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Tree trunk diameter generally decreases from the 
base to the top. The way this reduction takes place 
determines the trunk form (Philip 1994). The com-
prehension of trunk form allows better estimates of 
trunk volume or biomass, better estimates for the 
kinds and quantities of various tree products, and 
better comprehension of competition and conditions 
of tree growth. One of the ways to describe tree bole 
shapes is by fitting taper equations. These are regres-
sion equations, linear or nonlinear, and they predict 
the diameter dhi

 at any tree height hi.
The first step in fitting regression equations to data 

is the choice of a sufficiently large sample of repre-
sentative observations. Almost every text or book on 
linear models addresses this question, but research-
ers who dealt with taper equation fitting usually de-
termine the sample size arbitrarily, although a good 
sampling design for data collection is essential if we 
want to obtain an efficient, accurate and representa-
tive fit of the taper equation.

The aims of this study were to: 
– present a method for calculating sample sizes 

of diameter and height measurements for taper 
curve fitting,

– examine if we can define the sample size as the 
number of diameter measurements (and not as 
the number of trees) and meet the error targets. 
In this way, we reduce the sampling cost, since a 
given number of observations could be measured 
on any number of individual trees.

REVIEW of literature

There is a long tradition in the mathematical 
description of the diameter – height relationship. 
Beginning with the earliest taper equations by 
Höjer (1903) and Behre (1923, 1927), increasingly 
more complex functions have been introduced as 
methodologies and computational capabilities have 
developed. Nowadays, a wide variety of taper equa-
tions are described in forestry literature (Burkhart, 
Gregoire 1994).

However, many sampling aspects that should be 
accounted to guarantee a predefined error level at a 
minimal cost, which and how much data, are usually 
neglected in most papers on taper equations fitting. 
Indicatively are reported Goulding and Murray 
(1975), who used a sample of 1,267 trees, Max and 
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Burkhart (1976), who used a sample of 652 trees, 
Perez et al. (1990), who used a sample of 405 trees, 
and Kozak and Smith (1993), who used a sample 
of 603 trees. None of the researchers mentioned 
above apply any method of determination of the 
sample size.

However, the determination of the sample size in 
general has occupied the researchers. Concretely, 
Demaerschalk and Kozak (1974), based on El-
fuing’s (1952), Hoel’s (1958), Laylock’ s (1972) 
and Wynn’s (1972) proposals, proposed a way of 
determining the sample size by using simple linear 
regression methods. If there is a clue that a linear 
relation between two variables is sufficiently strong, 
we can apply linear regression analysis in pre-sam-
ple (pilot-sample) data, estimate the arithmetic 
mean and variance of the independent variable, and 
finally estimate the sizes of the samples for each 
value of the independent variable, which depend 
on the acceptable error of the resulting dependent 
variable’s estimate. The researcher predefines the 
acceptable error. From these sample sizes, the big-
gest is selected as the minimum required size of the 
final sample.

In case it is not possible to apply sampling methods 
for the independent variable, Demaerschalk and 
Kozak (1975) proposed an alternative solution, while 
Marshall and Demaerschalk (1986) extended 
their method, adding the possibility of analysis for 
an unequal cost of sampling per value of the inde-
pendent variable. Elsiddig and Hetherington 
(1982) dealt with the determination of sample size 
by applying Demaerschalk’s and Kozak’s (1974) 
method in the construction of double entry volume 
tables. Elsiddig and Hetherington (1982) used 
the equation of simple linear regression, with the 
dependent variable being the total tree volume and 
the independent variable the square of breast height 
diameter multiplied by the total tree height.

Singh and Sedransk (1978) dealt with the deter-
mination of the required number of sampling points, 
in two-phase sampling, aiming at the application of 
multiple regression. Corona and Ferrara (1990, 
1991) developed a method of sample size estimation, 
using the stand basal area increment as the depend-
ent variable and the breast height diameter as the 
independent variable.

Cormier et al. (1992) examined how the sample 
size affected the standard error of the estimate in the 
least squares regression method in a taper model. 
Finally, Philip (1994) reported that in order to 
choose a minimum required sample size, we have to 
predefine a minimal acceptable error of the model 
that will describe a linear relation between two 

variables and estimate residual variance from the 
pre-sampling data. 

MATERIALS AND METHODS

Material studied

The data used in this study come from measure-
ments taken on 20 Hungarian oak (Quercus conferta 
Kit. or Quercus frainetto Ten.) trees. The trees were 
selected randomly from an area in Northern Greece 
(Cholomonda Chalkidiki), in order to cover the 
range of site qualities of the area (Kitikidou 2002). 
Each tree was measured for the diameter at stump 
height (30 cm above the ground), the diameter at  
80-cm height above the ground, and the breast 
height diameter (1.3 m above the ground) with a 
measurement tape. After that, the diameters at two-
metre intervals above the breast height diameter, i.e. 
at 3.3, 5.3, 7.3, … m above the ground were measured 
with Bitterlich’s relascope. Thus, 136 diameters were 
measured in total. Finally, the total height of each 
tree was estimated with Bitterlich’s relascope.

Sample size methods

Demaerschalk’s and Kozak’s method (1974), 
which was previously described, is widely used in 
sample size estimation. In this paper we attempt to 
test this method for general purposes of sample size 
estimation, specifically in taper equations. In order 
to apply Demaerschalk’ s and Kozak’s method, we 
need to find 2 variables that are linearly correlated. 
Simple linear regression has been used before in 
stem profile analysis (Gray 1956). In our data, we 
distinguished 2 cases: in the first case, the independ-
ent variable is the relative height and the dependent 
variable is the relative diameter of the pre-sample 
(pilot-sample) of 136 observations, which came from 
the measurements in 20 trees. In the second case, the 
independent variable is the breast height diameter of 
20 trees and the dependent variable is the diameter 
at stump height, that means the pre-sample (pilot-
sample) has 20 observations. The relative diameter 
is defined as dhi

/D and the relative height is defined 
as hi/H, where dhi 

is the diameter at height hi, D is 
the breast height diameter and H is the total tree 
height.

At this point, we should clarify that linear regres-
sion was applied within a pooled data set across all 
the 20 trees of the pre-sample and not within each 
tree.

Then, simple linear regression analysis was ap-
plied between the independent variable Y and the 
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dependent variable X in each of the cases, using the 
statistical package SPSS (Norusis 2002; Kitikidou 
2005). The criterion of reliability that indicates the 
acceptable error of the final estimate is the confi-
dence interval of the means of predicted values for 
each value of the independent variable. The confi-
dence interval width of mean Yi, for specific Xi, is 
given by the equation:

                            
 1         (Xi –  X

–  
)2

wi = 2tn–2,a/2σ̂  √ ––– + ––––––––	 (1)
                            

n            SSX

where:
tn–2,α/2 	–	value of t distribution for (n–2) degrees of freedom 

and significance level α,
σ̂   	 –	standard error of the estimate,
n 	 –	final sample size,
X
–
	 –	mean of the independent variable distribution,

and
            n
SSX = ∑ (Xi – X

–
    )2 = VarX (n – 1)	 (2)

           i=1

where: 
VαrX 	 – 	variance of the independent variable distribution.

In order to find the t-value given on the right side 
of the equation (1), we must know the sample size n, 
which is the thing we are looking for, so approxima-
tions or iterative procedures are necessary (Freese 
1956, 1962; Avery 1975). Demaershalk’s and Ko-
zak’s method is based on confidence intervals for the 
mean in a simple linear regression from which the re-
quired sample size may be calculated to a predefined 
accuracy by simply resolving the confidence interval 
equation for N. Since the sample size for the ith value 
of the independent variable Ni is implicitly present in 
the critical t-value, when the largest acceptable width 
of the confidence interval of estimated values Wi is 
predefined, the required sample size Νi for each Xi 
was calculated by the type:

                              
 1         (Xi – X

–  )2

Wi = 2tNi–2,a/2σ̂  √ –– + ––––––––	 (3)
                             

Ni            SSX

where:
Wi 	 – 	largest acceptable width of the confidence in-

terval of estimated values, for each value of the 
independent variable, which is predefined and 
represents the acceptable error of estimate,

tNi–2,a/2 	 – 	value of t distribution for (Ni–2) degrees of free-
dom and significance level α,

σ̂   	 – 	standard error of the estimate, calculated from 
regression analysis in pre-sample data,

Ni 	 – 	sample size for the ith value of the independent 
variable,

and

ssx = VarX (Ni – 1) 	 (4)

By using types (3) and (4), the sizes of samples for 
each value of the independent variable were calcu-
lated and from them the largest size was selected as 
the final sample size (minimum required).

Basic regression hypothesis

The basic hypothesis that should be in effect in 
order to apply regression analysis, using the least 
squares method, is that the residuals should be nor-
mally distributed, with constant variance and zero 
mean. The violation of this hypothesis results in the 
confidence intervals and the tests of significance 
being invalid (Neter, Wasserman 1974; Neter et 
al. 1990). In order to test the regression residuals for 
their normality, variance and mean, the SPSS statis-
tical package was used (Norusis 2002; Kitikidou 
2005).

Kolmogorov-Smirnov test for one sample (Cha-
kravarti et al. 1967) was used for normality testing. 
If (significance of Z) ≤ α, the distribution of a variable 
is far from normal, while if (significance of Z) > α, 
the distribution of a variable is close to normal, for 
probability α.

For the homogeneity of variance test we applied 
Levene’s test. The null hypothesis is:

Η0: The variables have homogeneous variance
and the alternative:
Η1: The variables do not have homogeneous vari-

ance.
We calculate the statistic 
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where:
ni – number of values of Υi variable (i = 1, 2, 3),
Yij – jth value of the ith variable (j = 1, 2, …, ni),
Ti – trimmed mean of the ith variable.

If (significance of L) ≤ α we accept the Η1, while 
if (significance of L) > α we accept the Η0, for prob-
ability α. In order to test the homogeneity of variance 
of the regression residuals, we can check the scatter 
plot between the residuals and the values of the de-
pendent variable, or better, we can check the scatter 
plot between the residuals and the predicted values 
(this is better because the residuals and the values 

X
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of the dependent variable are usually correlated, 
opposing to the residuals and the predicted values). 
When the points of the scatter plot give the impres-
sion that they are assembled in a thin horizontal strip 
around zero, without following any pattern, then 
the variance of the residuals is constant (Draper, 
Smith 1997).

RESULTS AND DISCUSSION

Sample statistics

Summary statistics for both samples (relative 
height – relative diameter, breast height diameter 
– stump height diameter) are given in Table 1. Each 
variable has a mean of 0.762, 0.382, 0.158 and 

0.131 m, respectively. Their standard errors are 
0.030, 0.027, 0.012 and 0.011, respectively.

Sample size methods

Figs. 1 and 2 show that linear regression is ap-
propriate for both sample size methods. In the first 
case of sample size estimation, from the applica-
tion of simple linear regression to the pre-sample 
data of 136 observations with the dependent vari-
able being the relative diameter dhi/D where dhi is 
the diameter at height hi and D the breast height 
diameter, and the independent variable being the 
relative height hi /H where H is the total height, 
resulted the equation:

Table 1. Summary statistics for the two samples

Statistics
dhj

D

hi

H
d0.3 (m) D (m)

Mean 0.762 0.382 0.158 0.131
Standard error 0.030 0.027 0.012 0.011
Median 0.833 0.294 0.150 0.125
Variance 0.124 0.097 0.003 0.002
Kurtosis –0.937 –1.207 –0.594 –0.736
Skewness –0.431 0.462 0.201 0.263
Range 1.347 0.965 0.200 0.165
Minimum 0.053 0.018 0.070 0.060
Maximum 1.400 0.983 0.270 0.225
Number of values 136 136 20 20
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 dhi                                                hi––– = 1.171 – 1.073 –––
 D                                 H

The equation was fitted to the data and resulted in 
a standard error of estimated values σ̂   = 0.1123 and 
an adjusted coefficient of determination R2 = 0.898. 
Hypothesis tests for the regression coefficients re-
sulted in large values of t (76.726 and –34.572 for the 
constant term and the coefficient of the independent 
variable, respectively), which results in significance 
of values less than 0.05 (0.0000 for both coefficients). 
Consequently, the two coefficients differ from zero 
(P < 0.05). The value of F from the analysis of variance 
was F = 1,195.239 (p < 0.01).

The acceptable error, which was predefined, was 
equal to 10% of the independent variable mean, that 
is:

Wi = 0.10X
–
  = 0.10 × 0.3817 = 0.03817

The most demanding value of the independent 
variable, as for the sample size, is Xi = 0.9826, which 
requires a sample size of 825 observations.

In the second case of sample size estimation, from 
the application of simple linear regression to the pre-
sample data of 20 trees with the dependent variable 
being the diameter at stump height d0.3 and the in-
dependent variable being the breast height diameter 
D, the following equation was obtained:

d0.3 = 1.202D

Regression analysis without a constant term was 
used because regression analysis with constant term 
resulted in a constant term value not different from 
zero (p > 0.05).

The equation was fitted to the data and resulted in 
a standard error of estimated values σ̂   = 0.0111 and 
an adjusted coefficient of determination R2 = 0.996. 
Hypothesis tests for the regression coefficient result-
ed in a large value of t (66.856), which corresponds to 

p < 0.05. The value of F from the analysis of variance 
was F = 4,469.734, which corresponds to p < 0.01.

The acceptable error, which was predefined, was 
equal to 10% of the independent variable mean, that 
is:

Wi = 0.10X
–
  = 0.10 × 0.1308 = 0.01308

The most demanding value of the independent 
variable with respect to the sample size is Xi = 0.2250, 
which requires a sample size of 77 observations, that 
is 77 trees.

Basic regression hypothesis

Looking at Table 2, we see that for a 5% probabil-
ity the residuals for both regressions approach the 
normal distribution (sigΖ = 0.348 > 0.05 and sigΖ = 
= 0.555 > 0.05). Also, the means of the residuals for 
both regressions are close to zero (Table 2). The sig-
nificance of L is greater than the probability α = 0.05 
in the homogeneity of variance test; hence the re-
siduals have homogeneous variance (Table 3). Figs. 
3 and 4 show that the variances of residuals for both 
regressions are constant (the points of the graphics 
assemble in a thin horizontal strip around zero, with 
no obvious pattern).

CONCLUSIONS

For the estimation of a minimum required sample 
size for acceptable error of 10% of the independent 
variable mean, simple linear regression analysis was 
applied to data from a pre-sample of 20 trees. In the 
first case, the pre-sample had a total of 136 observa-
tions, which is the number of observed diameters 
in all 20 trees. The relative heights were used as the 
independent variable and the relative diameters as 
the dependent variable. The estimated minimum re-
quired size of the final sample calculated was 825 ob-
servations (825 diameters). In the second case, the 

Table 2. Kolmogorov-Smirnov normality test

Residuals (1st method) Residuals (2nd method)
n = 136 n = 20

Mean 0.0000 0.0006
Standard deviation 0.1119 0.0111

Most extreme differences
absolute 0.0800 0.1770
positive 0.0800 0.1770
negative –0.0730 –0.0960

Kolmogorov-Smirnov Z 0.9330 0.7930
Asymptotic significance (2-tailed) 0.3480 0.5550
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pre-sample had a total of 20 observations. The breast 
height diameters were used as the independent vari-
able and the diameters at stump height as the depend-
ent variable. The minimum required size of the final 
sample calculated was 77 observations (77 trees). In 
both cases, the regression residuals were normally 
distributed, with constant variance and zero mean, 
so both methods are efficient from the validity stand-
point. If we want to take into account both the cost of 
sampling and the precision, we must prefer the first 
case of a target number of individual diameters to 
observe, since we can measure a given number of di-
ameters on any number of individual trees (less than 
the 77 trees that we found in the second case).
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Odhad vhodné velikosti vzorku ke stanovení tvarových křivek kmene

Abstrakt: Mnoho prací se zabývá hledáním vhodných tvarových křivek kmene, ale zatím bylo věnováno málo 
pozornosti otázce, jak velký vzorek měřených kmenů je k řešení této otázky dostatečný. V příspěvku je k nalezení 
vhodných rovnic použita metoda, vyžadující dvě proměnné, které jsou vzájemně lineárně korelovány. Testovány jsou 
potom dva soubory dat o různé velikosti. V prvním případě je velikost potřebného souboru dat vztažena k počtu 
průměrů měřených na jednotlivých kmenech. Ve druhém případě je velikost souboru vztažena k  počtu kmenů. 
Analýza ukázala, že obě metody jsou vhodné z hlediska statistického hodnocení, ale první metoda je ekonomicky 
výhodnější. Je totiž snazší a levnější měřit další průměr na zvoleném kmeni, než měřit další kmen.

Klíčová slova: metody výběru; tvar kmene; regrese


