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Height (h)-diameter (dbh) and growth equations 
can help forest resource managers produce better 
yield estimates for timber inventory programs and 
improve forest management decision-making. Total 
tree height and outside bark diameter at breast height 
are the most essential forest inventory measures for 
estimating the tree volume. Tree diameters can be eas-
ily measured at low cost. Tree height data, however, are 
relatively more difficult and costly to collect. Accurate 
height-diameter models can be used to predict tree 
heights from tree diameter data, thus to reduce data 
acquisition costs. Therefore, a better understanding of 
height-diameter relationships (or growth processes) 
will help foresters build more accurate and biologi-
cally sound models for height-diameter data. In gen-
eral, the tree size-age relationship adopts an S-shaped 
form (Clutter et al. 1983; Thompson et al. 1992), 

while the height-diameter relationship may be either 
S-shaped or concave shaped when height is plotted 
against diameter (Huang et al. 1992). However, the 
general trends do not necessarily apply to the whole 
population. Even if it is true for some species, it may 
not be the case for others. For a given set of observed 
data of tree height-diameter, it may be impossible to 
determine the growth process based on sample plot 
information. As a result, analysts may be unable to 
choose suitable models (i.e. S-shape or concave shape 
models) to describe these growth processes before 
fitting the given set of observed data. Moreover, one 
of the factors determining whether the curves are 
S-shaped or concave shaped is the functional form 
of assumed models. Consequently, many competing 
models (or a model pool) have been proposed that 
involve subjectively constrained (or forced) S-shaped, 
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concave shaped and parabolic shaped curves together 
to select the best model for the relationships.

A common practice is to compare those compet-
ing models (including different curve shapes) to 
select the “best” one for a given data set based on 
both various statistical criteria (e.g. significance of 
parameters, mean squared error (MSE) values and 
the plot of studentized residuals against the pre-
dicted variables) and requirements that can be (i) the  
convergence of the model with ease to fit; (ii) the 
mathematical properties of the model; and (iii) the 
biological interpretations of model parameters. For 
example, Huang et al. (1992) compared 20 published 
non-linear height-diameter functions including  
S-shaped and concave-shaped curves for 16 different 
species in Alberta, Canada. Fang and Bailey (1999) 
also investigated 33 height-diameter equations in-
cluding S-shaped and concave-shaped curves for 
tropical forests in Hainan Island of Southern China. 
When a large number of models are compared, much 
longer time is needed besides mixing up the con-
ceptions and properties of different mathematical 
models in the process of computation and selection 
for a given data set. Apparently, such a process based 
on model selection may have at least two drawbacks. 
First, the model forms are subjectively constrained 
to a given data set, and consequently some biases 
may be introduced in some competing models, and 
some may not even achieve convergence due to the 
use of an inappropriate functional form to start with. 
Secondly, it takes a considerable amount of time to 
complete the model selection process because of 
too many candidate models. For example, the curve 
forms of the competing models are often assigned 
a priori by restrictions on the S-shape, the concave 
shape or the parabolic shape at a given database. 
Instead, the form of a function selected to represent 
forest growth process must be sufficiently flexible 
and versatile to allow the curves to vary with differ-
ent data sets.

The functional forms suggested by Richards 
(1959) and Schnute (1981) can describe both  
S-shape and concave shape relationships depending 
on the estimated coefficients in a given data set. Both 
models have this useful feature, as they allow for a 
test of different curve shapes and thus do not make 
it necessary to assume an S-shape or a concave shape 
a priori and to use so many candidate models before 
the best model in a given data set is selected. How-
ever, this feature has not yet been used to conduct 
real data analysis with various outcomes that might 
be of interest to forest biometricians involved in sim-
ilar model problems in forestry despite wide uses in 
growth models (e.g. Cieszewski, Bella 1992, 1993; 

Cieszewski, Bailey 2000; Cieszewski 2001). This 
may lead to a commonly used and recommended 
approach that includes different curve shapes for a 
given database from sample plot information. The 
two models possess similar capabilities or basically 
similarity, but the Schnute model is more flexible 
and versatile than the Bertalanffy-Richards model 
(Bredenkamp, Gregoire 1988). The Schnute 
model is much easier to fit and quicker to achieve 
convergence for any populations (Lei 1998). The aim 
of this paper is to examine the characteristics of the 
Schnute model in the different parameter conditions 
and focus on the analysis of some relationships such 
as diameter at breast height (dbh) vs. age, height vs. 
age, volume vs. age and height vs. dbh on the basis 
of the features of the Schnute model.

Characteristics and curve shapes  
of the Schnute growth model

Schnute (1981) developed his growth equation 
for fishery research. Based on some assumptions, 
the equation can be expressed in terms of the relative 
growth rate (z) of an organism (y), and its logarithm 
derivative as follows:

z = d (lny)/dt
dz/dt = –(a + bz) 	 (1)

where: 	y 	 – 	the size,
	 a, b 	– 	constants.

When different conditions of a and b parameters 
are given, the solutions obtained from Eq. (1) can be 
expressed as:

                                
1 – e–a(t – t1)y(t) = [yb

1 + (yb
2 – yb

1)                      ]
1/b     a ≠ 0, b ≠ 0 	 (2)

                                1 – e–a(t2 – t1)

where: 	t 	 – 	predictive age,
	 y(t) 	– 	size of organism or population at time t,
	 t

1
 	 – 	age at the beginning of an interval,

	 t
2
 	 – 	age at the end of an interval,

	 y1, y2, a and b – model parameters, respectively.

(Only one solution with a ≠ 0 and b ≠ 0 is given 
here because the other solutions are not useful in 
this paper and this solution has been widely used in 
forestry – e.g. Bredenkamp, Gregoire 1988). Eq. 
(2) can also be expressed in the three parameters a, 
b and y1 (fixing y2) or y2 (fixing y1) (e.g. Huang et al. 
1992; Peng et al. 2001), as well as the two parameters 
a, b (fixing y1 and y2). This equation has the following 
characteristics:
(i) as t ∞, with a > 0, the curves of Eq. (2) approach 

upper asymptotic values, but do not show asymp-
totic values when a < 0;
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(ii) 	 the coordinates (tδ, yδ) of the inflection point, 
when the second derivative of y with respect to t is 
zero, will be obtained from Eq. (2) (not including  
a > 0 and b > 1) (Schnute 1981);

(iii) 	the curve crosses a point of the horizontal axis 
or the vertical one.

Eq. (2) possesses different curve shapes (e.g.  
S-shaped and concave shaped curves) depending 
on the values of a and b. Furthermore, when fitting 
Eq. (2) for a given data set, one does not need to 
subjectively place any constraint on model forms 
such as S-shaped or concave-shaped curves a priori. 
The equation can automatically fit a curve shape 
for a given data set and thus avoids this drawback. 
Therefore, this equation is able to determine whether 
a data set represents a growth process that shows an 
S-shape or a concave shape, and thus is devoid of the 
a priori shape restraint.

For example, when a > 0 and 0 < b < 1, Eq. (2) 
demonstrates an S-shaped curve with an upper  
asymptote, an inflection point (tδ, yδ) and a time axis 
intersection point at age t0. The curve is presented 
in Fig. 1a. This case is very common in biology and 
forest growth modelling (e.g. Pienaar, Turnbull 
1973).

When a > 0 and b < 0, Eq. (2) shows an S-shaped 
curve again. Unlike in the previous case, however, 
the curve (see Fig. 1b) has a lower asymptote with  
t0, in addition to an upper asymptote and an inflec-
tion point (tδ, yδ).

These two types of curves start at a fixed point 
((t0, 0) or (0, y0)) and increase their instantaneous 
growth rates monotonically to an inflection point; 
after this, the growth rates decrease to some final 
asymptotic value as determined by the genetic nature 
of the living organism and the carrying capacity of 
the environment.

When a > 0 and b > 1, Eq. (2) possesses an up-
per asymptote and crosses the time axis, but has 
no inflection point (tδ, yδ). Actually, such a curve 
has been used widely to estimate the height-diam-
eter relationship (Huang et al. 1992; Fang, Bailey 
1999). This curve (Fig. 1c) shows an initial period of 
rapid growth and then the instantaneous growth rate 
monotonically decreases to some final asymptotic 
value.

When a < 0 and b > 1, Eq. (2) does not possess an 
asymptote, but it has an inflection point (tδ, yδ) and it 
intersects the t-axis at age t0 (Fig. 1d). The curve has 
an initial period of decelerating growth and, passed 
the inflection point, continues with an indefinite 
period of accelerating growth. Such a curve might 
not occur very often in forest growth modelling. 
It occurs only when competition mortality leads 

thinned stands to an accelerated growth in mean 
dbh (Bredenkamp, Gregoire 1988). This case 
describes unlimited growth as the independent vari-
able increases and may not be strictly true as every 
site has a maximum capacity to support vegetation. 
Thus, it is not suitable for describing the long-term 
forest growth relationships.

When letting a > 0 and b = –1 in Eq. (2), Eq. (2) pro-
duces the performance of the logistic model, which 
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possesses an asymptote value and inflection point. 
Similarly when a > 0 and b = 1 in Eq. (2), the Eq. (2) 
displays the monomolecular model property which 
has an asymptote value but without inflection point 
(Lei 1998). Besides possessing the features of flexibil-
ity and versatility, Eq. (2) also has reasonable biologi-
cal interpretations of the four estimated parameters. 
Parameter a is a growth rate related parameter. Pa-
rameter b is a shape parameter. Parameters y1 and y2 
can be stand (or tree) ranges corresponding to initial 
and final values of the dependent variables for a given 
single observation data set, respectively (if a data set 
is a pooled data set, y1 and y2 can be mean values of 
dependent populations with the beginning age (t1) 
and the end age (t2)). Therefore, y1 and y2 can be 
considered as indicators of stand or forest structure 
(Fang, Bailey 1999).

MATERIALS AND METHODS

The flexibility and versatility of Eq. (2) were dis-
cussed and analyzed from a statistical point of view. 
Four different data sets were used with Eq. (2) to 
demonstrate this feature of discerning functional 
forms.

Dataset 1 for stand dominant height vs. stand 
age

Remeasurement data from a Eucalyptus globulus 
Labill. forest inventory collected by the SILVICAIMA 
company in Portugal in 1990–1995 were used (Lei 
1998), from which a total of 169 plots from 11 lo- 
cations were taken for this study. The sample plots 
contained repeated measurements: 90 plots were 
measured twice, 49 plots were measured three times 
and 30 plots were measured four times (Table 1).  
447 observations were produced from the 169 plots 
at the stand level.

Dataset 2 for tree height-diameter
The data set consists of 9 Japanese fir trees stem 

analysis data from 4 plots in the Experimental Forest 
College of Agriculture, National Taiwan University 
(Zeide 1999). 280 observations were made on the  
9 trees (Table 1).

Dataset 3 for tree dbh vs. tree age
The eucalypt tree dbh growth data set from FAO 

Forest Series (1979) is used and Table 1 describes the 
statistics of the data set.

Data 4 for tree height vs. tree age
The mean tree height values in decimetres for ages 

2–19 are employed and Table 1 demonstrates the 
statistics of this data set.

These data sets are selected for the analysis because 
they represent different growth curve shapes. Eq. (2) 
can be used to fit the data sets in different ranges of 
parameters. For discernment and comparison pur-
poses, the Meyer function (1940) with three and two 
parameters, h = a + b(1 – e–ct), was also employed, 
because this function has been used extensively in 
the height-diameter relationship and recommended 
as an appropriate model to describe the relationship. 
The Meyer function, however, is only able to describe 
a concave curve and does not have the flexibility and 
versatility of the Schnute model. Therefore, it cannot 
discern different functional shapes for different data 
sets. The models were evaluated using residual mean 
squared error (RMSE), mathematical properties and 
the biological interpretations of model parameters.

All the results presented were computed using the 
non-linear JMP Software program (SAS Institute 
Inc. 1994). The Gauss-Newton method of using the 
Taylor series linearization (Neter et al. 1985) was 
applied, and multiple starting values were provided 
for the parameters to ensure that the least squares 
solution was based on a global, rather than on a lo-
cal, minimum.

RESULTS AND DISCUSSION

Case 1: SILVICAIMA data set for stand dominant 
height vs. stand age (a > 0 and b < 0)

As shown in Fig. 5, the scatterplot of stand domi-
nant height vs. stand age did not indicate a specific 
functional form. It is difficult to determine the 
functional form based on this plotting. As suggested 
previously, Eq. (2) was used first to determine the 
functional form. The result suggests an S-shape 

Table 1. Statistics of the different data sets

Case 1 (n = 447) Case 2 (n = 280) Case 3 (n = 76) Case 4 (n = 36)
H (m) t (year) H (m) dbh (cm) dbh (cm) t (year) H (cm) t (year)

Minimum 4.54 2.70 0.42 0 6.30 2.00 12.00 2.00
Maximum 25.90 11.00 26.90 30.10 26.50 20.00 221.00 19.00
Mean 13.85 6.60 16.06 16.69 18.24 11.00 85.21 10.50
S.D. 5.41 2.30 8.24 8.91 4.65 5.51 61.53 5.26

n – number of observations; H – tree height, dbh – tree diameter at breast height, t – tree age
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form due to a = 0.9557 (> 0) and b = –5.547 (< 0) for 
the given data set. The results are listed in Table 2 
and the estimated curve is shown in Fig. 2. Then, a 
model pool of S-shapes can be collected for selec-
tion and comparison to get the “best” model on the 
basis of some criteria: ease of convergence, biological 
interpretation of parameters, the asymptotic t-sta-
tistics of the parameters and mean squared error 
(MSE) of the models. Here the Meyer function 
was used with the three parameters to estimate the 
data set as well, but it failed to converge. The model  
h = b(1 – e–ct) was also used to fit the data (Table 2). 
Table 2 and Fig. 2 suggest that the S-shape curve 
can fit the given data set better than the concave 
curve because RMSE in Eq. (2) (3.0057) is smaller 
than that of the Meyer model (3.0338). In addition 

the biological interpretations of Eq. (2) parameters 
(see Section 2) are more reasonable than those of the 
Meyer model. The asymptote (A) and the inflection 
point (tδ, Hδ for Eq. (2) are:

                     Hb
2 – Hb

1A = [Hb
1 +                          ] 1/b

 = 21.83 m
                  1 – e–a(t2 – t1)

                      1       b(ea × t2 Hb
2 – ea × t1 Hb

1)tδ = t1 + t2–     ln[                                         ] =
                      a                   H

b
2 – Hb

1

= 9.07 years

           (1 – b)(ea × t2 Hb
2 – ea × t1 Hb

1)Hδ = [                                                ]1/b = 15.55 m
                    (e

a × t2 – ea × t1)

where the A appears reasonable, given the ranges 
of the observed data. The A is also similar to those 
estimated by Amaro et al. (1998) and Tome et al. 
(1995). For the Meyer function, the asymptote (A) is 
79.95 m that is quite different from Eq. (2)’s, and the 
inflection point does not exist. In summary, the pre-
sented example suggests that a pool of models with 
an S-shape would be more suitable for describing (or 
fitting) the given data set than that with a concave 
shape or an S-shape and concave shape.

Case 2: Japanese fir data set for height-diameter 
(a > 0 and 0 < b < 1)

From the observations, it can be seen that arbitrary 
restraint (0, 1.3) on a data pair (dbh, height) may not 
be suitable for the data set. As shown in Fig. 3, the 
curve shape of the height-diameter relationship for 
this species can be regarded as either concave or 
sigmoid. As in the previous case, Eq. (2) was used 
first to determine the type of curve shape. The results 
are listed in Table 2 and the fitted curve is shown in 
Fig. 3. The curve for the height-diameter relation-

Table 2. Parameter estimates for the Schnute and Meyer models using different data sets (or cases)

Function Parameter Case 1 Case 2 Case 3 Case 4

Eq. (2)

a 0.9557 0.0491 0.1046 –0.03187
b –5.547 0.5093 1.8284 2.3422
y1 5.345 1.654 5.141 11.263
y2 19.479 20.102 21.542 217.290
A 21.83 29.35 23.43 n.a.
tδ 9.07 8.39 n.a. 4.09
yδ 15.55 7.25 n.a. 24.07

RMSE 3.0057 1.9794 1.0377 3.1055

Meyer model
b 79.9563 170.3671 23.3564 n.a.
c 0.0295 0.0059 0.1768 n.a.

RMSE 3.0338 1.9992 1.0682 n.a.

n.a. – not available, a, b, c – parameters of Schnute and Meyer models, respectively, RMSE – root mean squared error of 
estimation, A – asymptote, tδ, yδ –  the coordinates of the inflection point
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ship is sigmoid. The Meyer function with the three 
parameters was used to fit the data set as well, but it 
could not achieve convergence (surprisingly, it could 
not be achieved even if different values were given to 
parameter a, using nonlinear regression to fit b and 
c in the two parameter-Meyer function). Though  
h = b(1 – e–c(dbh)) can attain convergence for the data 
set and appears a concave curve, this model cannot 
explain the height-diameter relationship reasonably. 
For example, the model gives a zero height when  
dbh = 0. This does not reflect the realistic relation-
ship of height-diameter from the data set. In fact h is 
greater than zero when dbh = 0 (Table 1). However, 
Eq. (2) can meet the requirement. From Table 2, the 
residual mean squared errors are almost the same 
between the Meyer model (1.9992) and the Schnute 
model (1.9794), whereas the shapes of the two curves 
described in the two models are different at both up-
per and lower points. The upper and the lower ends 
of both curves apparently show different values of the 
two models. The Meyer model has a lower value than 
the Schnute model at the lower end of the solid line, 
while it has a higher value than the latter at the up-
per end of the line. The asymptote values (A) for Eq. 
(2) and the Meyer model are 29.35 and 170.37 me- 
ters, respectively. The asymptote value of the Meyer 
model is in excess of the dominant height value  
30 meters (Guan pers. commun.), indicating that the 
asymptote parameter of the model has no biological 
significance. Eq. (2) possesses the inflection point 
(tδ = 8.39 cm, Hδ =7.25 m), while the Meyer model 
lacks an inflection point. In terms of the mathemati-
cal and biological properties of the models, Eq. (2) is 
obviously better than the Meyer model in this case 

though the statistical criteria of the two models are 
basically equivalent. The results of this case also 
suggest that a model of pool with S-curve shapes 
rather than concave-curve shapes be considered as 
candidate models for the purpose of comparison and  
selection.

Case 3: Eucalypt tree dbh (cm) vs. tree age (a > 0 
and b > 1)

The estimated parameters of Eq. (2) and of the 
Meyer function are listed in Table 2 and the fitted 
curve is depicted in Fig. 4. The asymptotes (A) in Eq. 
(2) and the Meyer model are 

                                   dbhb
2 – dbhb

123.43 (A = [dbhb
1 +                          ]1/b) 

                                   1 – e–a(t2 – t1)

and 23.36 cm, respectively. RMSEs of Eq. (2) and the 
Meyer model are 1.0377 and 1.0482, respectively. 
The results show that the data set is a concave shape 
with no inflection point, and both functions are suit-
able for this data set because they basically give the 
similar results in statistical criteria, mathematical 
properties and biological interpretations and curve 
shape as well. This case suggests that a model pool 
of concave shapes rather than S-shape curves be 
collected for comparison and selection in the given 
data set.

Case 4: A case where neither Bertalanffy-Richards 
nor Meyer functions are suitable (a < 0 and b > 1)

Dataset 4 is employed because the type of data 
in case 4 is very difficult to be obtained in order to 
further demonstrate the flexibility and versatility 
of the Schnute model in comparing and selecting 
growth models under the conditions of a < 0 and  
b > 1. Eq. (2) was used to estimate the growth curve 
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for the given data set. The estimated results are listed 
in Table 2 and the fitted curve is presented in Fig. 5. 
As previously discussed, Eq. (2) in the condition of 
a < 0 and b >1 only has the inflection point (tδ, Hδ) 
as follows:
                      1      b(ea × t2 Hb

2 – ea × t1 Hb
1tδ = t1 + t2 –     ln[                                      ]= 4.09 years

                      
a                Hb

2 – Hb
1

           (1–b)(ea × t2 Hb
2 – ea × t1 Hb

1Hδ = [                                              ] = 24.07 cm
                    (e

a × t2 – ea × t1)

As shown in Fig. 5, Eq. (2) can fit the given data 
set very well. However, the Meyer function, includ-
ing either 2 or 3 parameters, failed to fit the data set 
because the function can describe only the concave 
shape curve and does not possess the properties of 
flexibility and versatility. Though the Bertalanffy-Ri-
chards function possesses features similar to those of 
the Schnute function, the former is not suitable for 
describing the data set (Lei et al. 2001). However, the 
derived form (3) (e.g. m < 0 and r < 0) of the Berta-
lanffy-Richards function can fit the data set:

y = A’ [B’ exp(k’t – 1)]1/(1 – m) 	 (3)

where Eq. (3) is derived from 

dy
     = ηym – ry 
dt

(Richards 1959) when m < 0 and r < 0 (let r’ = – r). 
The parameter relationships between Eq. (3) and  
Eq. (2) can be written:

a = –r’ (1 – m) = – k’
b = 1 – m

A´= [yb
2/B´(eat2 – 1)]1/b

B´= [ea(t2 + t1) × (yb
2 – yb

1)] / [eat2 × yb
2 – eat1 × yb

1]
1/b	(4)

CONCLUSIONS

Three functional forms including sigmoid, concave 
and parabolic curves were used to describe forest 
growth processes and the height-diameter relation-
ship. As indicated before, the traditional method has 
drawbacks in the model comparison and selection 
process. The model forms with different mathemati-
cal properties are subjectively constrained a priori to 
the analyzed data set, and consequently a consider-
able bias may arise for some models. Some of the 
models may not be able to achieve convergence at all. 
In addition, a considerable amount of time is needed 
for the process of the model comparison and selec-
tion. The process of the real data analysis estimation 
described in this paper suggested that using the 
Schnute model could overcome those drawbacks and 
thus is more effective in selecting the “best” model 
from candidate models because the Schnute model 
has enough flexibility and versatility to efficiently 
determine the curve shape suitable for different data 
sets. Furthermore, the biological interpretation of 
the model parameters is reasonable. The model is 
also easier to fit and quicker to achieve convergence 
regardless of the data set. With the current method, 
no suitable functional form for a given data set is 
known before the selection process. Therefore, it 
is recommended that the Schnute model be used 
as the first step to determine the appropriate func-
tional form in order to avoid assuming a curve shape  
a priori.
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Srovnání a výběr růstových modelů s použitím Schnuteho modelu

Y. Lei1, S. Y. Zhang2

1Research Institute of Forest Resource Information and Techniques, Chinese Academy of Forestry,  
Beijing, China
2Resource Assessment and Utilization Group, Quebec, Canada

ABSTRAKT: Jedním z problémů při tvorbě modelů lesa je volba vhodného matematického modelu k popisu onto-
geneze stromu nebo k vyjádření empirických vztahů mezi velikostí a tvarem stromu u jednotlivých druhů dřevin. 
Běžně se volí z mnoha modelů, které používají různé funkce, a vybere se ten model, který nejlépe vyhoví danému 
datovému souboru. Tento způsob ale může subjektivním způsobem omezit volbu vhodné funkce. Během tohoto 
procesu je totiž věnována malá pozornost některým důležitým parametrům posuzované funkce (např. jen asymptotě 
a inflexnímu bodu) a ne tomu, zda je funkce vhodná s asymptotou či nikoliv. Abychom se těmto omezením vyhnuli, 
příspěvek popisuje a analyzuje vlastnosti Schnuteho modelu. Tento model, který je flexibilní a univerzální, zatím 
nebyl v lesnictví použit. V příspěvku byl tento model použit pro různé soubory dat různých druhů dřevin. Výsledky 
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ukazují, že model má vhodné vlastnosti, takže výsledná křivka může mít tvar sigmoidní, konkávní či jiný. Vzhledem 
k tomu, že předem není znám vhodný tvar křivky pro daný soubor dat, je vhodné použít nejdříve Schnuteho model, 
díky kterému zjistíme tvar vhodné křivky a vyhneme se tak nutnosti volby vhodného modelu a priori.

Klíčová slova: růstový model; volba modelu; Schnuteho model; model Meyera; model Bertalanffy-Richardse


