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Comparison of Norway spruce (Picea abies [L.] Karst.),
Scots pine (Pinus sylvestris L.) and European larch
(Larix decidua Mill.) stem shape by means

of geometrical methods
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ABSTRACT: In this article the stem shape is compared in three coniferous tree species: Norway spruce, Scots pine
and European larch. Stem is investigated by means of geometrical methods. Simplified Bookstein coordinates (stem
shape diameters) and Procrustes coordinates were used for variability investigation. The material, originating from
the Czech and Slovak territories, involved in total 3,346 spruce stems, 3,082 pine stems and 1,403 larch stems. The
accordance of mean stem vectors was assessed by means of Hotelling’s 72 two-sample test. For stem shape diameters
and Procrustes tangent coordinates, the variability was examined using the method of principal components analysis.
The three most important principal components were diagrammatized and described. The relationship between the
stem shape and its size was also investigated, and inflection points of morphological stem curve were described for all
three tree species.
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Stem shape is one of the most important subjects of
forest mensuration. Traditional forest mensuration
describes the stem shape using form quotients, form
series, stem profiles, form factors, geometrical bod-
ies (neiloid, paraboloid, cone). In the last 25 years,
not only “multivariate morphometrics” but also “ge-
ometrical methods” have been developed in biology.
These methods use a finite number of points, called
landmarks, for description of an object’s shape. The
landmark is a point of correspondence on each ob-
ject that matches between and within populations
(DRYDEN, MARDIA 1998). The shape is intuitively
defined as general geometrical information that re-
mains when the location, scale and rotational effects
are filtered out of the object. In this investigation we
used simplified Bookstein coordinates (stem shape
diameters) and Procrustes coordinates for stem
shape illustration. Data processing is given in Fig. 1.
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Specific location of landmarks on a morphological
stem curve enables to simplify the calculation of
Bookstein coordinates since the effect of shifting
and rotation need not to be removed (KREPELA et
al. 2005).

Two objects have the same shape if they can be
transformed, rescaled and rotated to each other so
that they match exactly, i.e. if the objects are similar.
In morphometry, definition of average shape and
structure of shape variability is often necessary in a
dataset. For that purpose, we mostly use multivariate
analysis of stem shape diameters, generalized Pro-
crustes analysis (GPA) (GOwWER 1975, TEN BERGE
1977 in DRYDEN, MARDIA 1998) and principal com-
ponents analysis.

Stem in traditional forest mensuration is the term
related to relative form factors and relative form se-
ries. SMELKO (2000) on page 74 presents an example
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Fig. 1. Scheme of shape evaluation

of two spruce stems. The first stem is 20 m, the other
is 10 m high. These stems have the same relative form
series and the same relative form factors at 1/10 of
the height. The size of relative form series is removed
by means of diameter at 1/10 of the height and in the
case of relative form factors by means of the volume
of an ideal cylinder. Then according to traditional
dendrometry the shape of both stems is the same.
But according to geometrical methods the situation
is different. In Figs. 2 and 3 both stems, represented
by means of stem shape diameters and Procrustes
coordinates, are not obviously of the same shape.
The aim of this paper is to compare mean stem vec-
tors for three coniferous tree species, to investigate
shape variability by means of principal components
and to attempt to explain an ecological impact on
principal components. The relationship between shape
and stem volume will also be investigated as well as
inflection points of morphological stem curve.
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MATERIAL AND METHODS

The empirical material involved 3,346 spruce
stems, 3,082 pine stems and 1,403 larch stems
originating from the Czech and Slovak Republic
territories. This material is nearly identical with the
material used by PETRAS (1989) for the construction
of a mathematical model for shape height of stems.
In this article stem diameters over bark and stem
heights were used for assessments. Diameters were
measured in 2m or 1m sections, stump diameter and
dbh were also measured. Diameters were measured
to the nearest 0.001 m, and stem length and stump
height were found out as well. Stem length was
measured to the nearest 0.1 m, stump height to the
nearest 0.01 m. Characteristics of the experimental
material are given in Table 1.

Diameters in improper sections were interpolated.
The lower stem part (stump diameter, diameters at

Fig. 2. Shape of both spruce samples
(SMELKO 2000) illustrated by means

0 01 02 03 04 05 06 07

338

0.8 0.9 1.0 of stem shape diameters

J. FOR. SCI,, 52, 2006 (8): 337-347



0.5 Fig. 3. Shape of both spruce samples
(SMELKO 2000) illustrated by means
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1 m, 1.3 m and 2 m, 3 m) was balanced by means of Estimation of variance-covariance matrix is ruled
power function y = ax*, parameters of this function by the following equation:
were derived for individual stems and then diameters

at 1/100 and 1/40 of height were calculated. The re- S = p i 1 (b, - ) (b, — )" (2)
maining diameters (1/20 /, 1/10 k, 2/10 h,.., 9/10 h) =1
were calculated by linear interpolation.

The stem can be described as a multidimensional The test of hypothesis that the data are derived
object by means of “stem shape diameters”. Thus, the from multidimensional normal distribution
stem shape diameters (b ) are the diameters at the
relative sections (in this case m = 1/100, 1/40, 1/20, In this article, we use a test based on multidi-
1/10,2/10,...,9/10 of the stem height) divided by the ~Mensional skewness (g, ,,) and kurtosis (g, ), as
stem height (k), therefore b =d /h. described in MELOUN and MILITKY (1998). We test

the simultaneous validity of a hypothesis about sym-
metry (H:¢g, = 0) and about normality of kurtosis
(Hozzgz,m = m(m + 2)) of the examined variable distri-
bution. The estimation of sample skewness is given
by the following equation:

Division by the height is in fact the elimination
of the size from the object in the sense of intuitive
definition of the shape.

Individual stem is therefore taken as a sample from
n objects described by m dimensions (stem shape

diameters (b, )). Hence: . Lo
Gn=r L La 3)
bi = (bi,l’ veey bi,m)T’ i= 1, ey 11 n i=1 j=1 ij
. — 7\T Q-1 2\ .
For this selection, it is possible to set a sample W.here‘ dy=(b,— u)" §(b;, - p) is squared Mahalanobis
vector for mean values g given by the following dlStancei ‘ o
equation: Considering the H, hypothesis valid, then the test
statistics
. 1y .
A= b W U=—a., @

Table 1. Characteristics of experimental material: /# — total tree height, d 3= overbark diameter at breast height, SD — standard
deviation

Norway spruce (1 = 3,346) Scots pine (1 = 3,082) European larch (n = 1,403)
h (m) d, , (cm) h (m) d, , (cm) h (m) d, , (cm)
Mean 22.1 25.9 16.2 19.7 25.4 30.2
Median 24.4 24.5 16.3 18.1 26.4 29
SD 10.8 16.8 7.5 13.2 9.4 16.9
Min. 19 1.3 2.2 1.2 4.1 4.1
Max. 49.9 80.5 36.6 63.9 46.8 85
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has asymptotically chi-square distribution

2
Xm(m +1)(m +2)/6

The estimation of sample kurtosis is given by the
following equation:

;gz,m = %Z d?i (5)
i=1

Considering the H, hypothesis valid, then the test
statistics:
u, = @Z,m - g,/ 8m((m +2)/n))°* (6)

has asymptotically normal distribution N(0,1). This
approximation can be used providing the following
condition is satisfied:

g, > m(m +2)(n—1)/(n + 1) (7)

Multivariate test of equality
of covariance matrices

For k multivariate populations, the hypothesis of
equality of covariance matrices is

Hy:% =% =..=5%,

The test X, = %, for two groups is treated as a spe-
cial case by setting k = 2. We assume independent
samples of size n,, n,, ..., n, from multivariate normal
distribution. To make the test, we calculate

|Sl|v1/2|S2|v2/2 |Sk|vk/2 .
|S |Zivi/2 ( )
p
where: v, =n, -1,
S§. - the covariance matrix of the i-th sample,

1
Sp — the pooled sample covariance matrix.

If §=8,= Sp ,then M = 1. As the disparity between
S, and S, increases, M approaches zero.

Box (1949, 1950) in RENCHER (2002) gave x? ap-
proximation for the distribution of M. This test is
referred to as Box’s M-test. We calculate

-5 -5l

2m?* + 3m — 1

6(m + 1)(k=1) ©)

then

u =-2(1 - ¢,) In M has approximately y? (k  Dymiom + 1)/2
dlStI‘lbuthn,

where: M — defined in (8),

and
3
In M = Zlvl In|S| - L (Zlvi)ln|Sp| (10)
We reject H, if 4> X7 _ 1) 4 12(@)-
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The test of the hypothesis
that the mean vectors are equal

Consider two independent random samples
19 ...,bm and by,l’ ...,by}n. The vectors b, = (b, ..., bm)T,
i =1, .., n are stem shape diameters. In this case
m =12 and n = 3,346 for Norway spruce, 3,082 for
Scots pine and 1,403 for European larch. The test is
provided for three pairs of tree species. We expect
that stems from these populations have mean shapes
#, and K,

The test of the hypothesis on mean vectors equal-
ity (Hyp, = p, versus H:u, = p ) can be carried out
using Hotelling’s 72 two-sample test. Let us use the
following test statistics:

b

n,(n, +n,

_ T g1
sm_(l’l1+n)(1’l +n, 2)m(ﬂ /‘) (/" /‘)11
where:

S - (n,-1)8 +(n,-1)8, (12)
p ny+n,—2

is the pooled variance-covariance matrix and S, and
§, are variance-covariance matrices for individual
samples.

We can express the squared Mahalanobis distance
of equation (11) as

dy=,~n) S (- ﬂ)—ZszM (13)

where: s, = (e, - K, )T Y, - the scores in the direction of the
observed group difference,
Y, - eigenvectors of matrix Sp,
/1]. — corresponding eigenvalues.

High values of s?/A. indicate which directions of
shape variability are associated with the difference
between the groups.

Provided the null hypothesis is valid, the test
statistics F, has Fisher’s distribution with m and
n, + n,— m — 1 degrees of freedom. However, this
test can be used only in the case of normality of
both sets and homogeneity of variance-covariance
matrices.

The assumption of normality and equal covari-
ances turned out to be questionable. Therefore,
a Monte Carlo test was carried out with the null
hypothesis that the groups had equal mean shapes.
The data were randomly split into two groups of the
same size as the groups in the data, and the test sta-
tistic F,, , was evaluated for B random permutations
T, ..., T, The ranking r of the observed test statistic
F, was then used to give the p-value of the test:

r—1
B+1

p-value =1 —
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Variability

The principal components analysis (PCA) was used
to analyze the shape variability. In principal com-
ponents analysis, we seek to maximize the variance
of a linear combination of the variables. The first
principal component is the linear combination with
maximal variance; we are essentially searching for
such a dimension that the observation maximally
separates or around which the observation data are
spread out. The second principal component is the
linear combination with maximal variance in a di-
rection orthogonal to the first principal component,
and so on.

The orthogonal eigenvectors of variance-covari-
ance matrix, denoted by Yri=1,2,..,j are the prin-
cipal components of variance-covariance matrix with
corresponding eigenvalues

Azdyz..2420
where: j = min (n-1, m).

The principal components are in fact transformed
variables and the principal component (PC) score
represents transformed objects. PC score for the
i-th individual on the j-th principal component is
given by

Sl‘]‘ = ﬁ(bl - ,’2) (14)
The standardized PC scores are
s;
c.= 15
e (15)

Allometry

Allometry involves the study of relationships be-
tween shape and size, and in particular the manner
how shape depends on size. Traditional methods in
allometry involve the fitting of linear or non-linear re-
gression equations between size and shape measures.
Allometry can also be investigated in our geometrical
framework, using regression. Principal component
score is chosen as a response variable and total tree
height is used as the explanatory variable.

Inflection point of morphological stem curve

The landmarks are investigated by geometrical
methods. When we want to get the morphologi-
cal stem curve, we must balance these individual
points. Balancing was provided by the same function
as used by PETRAS (1989) for the construction of a
mathematical model for the stem shape of conifer-
ous tree species:
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_ 1 2
d (i) = b + b + b,
where: dl. — the stem diameter at height hl.,

by bz, bg, p,» P, — parameters of the function.

(16)

This function has the only inflection point. In this
point the morphological stem curve transfers from
the convex to concave course.

If we want to find the height coordinates of inflec-
tion point 7 (d, &), we define the second function
derivation equal to zero:

d'I'(hI) = blpl(p1 - l)hfjl‘2 + 192192(‘102 -1k 1;2‘2 =0 (17)
then

I _102—1911 _b1p1(p1 - 1)
' bzpz(pz -1

RESULTS AND DISCUSSION

(18)

All the following tests are calculated for stem
shape diameters. In the case of Norway spruce,
Scots pine, European larch, the sample skewness is
g1, = 54.14, 36.13 and 44.87, resp. The test statistics
U, thus equals 30,190, 18,560, 10,490, which is more
than the critical value of x2,(0.05) = 409.49. Sample
kurtosis is (sz: 330.8, 285.4, 269.2. Test statistics
U, = 256.9, 177.8, 103.4 and the critical value of
standardized normal distribution on the significance
level of 0.05 is 1.64. The criterion (7) is satisfied be-
cause g, > 167.9, 167.9, 167.8.

In both quantities, skewness and kurtosis, we
therefore reject the coincidence with normal dis-
tribution.

We also did Box’s M-test for (a) Norway spruce and
Scots pine sets, (b) Norway spruce and European
larch sets, (c) Scots pine and European larch sets.

Test statistics:

(a) u = —2(1 —¢,)InM = 6,692.3 > x2,(0.05) = 9.3,
p-value < 0.001. We reject H,.

(b) & = —2(1 —¢,)InM = 2,147.2 > y2,(0.05) = 99.3,
p-value < 0.001. We reject H,,.

(c) u = =2(1 —¢,)InM = 2,913.5 > x%,(0.05) = 99.3,
p-value < 0.001. We reject H,,.

The Monte Carlo test was used for assessing the
coincidence of mean vectors because of problems
with normality and doubtfulness of equal variances.
The coincidence of mean shapes was tested for (a)
Norway spruce and Scots pine sets, (b) Norway
spruce and European larch sets, (c) Scots pine
and European larch sets. For each pair of samples,
2,000 random permutations were performed. In all
three cases p-value < 0.01 and therefore we reject
the null hypothesis about coincidence of mean vec-
tors and accept the hypothesis about the difference
between mean shape vectors.
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Mean shapes for stem shape diameters are graphi-
cally represented in Fig. 4, and full Procrustes mean
shapes for all three species are shown in Fig. 5.
Only landmarks express the shape. However, these
landmarks do not give a very clear illustration,
therefore in the case of stem shape diameters they
were balanced by function No. 16 and in the case
of full Procrustes coordinates they were connected
by means of abscissas. Both figures are very similar
to each other. The landmarks are placed at 1/100 /,
1/40 h, 1/20 h, 1/10 h, 2/10 h, ..., 9/10 h. Norway
spruce has the largest root swelling. The function
of European larch behaviour is closer to Norway
spruce than to Scots pine. Scots pine is wider be-
tween 1/40 /1 and 2/10 4, and narrower than Norway
spruce and European larch between 2/10 4 and
6/10 & (7/10 k). Then Scots pine is markedly wider
— the widest at 9/10 A.

0.4
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We also found intersection points of all three curves
illustrated in Fig. 4 by means of FindRoot function in
the programme Mathematica. The intersection point
of the curve at about 0.2 / is noteworthy. Norway
spruce with Scots pine intersects at 0.206 /1, Norway
spruce with European larch at 0.2362 /, Scots pine
with European larch at 0.1987 4.

The height coordinates of inflection points were
calculated for all three tree species according to
equation No. 18. They are for Norway spruce, Scots
pine, and European larch: 0.29 %, 0.43 & and 0.29 A,
resp. DEMAERSCHALK and Kozax (1977) and PE-
REZ et al. (1990) found the relative height Z of the
inflection point to range between 0.20 and 0.25 and
between 0.15 and 0.35, respectively. In another study
by ALLEN (1993), who used an average of 0.30, the
inflection point was found to vary between 0.29 and
0.32 for small and medium-sized Caribbean pine

—— Norway spruce
—— Scots pine
--+-- European larch

0.0

-0.1

-0.2

Fig. 5. Stem shapes of all three tree spe-
cies expressed by full Procrustes mean
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Table 2. F

sta
bis distance

, partition of Equation (11) for 12 principal components, for three pairs of tree species, dl.j is the squared Mahalano-

No. of principal

components F,,, partition F,. d’./.

Norway spruce and Scots pine sets

1-6 0.09 10.51 12.27 329.85 0.45 4.47

7-12 10.21 0.59 1.78 1.42 15.87 0.02 387.54 2.9
Norway spruce and European larch sets

1-6 0.67 6.96 31.4 1.02 22.62 7.25

7-12 4.87 0.42 0.19 17.69 1.7 0.01 94.84 1.15
Scots pine and European larch sets

1-6 0.21 1.87 12.97 178.68 5.64 2.97

7-12 8.09 1.90 6.69 0.11 6.96 0.35 226.44 2.83

(Pinus caribaea Morelet var. hondurensis Barret and
Golfari) trees.

The graphic effect of the first three principal com-
ponents is the same in stem shape diameters as in
Procrustes tangent coordinates. For better illustra-
tion and with regard to complex programmes pre-
pared by DRYDEN (2000), we carried out an analysis
of the first three principal components in Procrustes
tangent coordinates as shown in DRYDEN and MAR-
DIA (1998); the definitions were introduced in the
same way as in KREPELA et al. (2004). Proportional
expressions of variability explained by eigenvalues
of the variance-covariance matrices of stem shape
diameters and Procrustes tangent coordinates are
given in Table 3.

Fig. 6 illustrates the graphic effect of the first three
principal components for all three tree species. The
first three principal components in all three sets
show the same graphic effect.

The first principal component (PC 1 see Fig. 6)
has a symmetrical graphical effect — the whole stem
extension (narrowing) — and explains the great deal
of variability (on average 95%). Its cause is not ex-
plainable from our data, but based on the preceding

research (KREPELA et al. 2001; KREPELA 2002), we
take it for a competition effect: above-level — the
thicker trees, below-level — the narrower ones.

The second principal component (PC 2 see Fig. 6)
has an asymmetrical graphical effect: the lower stem
part versus the upper part. For Norway spruce up
to 1/40 & to one side and for 1/20 / up to the other
side. For European larch the boundary lies between
1/10 /i and 2/10 h — and so higher than for Norway
spruce. For Scots pine the boundary is at the highest
level — at 2/10 h. The second principal component
for Norway spruce expresses 3.9% of variability — the
most for all the tree species. For spruce its effect is
the highest at 1/100 4, and it is the effect of root
swellings. For Norway spruce it is the lowest on the
stem but is of the greatest importance.

The graphical effect of the third principal com-
ponent (PC 3 see Fig. 6) changes its direction three
times. At 1/100 /4 one direction, at 1/40 /& null effect,
then the reverse direction follows that is up to 4/10 &
for Norway spruce, up to 5/10 / for European larch
and up to 5/10 % for pine, then the reverse effect fol-
lows up to 9/10 & for Norway spruce and European
larch. For Scots pine also with the exception of 6/10 ,

Table 3. Proportional expression of variability explained by eigenvalues of the variance-covariance matrices of stem shape
diameters and Procrustes tangent coordinates from the investigated sets

Norway spruce Scots pine European larch
Stem shape Procrustes Stem shape Procrustes Stem shape Procrustes
Eigen-  diameters (%) tangent diameters (%) tangent diameters (%) tangent
1gen coordinates (%) coordinates (%) coordinates (%)
value
)4 p )4 p p )4
A/Y A x 100 A/Y N x 100 A/Y A x 100 A/Y N x 100 A/Y A x 100 A/Y N x 100
= = = = = =
) 93.8 93.7 96.1 96.1 96.1 96.1
A, 3.9 3.9 2.2 2.2 2.3 2.3
s 1.3 1.3 1 1 11 11
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Fig. 6. The first three principal components (PC) with configurations evaluated for 1 (PC 1) and 3 (PC 2, 3) standard deviations
along each PC from the full Procrustes mean shape, including proportions of explained variability

where we see the null graphical effect of the third
principal component.

Another problem which principal components
differ from each other the most was solved. Ta-
ble 2 contains the components of test statistics F, ,
calculated for individual principal components.
Components of Mahalanobis distance s/, indicate
which directions of shape variability are associated
with the difference between the groups. Spruce and
pine differ the most from each other above all in
the 4™ principal component, pine and larch in the
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4% principal component, spruce and larch in the
3" principal component.

We also investigated the relationship between
principal component score and total tree height (al-
lometry). Principal component score is chosen as a
response variable, and total tree height is used as an
explanatory variable. The Spearman coefficients of
correlation for both variables are calculated in Ta-
ble 4. Scots pine has the lowest dependence between
shape and height. The Norway spruce correlation
coefficient between 4 PC score and height is worth

J. FOR. SCI,, 52, 2006 (8): 337-347



Table 4. The Spearman coefficient of correlation (rs) for dependence between principal component score and total tree height.

Significance is the significance level

Norway spruce Scots pine European larch
PC score
rs significance rs significance rs significance
1. 0.33 5.17E-79 -0.02 1.94E-01 0.40 3.34E-51
2. -0.23 2.22E-39 0.17 3.92E-20 0.40 2.78E-51
3. 0.19 7.15E-29 -0.05 1.01E-02 0.38 4.17E-47
4. 0.49 1.01E-178 -0.17 2.70E-21 -0.07 1.22E-02
5. -0.10 6.88E-09 0.02 3.63E-01 0.02 4.96E-01
6. -0.02 2.74E-01 -0.16 1.03E-18 0.13 5.00E-07
7. 0.01 5.45E-01 -0.05 9.02E-03 0.11 1.86E-05
8. 0.02 1.62E-01 -0.07 4.34E-05 0.11 6.19E-05
9. 0.01 6.44E-01 0.00 9.21E-01 0.01 6.14E-01
10. 0.25 1.25E-45 0.05 7.76E-03 -0.04 1.71E-01
11. -0.05 4.32E-03 0.05 9.25E-03 0.01 7.73E-01
12. 0.03 7.61E-02 0.10 1.81E-08 0.01 6.95E-01
of attention having the value 0.49, which is a moder- References

ate dependence. For larch the first three coefficients
document a moderate dependence. Generally it can
be said that the height influences the shape of all
three tree species only very weakly and therefore
the influences on the stem shape must be searched
outside the stem.

CONCLUSION

This study showed that the stem shape of three
investigated coniferous tree species (Norway
spruce, Scots pine, European larch) differed. The
term stem is understood in the sense of geometri-
cal methods. In practice the simplified Bookstein
coordinates (stem shape diameters) were used.
Shape variability was investigated by the method
of principal components using stem shape diam-
eters and Procrustes tangent coordinates. The first
principal component explains the prevailing part
of variability, has a symmetrical graphical effect
and we relate it to the competitive pressure onto
individual trees. The second principal component
has an asymmetrical graphical effect; we connect
it with the effect of root swelling. The relationship
between stem size (height) and shape showed to be
weak, the weakest for Scots pine. Inflection points
on the morphological stem curve were situated for
Norway spruce, Scots pine, and European larch at:
0.29 £, 0.43 h and 0.29 4, resp.
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Porovnani tvaru kmene smrku ztepilého (Picea abies [L.] Karst.), borovice
lesni (Pinus sylvestris L.) a modrinu opadavého (Larix decidua Mill.)

pomoci geometrickych metod

M. KRepeLAL, R. PETRAS?
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ABSTRAKT: Clének se zabyvéa porovnanim tvaru kmene tfi jehli¢natych dievin: smrku ztepilého, borovice lesni
a modrinu opadavého. Tvar je zkouman pomoci geometrickych metod. Byly pouzity zjednodusené Booksteinovy
soufadnice (kmenové tvarové prameéry) a pro zkoumani variability také Prokrustovy soufadnice. Materidl tvotilo
celkem 3 346 kment smrku, 3 082 kment borovice a 1 403 kment modiinu. Tento material pochazi z tizemi Ceské
a Slovenské republiky. Shoda stfednich tvarovych vektort byla zkouména pomoci Hotellingova T? testu vzdy pro dva
vybéry. Variabilita byla zkoumdna pro kmenové tvarové primeéry a pro Prokrustovy tangentové soufadnice pomoci

vvvvvv

vztah mezi tvarem a velikosti a byly popsédny inflexni body morfologické kiivky kmene pro v$echny tfi dfeviny.

Klicova slova: smrk ztepily; borovice lesni; modfin evropsky; tvar kmene; kmenové tvarové priméry; Prokrustovy

souradnice; analyza hlavnich komponent

Pro popis tvaru kmene jsou v ¢lanku pouzity geo-
metrické metody (DRYDEN, MARDIA 1998), které
vychazeji z presné definice tvaru. Tvar je definovan
jako geometrickd informace o konfigura¢ni matici po
odstranéni efektu posunuti, otoceni a preskalovani.
Tato konfigura¢ni matice je slozena ze souradnic hra-
ni¢nich boddi, umisténych na morfologické kiivce
kmene. Klasickd lesnickd dendrometrie pouzivd
k vyjadreni tvaru kmene rota¢ni geometricka télesa,
pravé tvarové rady nebo pravé vytvarnice. V ¢lanku
je na prikladu dvou smrkovych kmend, ktery uvadi
SMELKO (2000), demonstrovano, Ze kmeny, které
maji stejnou pravou tvarovou radu a stejné pravé
vytvarnice, nemuseji mit na zakladé geometrickych
metod stejny tvar (obr. 2 a 3).

Ke zkoumani tvaru kmene byly z geometrickych
metod pouzity zjednodusené Booksteinovy sourad-
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nice (kmenové tvarové praimeéry) a déle Prokrustovy
souradnice. V8echny statistické testy byly provedeny
s kmenovymi tvarovymi primeéry. Prokrustovy sou-
fadnice byly pouzity zaroven s kmenovymi tvarovymi
praméry pro vyzkum variability a znazornéni efektu
jednotlivych hlavnich komponent, a to pro jejich lep-
$i grafickou vypovidaci schopnost a také pro srovna-
ni obou geometrickych metod.

Pokusny materidl tvorfilo 3 346 kmena smrku,
3082 kment borovice a 1 403 kmentt modrinu. Tento
materidl pochazi z Gzemi Ceské a Slovenské republi-
ky. Je témér totozny s materialem, ktery pouzil PET-
RAS (1989) ke konstrukci matematického modelu
tvaru kmene jehli¢natych drevin.

Hrani¢ni body byly umistény na morfologickou
krivku kmene do 1/100, 1/40, 1/20, 1/10, 2/10,...,9/10
vysky kmene. Podle schématu, znazornéného na
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obr. 1, byly vypocteny tvarové kmenové praméry
a Prokrustovy souradnice pro vsechny kmeny.

Statistické testy sméfovaly k porovndni stfednich
tvarovych vektorti tvarovych kmenovych priameért
vSech tfi zkoumanych drevin pomoci Hotellingo-
va T” testu. Pfed vlastnim provedenim tohoto testu
jsme zkoumali vicerozmérnou normalitu kmenovych
tvarovych prameért jednotlivych dfevin a shodu vari-
ancné-kovarian¢nich matic pro tfi dvojice dfevin.
V obou pripadech byly nulové hypotézy zamitnuty.
Nezbyvalo tedy nez provést neparametricky Monte
Carlo test, kterym jsme zamitli nulovou hypotézu
o rovnosti stfednich tvarovych vektort pro tfi dvoji-
ce drevin — tedy zkoumané dreviny nemaji ve smyslu
geometrickych metod stejny tvar.

Tvarova variabilita v ramci kmenovych tvarovych
pramért a Prokrustovych souradnic byla zkoumdana
pomocimetody hlavnich komponent. Prehled vysled-
kit podava obr. 6 a tab. 3. Procenta vysvétlené varia-
bility pomoci hlavnich komponent jsou pro kmenové
tvarové prameéry i pro Prokrustovy souradnice témér
shodna. Také geometrické efekty prvnich tii hlav-
nich komponent, které vysvétluji pres 99 % variabi-
lity, jsou pro vSechny tfi dreviny stejné. Ekologicky
vliv vyjadfeny prvni hlavni komponentou zptisobu-
je rozsifovani (zuzovani) kmene po celé jeho délce.
Stejny efekt prvni hlavni komponenty popsal KREPE-
LA et al. (2001) a KREPELA (2002). V téchto pracich
byl zkoumdan tvar kmene smrku podle Konselovych
stromovych tfid. Usuzujeme, Ze i v tomto pripadé
se jednd o efekt konkurence. Naduroven — silnéjsi
stromy, poddroven — uzéi. Pfimy dikaz véak nemuze
byt podan, protoze u empirického materidlu nebyly
zkoumany stromové tridy ani konkuren¢ni indexy.

Druha hlavni komponenta mé asymetricky graficky
efekt: spodni ¢ast kmene kontra zbyvajici horni ¢dst.
Tato komponenta u smrku vyjadruje 3,9 % variability

— tedy nejvice ze vsech dfevin. U smrku je jeji efekt
v 1/100 & nejvétsi. Jde tedy o efekt kofenovych na-
béht. U smrku zasahuje na kmeni nejnize, ma ale
nejvétsi vahu, coz odpovidd prostému okuldrnimu
pozorovani v prirodé. Graficky efekt treti hlavni
komponenty méni smér trikrat. Jaky ekologicky vliv
jej zpisobuje, nebylo mozné z nasich dat zjistit.

Zajimavy problém predstavuje zkoumdani zavislosti
mezi velikosti kmene a jeho tvarem. V pripadé kme-
novych tvarovych primeéra predstavuje velikost vyska
kmene, nebot jeji pomoci je z objektu (kmene) odstra-
novana jeho velikost. V pripadé geometrickych metod
se vztah mezi velikosti a tvarem zkoumd pomoci
korela¢ni zdvislosti mezi velikosti a jednotlivymi ské-
re hlavnich komponent, kterych je 12, protoze mame
na kmeni 12 kmenovych tvarovych priimeért. Spear-
manovy korela¢ni koeficienty jsou demonstrovany
v tab. 4. Tato zavislost se ukdzala nejnizsi u borovice,
kde ji miizeme s urcitym nadhledem charakterizovat
jako témér zadnou. U modrinu se slaba zavislost pro-
jevuje mezi prvnimi tfemi skére a vyskou, u smrku
je zajimavéjsi 4. skore. Celkové mizeme Fici, ze tvar
kmene zkoumanych jehli¢cnanti je zavisly na jinych
ekologickych vlivech daleko vice nez na velikosti.

V dendrometrickych pracich se ¢asto spodni ¢ast
kmene vyjadfuje pomoci geometrického télesa nei-
loidu a ¢ést nad ni pomoci paraboloidu. Pravé inflex-
ni bod, tedy bod, kde jedno téleso prechazi v druhé,
byl také predmétem naseho zkoumdani. Geometric-
ké metody pracuji s hranicnimi body. Tyto hrani¢ni
body bylo nejdiive nutno vyrovnat pomoci funkce,
ktera by zachytila morfologickou krivku kmene. Byla
zvolena funkce ¢. 16. Ta ma jediny inflexni bod, a ji
byly vyrovnany stredni tvarové praméry. Pro smrk,
borovici a modfin vychazeji inflexni body do 0,29,
0,43 a 0,29 vysky kmene.
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