as follows:

y =  a0 + ∑aizi + bx + ς 	 (5)

where:
zi	 – dummy variable,
ai	 – corresponding specific or local parameter
Other symbols are the same as in model (2).

To make a difference, the parameters in dummy 
model corresponding to those in PA model are 
called general or global parameters. For obviously 
understanding the compatibility of different scale 
models and simply comparing with the mixed 
models, the processing of dummy variables would 
meet ∑ai = 0. Under the restricted condition, only 
i–1 special parameters need to be estimated, the 
last one can be derived from the others.

Because of involving two origins (natural and 
planted) and three regions, dummy variable pro-
cessing may include four different situations. The 
dummy variable combinations of each situation are 
listed in Table 2.

Because model (5) is the typical linear equa-
tion, the ordinary least-squares (OLS) method can 
be used to estimate the parameters. It should be 
pointed out that the model under the 4th situation 
is the full model, based on which we would have 
nested models that apply at different scales, just 
like the models under the 1st and 2nd situations and 
the PA model.

Linear mixed model

The general form of linear mixed-effects model 
is as follows (SAS 1999; Tang, Li 2002; Tang et al. 
2008):

y = x  β + z  u + e	 (6)
 n×1     n×p p×1    n×q  q×1    n×1

where:

y – dependent variable,
β – fixed parameter,
u – random parameter,
x – designed matrix of fixed parameters,
z – designed matrix of random parameters,
e – error matrix.

The mixed model corresponding to model (5) is 
expressed as follows:

y = a0 + ∑uizi + bx + ς 	 (7)

where:
the expected values of random parameters ui – zero, and 
they are independent of each other.

That is E(ui) = 0, and cov(ui, uj) = 0 for i ≠ j.

Contrasting to the four situations for dummy 
variable processing above, the followings are taken 
into account in mixed models:
(i) 	 Tree origin is considered as random variable;
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(ii) 	Growing region is considered as random 
variable;

(iii) 	Both tree origin and growing region are con-
sidered as random variables;

(iv) 	The combinations (interactions) of origin and 
region are considered as random variables.

The linear mixed-effects model (6) or model (7) 
were fitted using the “Linear Mixed Model” func-
tion of “Statistic Analysis” mode in ForStat2.1, in 
which the method of restricted maximum likeli-
hood (REML) was implemented for parameter es-
timation (Tang et al. 2008).

Model evaluation

To compare and evaluate the dummy variable 
model and linear mixed model, three fit statistics 
were used, which were determination coefficient 
(R2), sum of square errors (SSE), and mean square 
errors (S2). They were calculated by the following 
equations:

R2 = 1 – ∑(yi – ŷ  i)
2/∑(yi – y– )2	 (8)

SSE = ∑(yi – ŷ  i)
2	 (9)

S2 = SSE (n – p)	  (10)

where:
yi, ŷ  i	–	 observed and estimated values of the ith sample 

tree,
y– 	 –	 arithmetic mean of all observed values,

n	–	number of sample trees,
p	–	number of parameters.

The difference between dummy variable model 
(or mixed model) and PA model was tested by us-
ing an F-statistic, which was computed and com-
pared with the critical F value to determine if they 
were significantly different. The F-statistic was cal-
culated as follows (Meng et al. 2008):

      (SSEPA – SSEDM)/(dfPA – dfDM)
F = –––––––––––––––––––––––– 	 (11)
                   SSEDM/dfDM

where:
SSEPA, SSEDM	–	sums of square errors of the PA model 

and dummy variable model (or mixed 
model), respectively,

dfPA, dfDM	 –	the degrees of freedom of the PA model 
and dummy variable model (or mixed 
model), respectively.

RESULTS

Using the aboveground biomass data on 150 sam-
ple trees of Masson pine from 9 provinces or au-
tonomous region in southern China, the PA model 
(2) was fitted by the OLS method at first; then the 
dummy variable model (5) and linear mixed-effects 
model (7) under the afore-mentioned four situations 
were fitted through the ForStat2.1 software (Tang 
et al. 2008).

Table 1. The distribution of sample trees of Masson pine in southern China by origins, provinces, and diameter classes

Types
Diameter classes (cm)

2 4 6 8 12 16 20 26 32 ≥ 38 sum

Provinces

Jiangsu 1 1 1 1 1 1 1 1 8

Zhejiang 2 2 2 2 2 2 2 2 2 2 20

Anhui 1 1 1 1 1 1 1 1 1 1 10

Fujian 2 2 2 2 2 2 2 2 3 3 22

Jiangxi 2 2 2 2 2 2 2 2 2 2 20

Hunan 2 2 2 2 2 2 2 2 2 2 20

Guangdong 1 1 1 1 1 1 1 1 1 1 10

Guangxi 2 2 2 2 2 2 2 2 2 2 20

Guizhou 2 2 2 2 2 2 2 2 2 2 20

Origins
Natural 6 7 8 7 8 8 7 8 10 8 77

Planted 9 8 7 8 7 7 8 6 6 7 73

Total 15 15 15 15 15 15 15 14 16 15 150
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PA model

The PA model of aboveground biomass of Mas-
son pine in southern China by logarithmic trans-
formation is as follows:

y = –2.2368 + 2.3724x (R2 = 0.9865, SSE = 9.7095, 
S2 = 0.0656, F = 10,795.94, P = 0.0000) 	 (12)

where: 
y = ln M, 
x = ln D, 
F value = statistic for significance, 
P-value = significance level, 
t-values of the parameters a0 and b are – 37.31 and 
103.90, respectively. 

Table 2. The dummy variable combinations for four different situations

Situations Considered factors Combinations z1 z2 z3 z11 z12 z13 z21 z22

1 origin
nature 1

planted –1

2 region

eastern 1 0

south-central 0 1

north-western –1 –1

3 origin + region

nature + eastern 1 1 0

nature + south-central 1 0 1

nature + north-western 1 –1 –1

planted + eastern –1 1 0

planted + south-central –1 0 1

planted + north-western –1 –1 –1

4 origin × region

nature × eastern 1 0 0 0 0

nature × south-central 0 1 0 0 0

nature × north-western 0 0 1 0 0

planted × eastern 0 0 0 1 0

planted × south-central 0 0 0 0 1

planted × north-western –1 –1 –1 –1 –1

z1, z2, z3, z11, z12, z13, z21, z22 – dummy variables

Fig. 3. Distribution of residual errors 
of the PA model (12)-0.8
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The distribution of residual errors of the PA mod-
el (12) is shown in Fig. 3.

The aboveground biomass equation correspond-
ing to model (4) is as follows:

M
 ̂   

=exp(–2.2368 + 0.0328) D2.3724

where:
M

 ̂   
	– predicted value of aboveground biomass,

D	 – diameter of the tree. 

This is the generalized biomass model to be used 
for national forest biomass estimation.

Dummy variable model

The fitting results of dummy variable models un-
der the four situations above (named as models 1, 
2, 3, and 4 in order) are listed in Table 3.

It is shown in Table 3 that the differences among 
the estimates of specific parameters in models 1, 2 
and 3 are rather small because the effects are inde-
pendent in the models; but the estimates of specific 
parameters in model 4 are very different from those 
in the other three models, because the interactions 
of tree origin and growing region are considered 
here.

From F-test of the four dummy variable models 
and the PA model, the F-values calculated by equa-
tion (11) were 2.30, 1.68, 1.82 and 2.41, respective-
ly. Only model 4 was significantly different from 
the PA model at a 0.05 level, and the other three 
models were not significantly different from the PA 
model at 0.05 and 0.10 levels.

Based on dummy model 4, we can obtain the fol-
lowing nested models contrasting to the PA model, 
model 1 and model 2:
PA model: 

M ̂    =
 
exp(–2.2153 + 0.0313) D2.3653

Model 1 for the natural forest:
M ̂    =

 
exp(–2.2153 + 0.0299 + 0.0313) D2.3653

Model 1 for the planted forest: 
M ̂    =

 
exp(–2.2153 – 0.0299 + 0.0313) D2.3653

Model 2 for region 1: 
M ̂    =

 
exp(–2.2153 + 0.0369 + 0.0313) D2.3653

Model 2 for region 2: 
M ̂    =

 
exp(–2.2153 + 0.0132 + 0.0313) D2.3653

Model 2 for region 3: 
M ̂    =

 
exp(–2.2153 – 0.0501 + 0.0313) D2.3653

The regression curves of dummy models for dif-
ferent origins (model 1 above) and for different re-
gions (model 2 above) are shown in Figs. 4 and 5.

Linear mixed model

The fitting results of linear mixed-effects mod-
els under the afore-mentioned four situations are 
listed in Table 4. In addition, from F-test of the four 
mixed models and the PA model, the F-values cal-
culated by equation (11) were 2.31, 2.35, 2.27 and 
3.36, respectively. Model 4 was significantly differ-
ent from the PA model at a 0.01 level, and mod-
els 2 and 3 were significantly different from the PA 
model at a 0.10 level, but mixed model 1 was not 
significantly different from the PA model, just like 
dummy variable model 1.

Based on mixed model 4, similarly like the dum-
my model, we can obtain the following nested 
models contrasting to the PA model, model 1 and 
model 2:
PA model: 

M ̂    =
 
exp(–2.2243 + 0.0313) D2.3683

Model 1 for the natural forest:
M ̂    =

 
exp(–2.2243 + 0.0179 + 0.0313) D2.3683

Model 1 for the planted forest: 
M ̂    =

 
exp(–2.2243 – 0.0179 + 0.0313) D2.3683

Model 2 for region 1: 
M ̂    =

 
exp(–2.2243 + 0.0225 + 0.0313) D2.3683

Model 2 for region 2: 
M ̂    =

 
exp(–2.2243 + 0.0069 + 0.0313) D2.3683

Model 2 for region 3:
M ̂    =

 
exp(–2.2243 – 0.0294 + 0.0313) D2.3683

DISCUSSION

Comparison of the two kinds of models

It is shown in Tables 3 and 4 that the special and 
random parameters of natural type are positive 
whereas those of planted type are negative (two 
effects cancel each other out). This indicates that 
the aboveground biomass of a tree in natural for-
est is larger than that in planted forest when the 
tree diameter is the same, but the differences are 
not statistically significant. As for region types, the 
aboveground biomass of a tree with the same diam-
eter gradually decreases from the eastern region to 
south-central and north-western regions, but the 
differences are not statistically significant either. 
The impacts of tree origin and growing region re-
flected in the mixed models showed the same pat-
tern as in the dummy models. In terms of the three 
fit statistics (R2, SEE, and S2), there was no large dif-
ference between mixed-effects model and dummy 
variable model. Compared to the PA model, the dif-
ference in F-test results of models 2 to 4 between 
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dummy model and mixed model resulted from the 
fact that the dummy model had a lower degree of 
freedom than the corresponding mixed model in 
which the specific parameters were assumed to 
follow a normal distribution, and the number of 
independent parameters was decreased. In fact, 
in terms of other two criteria independent of the 
degree of freedom, R2 and SEE, the dummy model 
was slightly better than the mixed model, which 
was consistent with the conclusion presented by 
Wang et al. (2008).

We know that in dummy model the specific pa-
rameters are usually processed and estimated as-
suming the responsible value of one type (usu-
ally the type with the smallest expected value) to 
be zero. In this study, the commonly used values  
(1, 0) were instead of (1, –1) in dummy model, 

which could assure the sum of responsible values 
of all types to be zero, just like in mixed model. 
For example, in dummy model 1, the estimates of 
specific parameters for natural and planted forests 
were 0.0317 and –0.0317, respectively, and in mixed 
model 1 the estimates of random parameters were 
0.0179 and –0.0179, respectively. Although the 
same pattern was shown, i.e. the responsible value 
of natural forest was higher than that of planted for-
est, the sizes were different: the difference between 
the two parameters in dummy model was 0.0634, 
but the difference in mixed model was only 0.0358. 
The specific parameters of dummy model and the 
random parameters of mixed model in models 
2–4 showed the same pattern. That means the dif-
ference among specific types reflected in mixed 
model is smaller than that in dummy model, which 

Fig. 4. The regression curves of dummy mo-
del 1 for different origins
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Table 3. The results of dummy variable model (5)

Dummy 
models

General  
parameters Specific parameters Fit statistics

a0 b a1 a2 a3 a4 a5 a6 F-value P-value R2 SEE S2

Model 1 –2.2296 2.3692 0.0317 (–0.0317) 5,446.57 0.0000 0.9867 9.5598 0.0650

Model 2 –2.2366 2.3723 0.0408 0.0102 (–0.0510) 3,632.89 0.0000 0.9868 9.4909 0.0650

Model 3 –2.2298 2.3693 0.0301 (–0.0301) 0.0416 0.0062 (–0.0478) 2,745.12 0.0000 0.9870 9.3574 0.0645

Model 4 –2.2153 2.3653 0.1087* –0.0307 0.0117 –0.0350 0.0571 (–0.1118) 1,886.78 0.0000 0.9875 8.9561 0.0626

Bold values – statistically significant at 0.01 level, *statistically significant at 0.05 level. The figures in parentheses are the 
dependent special parameters
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is consistent with the conclusion presented after 
a comprehensive comparison of the two kinds of 
models by Wang et al. (2008). Wang et al. (2008) 
stated that if the variance of random effects were 
very large relative to the error variance, the random 
parameter estimates would be very close to what 
they would be if they were regarded as fixed pa-
rameters; and if the random effects showed a very 
small variance, the random parameter estimates 
would be very close to zero, i.e. the mixed model 
would be very close to the PA model. Thus, they 
claimed that the mixed model might be regarded as 
a compromise between the dummy model in which 
the specific parameters are fixed and the PA model 
in which the specific parameter are zero.

In order to show the differences among dummy 
model, mixed model and PA model, and to dem-
onstrate the compatibility of the models at differ-
ent scales, the results of aboveground biomass es-

timation (logarithmic transformation) from the PA 
model, dummy and mixed models under the four 
situations mentioned above are listed in Table 5, 
where model 0 means the PA model (12). 

It is shown in Table 5 that though the total es-
timate of the PA model is unbiased (total relative 
error is equal to 0), the estimates for different ori-
gins, regions, and their combinations have relative 
errors lower than ± 3%; and the dummy and mixed 
models under the four situations can decrease the 
errors of estimates for various types, among which 
models 1 and 2 improve slightly, and models 3 and 
4 improve more; and furthermore, model 4 con-
sidering the interactions of origins and regions is 
better than model 3 considering the effects of ori-
gins and regions independently. Dummy model 4 is 
equivalent to six models with specific parameters 
for the six combinations of origins and regions, and 
the specific parameters are all regarded as fixed pa-

Table 4. The results of linear mixed model (7)

Mixed 
models

Fixed parameters Random parameters Random effects analyses Fit statistics

a0 b u1 u2 u3 u4 u5 u6 F-value significant R2 SEE S2

Model 1 –2.2327 2.3706 0.0179 –0.0179 1.5764 – 0.9867 9.5594 0.0650

Model 2 –2.2367 2.3724 0.0165 0.0041 –0.0206 1.3273 – 0.9867 9.5565 0.0650

Model 3 –2.2328 2.3706 0.0171 –0.0171 0.0159 0.0030 –0.0189 0.8572/1.2279 – 0.9869 9.4170 0.0645

Model 4 –2.2243 2.3683 0.0642 –0.0180 0.0075 –0.0191 0.0318 –0.0664 1.4668 – 0.9874 9.0785 0.0626

Fig. 5. The regression curves of dummy 
model 2 for different regions
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rameters, thus the total estimates for six types and 
the sums by origin or region have no errors (the 
relative errors of about ± 0.01% in Table 4 resulted 
from the computing precision, they are equal to 
zero theoretically). However, in mixed model 4, the 
impacts of the six combinations of origins and re-
gions are treated as random effects, and the specific 
parameters are regarded as random parameters, 
thus the total estimates for six types and the sums 
by origin or region still have about ± 1% relative er-
rors, where the total estimate for the type of plant-
ed-region 3 has the largest relative error 1.27%.

Moreover, whether it is dummy model or mixed 
model, the sums of estimates by origin, region or 
their combinations are all equal to the total esti-

mate of the PA model. That is to say that the nation-
al sums of estimates of region-specific models are 
the same as the national estimate of the PA model. 
Thus, the PA model and the dummy and mixed 
models at different scales are compatible.

Analysis and validation of the models

For the dummy model and mixed model, the 
choice of which one should be used has been a hot 
debate in biometrics and statistics (Wang et al. 
2008). Viewing from the practical application, the 
choice can be made depending on the number of 
subjects/types and the number of samples per type: 

Table 5. The estimation results of the models at different scales for fit data

Scales 
(types)

Observed 
values

Estimated values Relative error (%)

model 0 model 1 model  2 model 3 model 4 model 0 model 1 model 2 model 3 model 4

Dummy 
model

N-region 1 105.82 103.04 103.79 104.06 104.79 105.81 –2.62 –1.91 –1.66 –0.96 0.00

N-region 2 104.03 104.80 105.70 105.10 105.83 104.03 0.74 1.60 1.03 1.73 0.00

N-region 3 85.14 84.80 85.50 83.62 84.37 85.15 –0.41 0.42 –1.79 –0.91 0.01

P-region 1 76.40 77.14 76.34 78.16 77.42 76.40 0.97 –0.07 2.31 1.34 0.01

P-region 2 76.72 75.44 74.76 75.65 74.92 76.72 –1.67 –2.56 –1.39 –2.35 0.00

P-region 3 92.02 94.92 94.04 93.54 92.80 92.01 3.15 2.19 1.65 0.84 –0.01

region 1 182.21 180.17 180.13 182.21 182.21 182.21 –1.12 –1.14 0.00 0.00 0.00

region 2 180.76 180.25 180.46 180.75 180.75 180.75 –0.28 –0.16 0.00 0.00 0.00

region 3 177.16 179.71 179.54 177.16 177.16 177.16 1.44 1.34 0.00 0.00 0.00

natural 294.98 292.64 294.99 292.78 294.99 294.99 –0.80 0.00 –0.75 0.00 0.00

planted 245.15 247.49 245.14 247.35 245.14 245.14 0.96 0.00 0.90 0.00 0.00

total 540.13 540.13 540.13 540.13 540.13 540.13 0.00 0.00 0.00 0.00 0.00

Mixed 
model

N-region 1 105.82 103.04 103.46 103.45 103.84 104.68 –2.62 –2.22 –2.23 –1.86 –1.07

N-region 2 104.03 104.80 105.31 104.92 105.38 104.35 0.74 1.23 0.86 1.29 0.30

N-region 3 85.14 84.80 85.20 84.32 84.74 85.02 –0.41 0.06 –0.97 –0.47 –0.15

P-region 1 76.40 77.14 76.68 77.55 77.10 76.74 0.97 0.38 1.51 0.93 0.45

P-region 2 76.72 75.44 75.05 75.53 75.14 76.16 –1.67 –2.17 –1.55 –2.07 –0.73

P-region 3 92.02 94.92 94.42 94.36 93.93 93.19 3.15 2.61 2.54 2.08 1.27

region 1 182.21 180.17 180.15 181.00 180.94 181.41 –1.12 –1.13 –0.66 –0.69 –0.43

region 2 180.76 180.25 180.37 180.45 180.51 180.51 –0.28 –0.21 –0.17 –0.13 –0.14

region 3 177.16 179.71 179.62 178.68 178.68 178.21 1.44 1.39 0.86 0.85 0.59

natural 294.98 292.64 293.97 292.69 293.96 294.04 –0.80 –0.34 –0.78 –0.35 –0.32

planted 245.15 247.49 246.16 247.44 246.17 246.09 0.96 0.42 0.94 0.42 0.39

total 540.13 540.13 540.13 540.13 540.13 540.13 0.00 0.00 0.00 0.00 0.00

N-region and P-region – the combinations of natural origin and planted origin and the regions, the types in the rows with 
square framed figures – the subjects to be considered as specific or random effects in the model
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if the number of types is small (less than 10), the 
dummy model is preferred; if the number of types 
is large, and the number of samples per type is 
small, the mixed model is recommended; and if the 
number of samples per type is large, then it does 
not matter much which model formulation we take 
(Wang et al. 2008). For the case in this paper, if we 
classify the types by the six combinations of origins 
and regions, then the number of samples per type 
is lower than 30, which does not meet the need of a 
large sample. Furthermore, the sample trees of each 
province come from various Masson pine forest 
stands which covered different site conditions, tree 
origins, stand ages, stand densities, forest catego-
ries, and even species compositions. Even though 
the properties of origin and growing region are def-
inite for the sample trees, the selection of sample 
trees was random to some extent, thus it was dif-
ficult to represent the “average” level of each type 
(origin and region). The purpose is to construct the 
“average” biomass models for different types, it is 
necessary to analyze the random effects, so tak-
ing the specific parameters as random parameters 
in mixed model should be suitable. Though the fit 
statistics of dummy model, in which the specific 
parameters are regarded as fixed parameters, are 
slightly better than in mixed model, when applying 
to other data for biomass estimation, the prediction 
results may not be as ideal as expected. Wang et 
al. (2008) developed dominant height growth equa-
tions using the two models, and found that in terms 
of height growth description, the dummy model 
was preferred, but in terms of height prediction for 
validation data, the mixed model was more appro-
priate. Based on this knowledge, we tend to recom-
mend the mixed model for developing compatible 
single-tree biomass models.

To examine the prediction results of the devel-
oped models in this study, the authors used other 
aboveground biomass data from Masson pine plan-
tations in Guizhou and Jiangxi provinces for valida-

tion. The prediction results of the models at differ-
ent scales for validation data are listed in Table 6. 
It is shown in Table 6 that for validation data the 
predicted values of biomass in Guizhou are under-
estimated for all models, and those in Jiangxi are 
overestimated; and the predicted results based on 
the PA model seem to be better. For the predicted 
values of dummy and mixed models, the smaller 
the scale, the larger the relative difference; and the 
bias of dummy model is larger than that of mixed 
model. In brief, the mixed model performed better 
than the dummy model for validation data.

From the properties of the models we know that 
mixed model is an intermediate form between the 
PA model and dummy model. In the PA model, the 
difference between various types such as origin and 
region was not taken into consideration; in dummy 
model, the difference between the types of sample 
was reflected by the fixed special parameters; and 
in mixed model, the difference was reflected by the 
random parameters based on the assumption that 
the data was distributed normally, and the random 
parameters could cancel out each other with an ex-
pected value of zero. In fact, we can think that in 
mixed model the difference among various types 
of sample is divided into two parts: one originating 
from the difference among types; another resulting 
from the random effects. For example, the differ-
ence between the two origins for the sample used 
in this study was 6.55% estimated by the dummy 
model, but in the mixed model, the difference was 
divided into two parts: 3.64% originating from the 
difference between natural and planted types, and 
the other 2.91% regarded as the random effects. We 
can expect that the fewer the sample trees in each 
type, the more numerous the random effects will 
be, and the mixed model will be closer to the PA 
model; and vice versa, the more numerous the sam-
ple trees in each type, the fewer the random effects 
will be, and the mixed model will be closer to the 
dummy model. 

Table 6. The prediction results of the models at different scales for validation data

Data
Sample 

size
Observed 

values

Predicted values

PA model
dummy models mixed models

model 1 model 2 model 4 model 1 model 2 model 4

Guizhou 295 34,973 
33,506 32,441 31,792 29,890 32,848 32,472 31,293

(–4.20%) (–7.24%) (–9.09%) (–14.53%) (–6.08%) (–7.15%) (–10.52%)

Jiangxi   50   4,030 
4,323 4,190 4,375 4,571 4,240 4,347 4,457

(7.26%) (3.97%) (8.55%) (13.42%) (5.22%) (7.86%) (10.58%)

The figures in parentheses are the relative differences between observed and predicted values of biomass
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Possible limitation of the models

The emphasis of this study is mainly on meth-
odology. The applicability of the developed mod-
els was influenced by the sample size and repre-
sentation. As for the size of the sample, a total of 
150 trees from 9 provinces are adequate for devel-
oping a generalized national or regional single-tree 
biomass model, but for sub-regional or provincial 
models the number of sample trees in each prov-
ince is not sufficient. The reason is that 1–2 trees 
for each diameter class in each province are hardly 
the average on a provincial level. As for the rep-
resentation of the sample, even though it was re-
quired to select the sample trees by diameter class 
and by origin in each province, it was very difficult 
to assure the sample representative enough in prac-
tice because of the small sample size and other fac-
tors, which is reflected to some extent in Fig. 2. The 
modelling results show that single-tree biomass 
in natural forest is higher than that in plantation, 
which is probably because of better utilization of 
light, heat and water in natural forest. Tree biomass 
in the three south-eastern provinces (region 1) is 
higher than that in the three central provinces (re-
gion 2), and the tree biomass in the three western 
and northern provinces (region 3) is the smallest. 
It is probably so because the water and heat con-
ditions in the south-eastern region are better and 
the trees have enough growing space; but with the 
extension of the geographical region to west and 
north, the water and heat conditions are worse, 
which impacts the growth and development of the 
trees. If the combination of origins and regions is 
taken into consideration, the afore-mentioned gen-
eral pattern is maintained no longer. For the natu-
ral type, the tree biomass in region 2 is the smallest, 
and for the planted type, the biomass in region  2 
is the largest, and the biomass of plantation in re-
gion 2 is larger than that of natural forest. The rea-
son is probably the small size and poor representa-
tion of the sample for each type. Even though the 
models considering the combination of origins and 
regions and the PA model are different statistically, 
the special or random parameters are hardly differ-
ent from zero (Tables 3 and 4), which show that the 
general pattern of tree biomass changing with the 
origins and regions is uncertain and up for valida-
tion from a larger sample. 

The dummy and mixed models used in this study 
are of logarithmic linear form which could be ex-
tended to nonlinear models. Because the solution 
of nonlinear model is the asymptotic estimates 
based on Taylor’s series, the sum of predicted values 

for fit data is not equal to that of observed values. 
In addition, the estimation of nonlinear biomass 
model involves the heteroscedasticity, i.e. the error 
term is multiplicative. All of these issues should be 
paid more attention, and for detailed discussion,  
see some related references (e.g. Laird et al. 1987; 
Pinherio, Bates 2000; Meng, Huang 2009).

CONCLUSIONS

Based on the aboveground biomass data on 
Masson pine in southern China, the generalized 
single-tree biomass equations suitable for national 
and regional forest biomass estimation were de-
veloped using dummy model and linear mixed 
model methods, which could solve the compat-
ibility of forest biomass estimates among differ-
ent scales. The fitting results of subject-specific 
models showed that the aboveground biomass 
estimates of trees with the same diameter varied 
to some extent for different origins and for dif-
ferent regions. For the Masson pine in southern 
China, the aboveground biomass of a tree with the 
same diameter in natural forest was larger than 
that in plantation; and the biomass estimate de-
creased from eastern region (Jiangsu, Zhejiang, 
Fujian) to south-central region (Jiangxi, Hunan, 
Guangdong) and to north-western region (Anhui, 
Guangxi, Guizhou). If considering the origins and 
regions together, different patterns would appear: 
for natural forests, trees with the same diameter in 
eastern regions have the largest biomass; and for 
plantations, trees in south-central regions have the 
largest biomass. But, because of the limited sample 
size, the conclusion above is subjected to valida-
tion from a larger sample.

The mixed model and dummy model methods 
provide effective approaches to develop single-tree 
biomass equations at different scales, and they may 
be applied to construct other generalized models 
such as tree volume equations. For more generalized 
models, besides the origins and regions, the effect of 
tree species could be reflected by special or random 
parameters. Thus, we could use all data on different 
tree species and construct more generalized models 
suitable for all species. The choice between dummy 
and mixed models mainly depends upon the sample 
size of each type. If the numbers of samples for all 
types are large enough, then it does not matter much 
which model we choose; if the numbers of samples 
are small, then the mixed model would be the bet-
ter choice. Generally speaking, the mixed model is 
more flexible and applicable.
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