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Tree-ring widths largely reflect environmental 
conditions. The effect of different factors is visible 
in the variation of ring size and structure, which 
systematically vary throughout the life of the tree. 
The information contained in annual tree rings is a 
valuable source for studying environmental chang-
es by methods of dendrochronology (Fritts 1976; 
Schweingruber 1996). Recently, dendroclima-
tological methods based on these principles have 
been widely used for the growth prognosis of tree 
species under the conditions of climate warming 
(Andalo et al. 2005; Ricker et al. 2007; Su et al. 
2007). In addition to climatic factors, more com-
plex dendroecological approaches study also site 
factors as variables influencing the tree ring width 
(Adams, Kolb 2005; Bolli et al. 2007). 

Although the use of tree rings for studying en-
vironmental changes is widespread, the extraction 
of desired signal from unwanted noise can be dif-
ficult and uncertain. The conceptual model for ring 
widths according to Cook and Briffa (1992) indi-
cates that the variance of a ring width series may be 
decomposed into a pure age trend component (A), 
two common stochastic signal components: cli-
matic (C) and exogenous disturbance (D1), and two 
unique stochastic signal components: endogenous 
disturbance (D2) and unexplained variability (E). In 
dendroclimatic studies, the common climatic sig-
nal C is of interest, while other signals are collec-
tively considered as non-climatic variance or noise. 
The removal of non-climatic trend components 
from ring-width series is known as standar-diza-
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tion (Fritts 1976). Standardization transforms 
the non-stationary ring widths into a new series 
of stationary, relative tree ring indices that have a 
defined mean of 1.0 and stabilized variance. Many 
deterministic (few stochastic) models are known 
and applied to growth trend estimation and to re-
moving non-climatic variance from ring series. The 
models belong to the family of linear, exponential, 
polynomial, or more complex growth functions, as 
comprehensively summarized for example by Vys-
kot et al. (1971), Šmelko et al. (1992), and most 
recently by Pretzsch (2009).

The aim of the present study is to perform anal-
yses of tree-ring series obtained during extensive 
research of declining unnatural Norway spruce (Pi-
cea abies [L.] Karst.) forests in northern Slovakia 
in order to: 
– contribute to the knowledge of variability of tree 

diameter growth in different site and stand 
conditions,

– compare the suitability of commonly used equa-
tions to fit and to standardize various observed 
tree-ring series.

MATERIAL AND METHODS

Study region and sampling scheme

The data for the analysis originate from the Orava 
region in northern Slovakia, belonging to the West 
Beskids flysch built of sandstones, slates and clay-
stones. Moderately cold and very wet hilly climate 
is typical of the region. The altitude ranges from 
about 500 to 1,700 m a.s.l. Unnatural spruce for-
ests predominate in the region. Recently, the for-
ests have been extensively affected by forest decline 
driven by bark beetles (Scolytidae) and honey fun-
gus (Armillaria sp.) accompanied by destructive 
harmful factors, mainly wind and snow. Climatic 
factors have been examined as possible reasons for 
the observed forest decline. 

Pairs of dominant and co-dominant spruce trees, 
one healthy and one declining, were selected in each 
sample plot. The plots were arranged in three linear 
transects situated across the region in the directions 
of the highest variability of site conditions. In such a 
way, the whole range of variability of site and stand 
conditions was covered. From each selected tree, 
one increment core was taken with a standard incre-
ment borer at breast height (1.3 m) in May 2008. To 
avoid reaction wood, the cores were strictly sampled 
in up-and-down slope directions. Site and stand pa-
rameters were assessed for each sample plot, and for 

each sample tree quantitative and qualitative param-
eters were measured or visually assessed. 

Dendrochronological analyses

From the whole data set, 104 tree ring series 
were extracted for the analysis, each containing 
more than 90 radial rings at breast height (i.e. from 
adult trees older than 100 years). Tree-ring width 
was measured to the nearest 0.01 mm with the 
positional measuring system TIME TABLE. A lo-
cal ring-width curve was derived, and the obtained 
ring-width series were cross-dated, checked, and 
corrected for missing and false rings using dendro-
chronological software PAST 32 (Holmes 1994). 

Detection of representative  
incremental patterns 

For each ring series, linear increment trend 
(LIT) was computed for cambial age classes 21–40, 
41–60, 61–80 and 81–100 years as the slope of the 
fractional straight line for each class. If on average 
the incremental curve shows an upward trend in 
the range of the age class, LIT is > 0, if the trend 
is downward, LIT is < 0. Cluster analysis was used 
to group similar ring series according to LIT val-
ues for age classes that represent input variables. 
Hierarchical clustering by Ward’s method and Eu-
clidean distances was used for the estimation of the 
number of clusters. For the final grouping of ring 
series, K-means clustering for the predefined num-
ber of clusters by the method of maximum starting 
distance between clusters was applied. Software 
STATISTICA 7.0 (StatSoft, Inc., 2009) was used. 
Consequently, selected site-related (altitude and 
soil quality), stand-related (stand density, vertical 
structure, stand damage) and tree-related param-
eters (tree age, crown length, health status) of clus-
ters were compared between the clusters. 

Standardization of mean incremental curves 

For each cluster, the mean incremental curve 
was computed and detrended (standardized) using 
six various functions with the aim to remove non-
climatic signals. Two commonly used incremental 
functions (Hugershoff and Korf ), two simple em-
pirical functions (exponential and polynomial), and 
one so far unpublished incremental function com-
bining both exponential and polynomial elements 
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designed by Šmelko and Burgan in Slovakia, were 
applied (Table 1). Furthermore, we also applied a 
cubic smoothing spline method (Reinsch 1967 
cited in Cook, Peters 1981; Ruppert et al. 2003), 
which belongs to nonparametric or semiparamet-
ric statistical methods. The spar value of 0.9 was 
used for the calculation of the smoothing param-
eter. R software was used for the computation of all 
detrending functions.

F-test was employed to compare the goodness of 
fit between the particular models expressed by the 
mean square of their residual errors (MSi): 

        MS1F = –––––
        MS2

             n1                                                            n2             ∑ 
(y1 –   ŷ  1)2                                  ∑ 

(y2 –   ŷ  2)2
             

i=1                                                          i=1
MS1 = ––––––––––        MS2 = ––––––––––
                  n1 – k1                                            n2 – k2

				   where:
n 	 – sample size,
k 	 – degrees of freedom of regression parameters. 

For each cluster, the minimum mean square was 
taken as reference for the comparison of other 
functions. Subsequently, P-value was calculated to 
determine the statistical significance of differences 
between the reference model and other models. 
Moreover, the differences in goodness-of-fit be-
tween all selected detrending equations were com-
pared using AIC (Akaike information criterion), 
since the criterion not only rewards of fit, but also 
includes a penalty that is an increasing function of 
the number of estimated parameters. 

To compare the models by AIC (Akaike 1974), 
we selected the model for each cluster with mini-
mum AIC value. Then we used the formula:

EXP((AICmin – AICi)/2)

in order to evaluate the relative probability that the 
ith model minimizes the information loss.

RESULTS

Representative incremental patterns

The sample file of 104 tree-ring series was divided 
into four groups (clusters) on the basis of the par-
tial trends of radial increments in the age interval 
of 21–100 years (Fig. 1). Main differences between 
clusters are in the number and in the position of 
radial increment culminations in time. Cluster 1 
has its main local maximum at the age of around 
30–40 years and a slight indication of its secondary 
maximum at 80 years. An early main maximum be-
fore the age of 30 years and a late secondary signifi-
cant maximum after 100 years are typical of clus-
ter 2. Cluster 3 differs from the others by a striking 
secondary maximum at middle age (60–90 years). 
Cluster 4 resembles cluster 1, but its main maxi-
mum appears much earlier, before the age 20 years. 

Table 2 summarizes the differences in selected 
site, stand and tree-related parameters between 
the clusters. The revealed differences are generally 
unclear (Table 2). The only noteworthy difference 
is a significantly higher proportion of multi-sto-
ried stands in cluster 3, which is a probable reason 
for its distinct secondary increment maximum at 
middle age. In the case of cluster 1, a higher pro-
portion of poor sites and sites at higher elevations 
could cause its later first maximum and in general 
a slower drop of the incremental curve. A higher 
proportion of damaged stands, sparse stands and 
stand rests in clusters 2 and 4 could contribute 

Table 1. List of the functions used for standardisation of example incremental curves

1. y(t) = a × tb × exp(–ct) + d Hugershoff (1936)

2.
                         

 b              by(t) = a exp(––––– t1–c) –––
                      1 – c            tc

Korf (1939)

3. y(t) = a0(1 + exp(a1t + a2t2 + a3t3 + a4t4)) Šmelko-Burgan (Burgan 1983)

4. y(t) = a + exp (–bt) + c Exponential (Fritts 1976)

5. y(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 Polynomial 

6.
 n
∑ (y1 – ƒ̂   (xi))

2 + λ3∫ƒ̂  (x)2 dx  
i=1

Spline (Ruppert et al. 2003)

y – radial increment; t – cambial age; a, b, c, d – parameters of the function; xi – variable used for increment 
prediction (e.g. age); l – smoothing parameter
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to the late increment maximum indication due to 
light increment.  

Standardization of incremental curves 

In the text below, a graphical comparison of 
goodness-of-fit between particular equations for 
the clusters is presented. 

In the case of cluster 1, exponential and Korf ’s 
equations were shown to represent the growth 

trend of the mean increment in the worst way, us-
ing both MS and AIC statistics. Following the F-
test, a spline or polynomial equation tended to 
have the best fit, and thus they were assumed to 
remove the major portion of the non-climatic vari-
ance. However, using the AIC, the Šmelko and Bur-
gan equation was found to be better than the spline 
one. Similarly, for cluster 2, Korf ’s and exponential 
function can be said to be insufficient to explain the 
growth trend. The best equations (according to MS 
as well as AIC) were Šmelko and Burgan and Hu-
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Fig. 1. Linear radial incre-
ment trends (LIT) of de-
signed clusters according to 
cambial age classes (whiskers 
represent a 95% confidence 
interval)

Table 2. Comparison of the clusters according to selected site, stand- and tree-related parameters

Variable Cluster 1 Cluster 2 Cluster 3 Cluster 4

Continuous Med. Q10 Q90 Med. Q10 Q90 Med. Q10 Q90 Med. Q10 Q90

Altitude (m a.s.l.) 1,052 730 1,175 957 785 1,114 793 760 1,125 959 775 1,117

Stand density 6 3 8 6 0 7 7 0 8 4 3 7

Tree age (years) 120 99 140 120 101 133 99 96 133 123 99 135

Relative crown length (%) 53 38 63 48 37 83 61 47 79 48 37 60

Categoric n (%) SE n (%) SE n (%) SE n (%) SE

Soil  
quality

Oligotrophic 11 55 ± 15 5 20 ± 18 8 32 ± 16 13 38 ± 13

Hemioligotrophic 5 25 ± 19 12 48 ± 14 13 52 ± 14 15 44 ± 13

Eutrophic 4 20 ± 20 8 32 ± 16 4 16 ± 18 6 18 ± 16

Vertical 
structure

Stand rests 1 5 ± 22 4 16 ± 18 3 12 ± 19 0 0 –

One-storey 15 75 ± 11 21 84 ± 8 10 40 ± 15 32 94 ± 4

Multi-storey 4 20 ± 20 0 0 – 12 48 ± 14 2 6 ± 17

Stand 
damage

Undamaged 4 20 ± 20 6 24 ± 17 11 44 ± 15 4 12 ± 16

Moderate 10 50 ± 16 12 48 ± 14 9 36 ± 16 11 32 ± 14

Strong 6 30 ± 19 7 28 ± 17 5 20 ± 18 19 56 ± 11

Tree 
status

Healthy 11 55 ± 15 14 56 ± 13 11 44 ± 15 15 44 ± 13
Declining 9 45 ± 17 11 44 ± 15 14 56 ± 13 19 56 ± 11

Med. – median; Q10, Q90 – quantiles; n – sample size, % – ratio, SE – standard error 
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gershoff equations along with the polynomial one. 
The growth trend in cluster 3, as represented by the 
mean curve, belongs to the most complicated and 
the functions such as exponential and Korf ’s ones 
tend to have an almost linear shape, thus supposed 
not to be sufficient. Cluster 4 has a similar trend 
like cluster 2, but with the more complicated trend 
at mature age, with increased increment width at 
the age of around 120.

As seen in Table 3, in cluster 1 the spline was cho-
sen as a reference model with the best goodness of 
fit (the mean root square is 215). It is clear from 

the comparison of other models with the reference 
model based on F-test that the models including the 
polynomial of degree 5 and Šmelko-Burgan could 
be used instead of the reference model. Moreover, 
the comparison by means of AIC showed the poly-
nomial of degree 5 as the best model fitting to clus-
ter 1. The Hugershoff and Korf growth functions 
and the exponential model were not satisfactory to 
be used for cluster 1.

In the case of cluster 2, the model developed by 
Šmelko and Burgan was taken as a reference model 
as it provided the best fit according to both MS and 

Table 3. Comparison of goodness of fit of the models inside cluster 1, 2, 3 and 4 

Function df MS AIC F p
Cluster 1

Spline 100 215.2 930 Reference
Polynomial 100 264.1 900 1.2272 0.1496
Šmelko-Burgan 101 289.2 908 1.3438 0.0668
Hugershoff 102 304.6 913 1.4154 0.0387
Korf 103 410.6 944 1.9080 0.0005
Exponential 103 524.9 970 2.4391 0.0000
Cluster 2

Šmelko-Burgan 101 252.6 911 Reference
Polynomial 100 257.0 914 1.0174 0.4655
Hugershoff 102 260.5 913 1.0313 0.4383
Spline 100 322.9 993 1.2785 0.1061
Korf 103 736.5 1,024 2.9157 0.0000
Exponential 103 1,125.0 1,070 4.4537 0.0000

Cluster 3

Spline 100  357 984 Reference
Polynomial 100 374.9 954 1.0506 0.4006

Šmelko-Burgan 101 489.6 982 1.3720 0.0543
Hugershoff 102 1,314.9 1,088 3.6848 0.0000
Korf 103 failed to converge
Exponential 103 1,226.6 982 3.4374 0.0000
Cluster 4

Hugershoff 102 1,783.3 1,121 Reference

Polynomial 100 1,783.7 1,123 1.0002 0.4993
Šmelko-Burgan 101 2,059.7 1,137 1.1550 0.2345
Spline 100 2,235.0 1,182 1.2533 0.1253
Korf 103 2,646.8 1,163 1.4842 0.0234
Exponential 103 3,741.4 1,200 2.0980 0.0001

df – degrees of freedom; MS – mean square of residuals; AIC – value of the Akaike information criterion
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Fig. 2. Example mean incremental curves standardized by six selected equation 
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AIC (Table 3). The other models, which could be 
used instead of the reference model, are polynomial 
of degrees 5, Hugershoff, and spline. In contrast, un-
satisfactory models are Korf ’s and exponential ones.

In cluster 3, similarly like in cluster 1, the spline 
was found to have the best goodness of fit compar-
ing the mean square of the residuals, as it can be 
seen from Table 3. On the contrary, when the AIC 
method was used, one can see that the polynomial 
function provided the best fit. The spline func-
tion was shown as the third best. Among the other 
models, the polynomial model and that developed 
by Šmelko and Burgan were the only two models 
that could potentially be used instead. However, 
when compared with AIC, Šmelko and Burgan and 
exponential functions provided the second best fit. 

This cluster is characterized by very complex for-
est structures, and hence the theoretical models 
such as Korf and Hugershoff, and those with only 
two or even three regression parameters appear to 
fit the data very weakly. For such forests, stochas-
tic methods seem to be better to use for detrend-
ing, because the complicated diameter growth is 
supposed to be the result of tree competition, and 
employing the known growth function is not ap-
parently enough to maintain the low-frequency 
climatic signals.

The Hugershoff function was chosen as refer-
ence for cluster 4 on the basis of both MS and AIC. 
The models that can also be efficiently utilized for 
growth modelling are the polynomial of degrees 
5, spline, and the function of Šmelko and Burgan. 

Cluster 1 Cluster 2

Cluster 4Cluster 3
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DISCUSSION

The first objective of the paper was to describe 
the variability of tree-ring width patterns and to 
verify their expected relations mainly to various 
stand conditions. Considering this objective, a 
multifactorial statistical method, namely cluster 
analysis, was employed. Each tree-ring series was 
divided into four groups according to age. The lin-
ear increment trends within the four groups repre-
sented input variables. Similarly, Koprowski and 
Zielski (2006) used a hierarchical cluster analysis 
to distinguish regions with similar increment pat-
terns. This method was successfully employed also 
by Wilson and Hopfmueller (2001 as cited in 
Koprowski, Zielski 2006) to distinguish groups 
of trees at various altitudes. 

In contrast to our expectations, stand and tree 
related parameters did not differ substantially be-
tween the specified clusters of trees. It means that 
it is not possible to estimate radial increment pat-
terns on the basis of tree and stand parameters sat-
isfactorily. According to the results of our study, 
almost 50% of the markedly abnormal tree ring 
series having more than one local maximum (clus-
ter 3), which are expected in multi-storied uneven-
aged stand structures, belong to the trees growing 
in single-storied even-aged stands. Therefore, de-
trending functions that are able to fit abnormal and 
complicated incremental curves should be univer-
sally applied to ring series standardization. 

Another aim of the study was to compare the 
ability of various increment functions to fit the dif-
ferent growth trends of pre-defined clusters using 
the least-square method. For the analysis, the fol-
lowing six equations were selected: Korf, Šmelko-
Burgan, exponential, polynomial of degree 5, Hu-
gershoff and cubic spline. For each cluster, the best 
function was determined by Fischer’s F-test and 
Akaike information criterion. There exist many 
studies dealing with dendrochronology and the 
equations to be potentially used for such analyses. 
However, many studies focusing on tree-ring re-
search do not analyze the particular equations and 
do not compare them with one another. In most 
methodologies, only one equation is chosen for 
ring-width studies without its previous evaluation. 
However, after a review of recently published ar-
ticles dealing with tree-ring research, we can con-
clude that the smoothing spline method prevails. A 
spline provides more natural fit to the data because 
it operates effectively as a centrally weighted mov-
ing average of the data (Cook, Peters 1981) and 
in the recent tree-ring research it has been widely 

used as the best method (Fritts et al. 1991; Gray 
et al. 2004; Pérez et al. 2005; Büntgen et al. 2007; 
and others). As stated by Cook and Peters (1980 
in Brienen and Zuidema 2005) a flexible cubic 
spline is the most appropriate detrending method 
for trees from closed-canopy stands. This could 
result from the fact that trees from closed-canopy 
stands are affected by many different factors (not 
only by climate), and thus to analyze only the cli-
mate influence one would need to remove signals 
caused by such factors from tree-ring width. For 
instance, Brienen Zuidema (2005) fitted cubic 
splines of different flexibility to remove long-term 
growth trends and to filter out the low-frequency 
variation that might be caused e.g. by canopy-
dynamics. Bouriaud and Popa (2008) employed 
a stiff spline fit to the individual series to remove 
the low-frequency signal variation caused by ag-
ing. Even though the stochastic functions, such 
as smoothing spline or Friedman smoother, are 
widely used to model biological trends in tree-ring 
series, these curves may remove much of the cli-
mate signal at the same time, because they do not 
have a biological meaning (Cook, Peters 1981; 
Cook, Kai-riukstis 1990). As indicated by Fang 
et al. (2010), these stochastic approaches are more 
applicable to trees that experienced strong distur-
bance or that suffered from competition. As seen 
in our study, the trees that are investigated come 
from forests with different structure that results 
in different growth dynamics, thus employing the 
stochastic functions seems to be the most appro-
priate. On the contrary, Carrer and Urbinati 
(2006) used an exponential curve to remove the 
tree-ring trend in the particular series resulting 
from the tree circumference increasing with time. 
Wilson and Hopfmueller (2001) also detrend-
ed particular series with either exponential curve 
or regression function of any slope. Büntgen et 
al. (2007) used residuals from a cubic smooth-
ing spline to remove non-climatic biological age 
trends. Other authors employed polynomial equa-
tions. For example, Podlaski (2002) fitted incre-
ment series of fir, beech, and pine with the fifth or-
der polynomial regression. There are also authors 
who used multiphased detrending. For instance, 
Bijak (2010) employed two-staged detrending us-
ing the exponential curve and the linear regression 
function for each tree-ring width series to pro-
nounce the climate-related high-frequency signal 
and to minimize the long-term age-dependent 
trend. However, deterministic equations such as 
negative exponential, linear or Hugershoff are the 
most appropriate for individual tree-ring series in 
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open-canopy forests (Fritts 1976; Bräker 1981 
as cited in Fang et al. 2010). From among deter-
ministic functions, a linear or negative exponen-
tial function is less suitable for tree-ring research, 
since they cannot imitate the accelerated growth of 
tree rings close to the pith (Fang et al. 2010), thus 
for instance Hugers-hoff function could be used 
instead (Waren 1980; Bräker 1981). Fang et al. 
(2010) also pointed out the end-fitting problem of 
Hugershoff equation suggesting that the distur-
bances for a certain period could bias the global 
fitted function (also stated by Melvin 2004). In 
our study, the Hugershoff function showed one of 
the best fittings except for cluster 3, where trees 
experienced two maximums of growth increment, 
one at the growth beginning and second at the 
age of about 80 years. Here, the best function was 
shown to be a smoothing spline.

CONCLUSION 

To summarize the results from our analysis, sim-
ple equations such as exponential function, which is 
widely used for detrending all over the world, along 
with Korf ’s function were shown to be the weakest 
in fitting the tree-ring series of all clusters. There are 
many cases when tree-ring series have more than 
one maximum, which is caused in many cases by 
thinning or other management measures and they 
should be removed to study low-frequency climatic 
signals. For such cases, the common equations such 
as exponential, linear, Hugershoff, Korf are not able 
to satisfactorily remove significant non-climatic 
variability. Moreover, the end-fitting problem is 
present when using such equations. As resulted 
from our study, the most appropriate deterministic 
function was Hugershoff function, which optimally 
fit the data at the pith. However, it was found in-
appropriate when employed for close-canopy trees 
that were stressed by competition or other distur-
bances and had more than one maximum of growth 
increment caused by other than climatic factors. For 
such tree-ring series, more flexible functions such 
as smoothing spline, polynomial of higher degree 
and that proposed by Šmelko and Burgan should be 
preferred to preserve the low-frequency variance 
caused by climate dynamics.
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