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ABSTRACT: The paper deals with environmental risk assessment in prevailingly unnatural spruce (Picea abies [L.] 

Karst.) forests in three regions with different patterns of forest damage in the Slovak part of the West Carpathians. 

Logistic regression was used to estimate the effect of 7 site-related, 5 stand-related and 2 anthropogenic factors on the 

probability that critical forest damage will occur. The results show that regression models can describe cause-effect 

relationships in regions with different regimes of forest decline. Stand age, proportion of spruce, and distance from 

the focus of biotic agent activity predicted decline in two regions with generally lower elevation in northern Slovakia 

(Kysuce and Orava). In a mountain region (Low Tatras), the importance of factors contributing to the static stability of 

trees and position towards dangerous winds increased significantly. The quality of the derived models and prospects 

for their usefulness in risk assessment are discussed.
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! e general forest management scheme in Europe 
primarily aims to achieve high-quality and large-
dimension timber production, which, depending 
on site conditions and tree species growth charac-
teristics, usually requires a growing period of about 
100 years or longer. A wide range of disturbances 
typically occurs during this period. Because a profi t 
is expected at the end of the forest production cycle 
(rotation period), each aspect or incidence of dam-
age causes a loss in value. ! erefore one of the main 
tasks of forest management is to reduce such dam-
age by the proper long-term planning of suitable 
silvicultural measures. 

Risk is defi ned in terms of a loss event (distur-
bance) that is comprised of two components: po-
tency (cost, severity, or extent of the loss event) 
and chance (the likelihood of occurrence the loss 
event). Sometimes only potency is examined, and 
this is measured in terms of severity, intensity or 
level of mortality. It is often referred to as “hazard”. 
In other instances, risk is analyzed only as the like-

lihood of a loss event, wherein either probability 
of an event is estimated or predisposition to a loss 
event is assessed (S 2001). 

Modelling of tree mortality as a highly stochas-
tic process is limited. ! erefore, H (2000) 
suggested a shift towards modelling for purposes 
of exploration and explanation rather than for the 
aim of generating precise predictions.

Several approaches to risk assessment in for-
est management were described by H 
(2002). ! e fi rst approach is based on an extensive 
literature review or even just on local experience. 
Its examples are expert systems used in assessing 
the infl uence of site and stand factors on the bark 
beetle hazard in spruce stands (J 1998; N 
et al. 2001), a system for the honey fungus risk as-
sessment under climate change (Č et al. 
2004) or a simple qualitative risk rating scheme for 
main European tree species and main types of risk 
(B et al. 2001). ! e second approach
– actually the most common – is the use of various 
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deterministic and stochastic models. An example 
of the deterministic approach is to derive transition 
probabilities for age classes using Markov chains 
(S 1971). Such a technique was applied to esti-
mate the infl uence of salvage cuttings on harvesting 
strategies (K 1989) and on insurance models 

in forestry (H, H 2006). Logistic 

regression is a frequently used stochastic technique 

for risk assessment in forestry – for example for the 

analysis of wind and snow damage (V, F-

 1999; J, M 2000) or for the 

occurrence of general forest damage (K, H-

 2008). A third alternative is the use of artifi cial 

intelligence techniques – for example artifi cial neu-

ral networks to build nonlinear regression models

(S 2001; H 2002). 

� is paper presents the results of a logistic regres-

sion-based risk analysis utilizing forest management 

data. � e analysis was carried out in unnatural Nor-

way spruce forests aff ected by diff erent types of forest 

decline. � e fi ndings can provide eff ective support to 

optimization of medium- and long-term forest man-

agement planning. In particular, we focus upon:

(1) introducing the data and methodology used in 

the analysis,

(2) developing and describing logistic regression 

models for three spruce-dominated regions in 

the West Carpathians,

(3) discussing the prospects of such models to be 

used in forest management.

MATERIAL AND METHODS

Regions of interest

� ree spruce-dominated regions in the Slovak part 

of the West Carpathians, representing various site 

conditions and disturbance regimes, were subjected 

to analysis (Fig. 1). Intensive spruce decline has been 

observed in all three regions in recent years. 

� e Kysuce region represents a lower situated 

hilly landscape. � e geological substratum is pal-

aeogenetic fl ysch, built of sandstone, slate and clay-

stone. Moderately cold and very wet climate is typi-

cal of the region. Recently, bark beetles (Scolytidae) 

and honey fungus (Armillaria sp.) have played the 

most important roles in spruce decline in this re-

gion (Fig. 2).

� e Orava region also belongs to the West Beskids 

fl ysch geological sub-base. Its geomorphology is 

much more diverse compared to the Kysuce region, 

with hilly and high mountain parts. Cold and very 

wet climate prevails. Recently, elevated activity 

and severity of both destructive (mainly wind and 

snow) and biotic damage have been observed. 

� e Low Tatras region represents a typical Cen-

tral Carpathians high-mountain massif built of 

crystalline silicate rocks. � e climate is cold and 

wet, but more continental than in the previously 

named regions. Long-term impacts of windstorms 

with subsequent bark beetle outbreaks comprise a 

typical forest disturbance regime.

Description of variables

Data from forest management plans in use at the 

beginning of the 10-year period of interest were 

used for analyses. Seven site-related, fi ve stand-re-

lated, and two anthropogenic factors with the as-

sumed infl uence on the probability of forest dam-

age occurrence were used as explanatory variables 

in the logistic regression models (Table 1). All of 

them were either directly available in forest man-

agement plans or were derived from these data. 

West Carpathians
study regions state border

Slovakia

Slovakia

Fig. 1. Localization of study regions in 

the frame of Slovakia and West Car-

pathians. 1 – the Kysuce region, 2 – the 

Orava region, 3 – the Low Tatras region
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Qualitative variables were quantifi ed by means of 
simplifi ed ordinal scales (for details see Table 1). 

� e dependent variable was designed on the ba-

sis of direct visual assessment of forest damage 

according to classifi cation scales given in Table 2. 

Critical damage occurrence (level 3) expressed on 

a binomial scale (1 – critical damage occurred; 

0 – critical damage did not occur) was ultimately 

used as the dependent variable. Such assessment 

was carried out on sample plots arranged on linear 

transects situated across the Kysuce and Orava re-

gions in directions of the highest variability of site 

and stand conditions. 

Sample plots approximately 1 ha in size and rep-

resentative of the surrounding forest stand were 

identifi ed in each forest compartment through 

which a transect line passed. Airborne imagery 

taken in the period prior to the occurrence of ex-

tensive spruce dieback (2002–2003) was used for 

pre-selection of sample plot centres. Plot centres 

were visually pre-selected, considering the relief, 

tree species composition and canopy structure. 

Subsequently, plot centres were identifi ed in the 

fi eld by GPS. In this way, 297 sample plots were de-

signed in the Kysuce region and 245 in the Orava 

region during the period 2007–2008.

No fi eld survey was carried out in the Low Tatras 

region. A linear discriminant model was designed 

using the Orava dataset to obtain a dependent 

variable for the Low Tatras region (Table 3). Two 

out of the fi ve tested discriminators were included 

in the fi nal model using a stepwise forward proce-

dure: stand age and proportion of salvage cutting in 

actual timber stock. Subsequently, using available 

data from forest management plans and records 

of salvage cutting, scores for critical damage oc-

currence were assigned to all forest compartments 

in this region. Discriminant model parameters 

(Table 3) indicate the signifi cance of discriminant 

functions, which was proved by a test of Mahala-

nobis distance. � e model was also proved to have 

fairly good stability by its validation on an inde-

pendent data set from the Kysuce region, although 

the accuracy of classifi cation was only about 80%.

Fig. 2. Diff erences between the importance of biotic 

and abiotic destructive agents in the study regionsKysuce region

� e Low Tatras region

Orava region
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Methods

Logistic regression can be used to predict a de-
pendent variable on the basis of continuous and/or 

categorical independents. Logistic regression applies 

maximum likelihood estimation after transforming 

the dependent into a logit variable (the natural log 

of the odds of the dependent variable occurring or 

not). In this way, logistic regression estimates the 

probability of occurrence of a certain event (e.g. 

DM 1992).

Logistic regression was used to identify the infl u-

ence of cardinal, ordinal and binomial explanatory 

variables (Table 1) on critical forest damage occur-

rence. Deviance residuals and Pearson χ2 residuals 

were calculated to check the suitability of the de-

signed model for the prediction. Deviance residu-

als are based on the contribution of the observed 

responses to the log-likelihood statistic, while 

Pearson χ2 is expressed as the diff erence between 

the observed responses and predicted values. 

A logistic regression model was created using the 

GLM module in STATISTICA 7.0. ! e logit link 

function and the forward stepwise procedure for 

factors entering the model were applied. ! e re-

sults were interpreted according to standard proce-

dures used for the evaluation of logistic regression 

models (e.g. M et al. 2005).

RESULTS

! e quality of the derived models as indicated by the 

ratios of residuals and degrees of freedom was satisfac-

tory. ! e ratios were below or close to 1.0 in all cases 

(Table 4), and thus there was no evidence of overdis-

persion and the models fi tted the data well (H, 

L 2000). In addition, how well the regres-

sion models fi tted was assessed by the proportion of 

cases correctly classifi ed by the model and observed 

values of the dependent variable. While overall cor-

rectness of all models varied in a range of 82–93%, in 

Table 1. Explanatory variables used for the development of logistic regression models and scales used for quantifi ca-

tion of individual variables

Factor
Scale

type range

Site

altitudinal vegetation zone ordinal 3–6 3: oak-beech … 6: fi r-beech-spruce1

ecological-trophical order ordinal 1–6 1: oligotrophic … 6: calcaric1

hydric order ordinal 1–5 1: extremely limited … 5: waterlogged1

site extremity ordinal 1–3 1: no extremity … 3: high extremity1

natural presence of beech binomic 0–1 0: natural absence … 1: nat. presence1

radiation load ordinal 1–4 1: N-NE expositions … 4: SW-S exp. 2

zone of biotic hazard ordinal 1–3 1: no hazard … 3: focus of activity3

Stand

stand age cardinal years

proportion of spruce cardinal % of relative crown cover

stand density ordinal 1–10 1: crown cover 5–15% ... 10: 95–100%

vertical structure ordinal 1–3 1: one layer … 3: three or more layers

initial damage ordinal 1–3 1: undamaged … 3: critically damaged4

Man
pollution load ordinal 0–2 0: without load … 2: medium load5 

management system ordinal 1–3 1: reliable … 3: questionable6

1Ecological factors derived from the qualitative parameter “forest type” according to H (1972), quantifi ed accord-

ing to Z (1976) and B and L (2000)
2relative radiation input, assessed by relief aspect
3biotic hazard categories designed as result of spatial analysis of sanitary cuttings caused by biotic agents (for details see 

K, H 2008; H et al. 2009)
4forest damage at the beginning of the model parameterisation period scaled according to Table 2
5assessed level of both present-day and past air pollution load, spatially expressed by “zones of pollution threat” according 

to forest management legislation in Slovakia
6the reliability of systematic management is prejudged by a decreasing gradient, starting from state forests, through mu-

nicipality and community forests, to small owners’ forests, often without legal personality
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less frequent category 1 (critical damage occurred) the 
classifi cation was much poorer and varied between 
38% and 73%, depending on the proportion of this cat-

egory in model calibration data (Table 5).

No over- or underestimation was detected in the 

Orava region, where the ratio of risk category 1 to 

category 0 was nearly 1:2. Underestimation by about 

13% was detected for category 1 in the Kysuce re-

gion, where this ratio was nearly 1:3. � is indicates 

that the number of forest compartments with pre-

dicted critical forest damage was lower by 13% than 

the number of compartments with observed criti-

cal damage. In the Low Tatras region, this value ap-

proached 1:10 and an underestimation of 47% was 

detected for risk category 1. Hence, these results 

should be regarded as less reliable and to have re-

duced applicability as compared to those from the 

previous regions. In addition, the indirect assess-

ment of critical damage using a discriminant model 

markedly limits the use of the acquired results. 

Table 4 describes diff erences in the cause-eff ect 

pattern among the studied regions. In the Kysuce 

region, which has been massively aff ected main-

ly by biotic agents in the last decade, the highest 

probability of critical damage occurrence was as-

sociated with older stands, higher proportion of 

spruce, location in the vicinity of the focus of biotic 

agent activity, and growing at drier sites (the order 

is based on Wald statistics). 

Mature stands at lower altitudes, northern expo-

sures, and at the wettest sites were found to be the 

most endangered in the Low Tatras region. Supposed 

reasons are the susceptibility of stands to windthrow 

due to larger dimensions of trees, lower rooting sta-

bility, and exposure to prevailing wind directions 

(according to K et al. 2008). � e position 

towards the focus of biotic pest activity also plays a 

role as do the increasing proportion of spruce, higher 

level of initial damage, and management uncertainty 

(for variable descriptions see Table 1). � is probably 

relates to the frequent neglect of tending and forest 

sanitation measures on the part of small owners. 

In the Orava region, where the disturbance pattern 

is in transition between the previous regions, the or-

der of factors was similar to that for the Kysuce re-

gion. � e most important factors were the position 

towards the focus of biotic pest activity, stand age, and 

the proportion of spruce in a given stand. � e fourth 

Table 2. Forest damage classifi cation and assignment of binary values to “critical damage occurrence” in order to 

create a binomial dependent variable for logistic risk regression model 

Damage level Critical damage occurrence Canopy compactness Canopy transparency

1 – undamaged 0 intact < 30%

2 – moderately damaged 0 disrupted (gaps < 0.01 ha prevail) 30–60%

3 – critically damaged 1 open (patches > 0.01 ha prevail) > 60%

Table 3. Linear discriminant coeffi  cients and parameters of the discriminant model, used for the estimation, whether 

the critical damage occurred or did not occur in the Low Tatras region, as a surrogate of direct visual classifi cation 

of forest damage 

Factors tested as potential discriminants

Risk category

0
(critical damage did not occur)

1
(critical damage occurred)

Stand age +0.106 +0.133

Salvage cuttings proportion1 –0.011 +0.099

Stand density 0 0

Vertical structure 0 0

Initial damage 0 0

Interception –3.844 –8.065

Mahalanobis distance test M2 = 2.84; F = 74.1; P = 0.00

Corectness of classifi cation on analyzed data (Orava region, n = 226) 78.3% 

Corectness of classifi cation on independent data (Kysuce region, n = 286) 85.7%

1% of removed timber stock in the forest compartment since the beginning of the analyzed period due to a salvage cuttings,

M2
 
– Mahalanobis distance, F – F-test value, P – F-test signifi cation
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factor was the vertical stand structure which indicates 
increasing importance of destructive damage.

DISCUSSION

! e developed regression models can be considered 
as standalone complex models of environmental risk 
prediction allowing the “chance and potency” analysis 
using a traditional regression technique (S 

2001). “Chance” is computed as probability of the 

critical damage occurrence for forest compartments 

and “potency” is a specifi c level of forest damage con-

sidered as critical in forest management.

! e results proved the statement of H 

(2002) that the ability of such models to predict dam-

age to forest is limited, especially when the numbers 

of damaged and undamaged stands in the sample 

data diff er signifi cantly. ! e results indicate a pos-

sibility of under- or overestimation of predicted risk 

given unbalanced data sets, i.e. when one risk cat-

egory prevails over another at a ratio lower than 1:3. 

Table 4. Results of logistic regression, evaluating estimated infl uence of searched factors to the critical damage oc-

currence in all study regions. Signs of b
i
 indicate whether increasing value of factors (according to scale in Table 1) 

infl uence critical damage occurrence positively or negatively, increasing values of Wald statistic indicate the statistical 

weight of this infl uence. Empty fi elds means that factor was not included to the model by forward stepwise procedure

Explanatory variable

(b
i
)

Kysuce region Orava region ! e Low Tatras region

estimation Wald st. estimation Wald st. estimation Wald st.

b
i

(b
i
/s(b

i
))2 b

i
(b

i
/s(b

i
))2 b

i
(b

i
/s(b

i
))2

Altitudinal vegetation zone – – – – –1.231 148.2**

Ecological-trophical order +0.837 4.2* – – – –

Hydric order –1.757 14.1** – – +0.412 15.3**

Site extremity – – – – – –

Natural presence of beech – – – – – –

Radiation load – – – – –0.268 18.2**

Zone of biotic hazard +1.611 22.0** +1.711 21.9** +0.641 24.0**

Stand age +0.076 35.5** +0.042 16.6** +0.077 414.4**

Proportion of spruce +0.091 34.2** +0.079 13.7** +0.010 13.9**

Stand density – – – – – –

Vertical structure +1.174 6.5* –2.391 11.7** – –

Initial damage – – +0.959 6.2* +0.335 8.1**

Pollution load – – +1.323 6.3* – –

Management system – – –0.630 3.6* +0.366 7.2**

Intercept –16.41 38.8** –15.49 27.7** –5.94 74.7**

Deviance (D/df ) 0.55 0.72 0.37

Pearson residuals (χ2/df ) 0.57 0.67 0.67

**P < 0.01; *0.01 < P < 0.05, Wald st. – Wald statistic, s – standard deviation, D – deviation of the model, df – degree 

of freedom, χ2 – chi squared distribution

Table 5. Classifi cation matrices expressing the correctness of classifi cation of cases (sample plots, in the case of the 

Low Tatras region forest compartments) from the analysed data set by derived logistic models

Kysuce region Orava region ! e Low Tatras region

Observed
predicted

observed
predicted

observed
predicted

1 0 correct (%) 1 0 correct (%) 1 0 correct (%)

1 47 23 67.1 1 58 22 72.5 1 152 252 37.6

0 14 213 93.8 0 23 142 86.1 0 63 3,960 98.4

All 87.5 81.6 92.9
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Hence, an adjusting procedure can be performed on 
logistic regression results, e.g. shifting the thresh-
old point of the relative operational characteristic 
(M et al. 2005) or using alternative techniques 
such as those based on artifi cial intelligence.

� e developed regression models identifi ed under-

standable and ecologically well interpretable region-

specifi c cause-eff ect interactions. As the models have 

been developed using data from forest management 

plans, quantitative information about risk (probability 
of critical damage occurrence, including confi dence 
intervals) associated with individual forest compart-
ments can be obtained. In this way, the results can 
provide profound information for knowledge-based 
forest management. While recognizing the aforemen-
tioned limitations, the proposed system based on the 
quantifi cation of qualitative forest management data 
appears to be suitable for complex environmental risk 
assessment using generally available data. 
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