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Possible methods of Norway spruce (Picea abies [L.]
Karst.) stem shape description
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ABSTRACT: The paper shows a possibility of using Bookstein coordinates for stem shape studies. Bookstein coordi-
nates are simplified to stem shape diameters, for which tests of multidimensional normality, variance-covariance ma-
trix homogeneity, equality of mean shape vectors and principal component calculation are carried out in sample plots
Doubravéice 1 and Stihlice. Principal components are also calculated for Procrustes tangent coordinates, presented
in graphs, and the plots are compared. Doubravcice 1 and Stihlice plots differ especially in age (70 and 30 years) while
they do not differ in tree class representation.
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Foresters have been studying stem shapes of indi-
vidual trees for more than 200 years to tabulate stem
profiles, volume, assortment, and increment. Pro-
DAN (1965) stated that the shape factor theory was
formulated for the first time by Paulsen around 1800
and elaborated by Smalian, Klauprecht, Pressler, Ho-
henadl and later by other authors. Shape quotients
were studied by Schiffel around 1897, Hohenadl,
Mitscherlich and other modern authors.

All these authors are representatives of so called
traditional morphometrics. In recent 25 years, not
only “traditional morphometrics” but also “geo-
metrical methods” have developed in biology. Geo-
metric morphometrics is a collection of approaches
to the multivariate statistical analysis of Cartesian
coordinate data, usually (but not always) limited to
landmark point locations. The “geometry” referred
to by the word “geometric” is the geometry of Ken-
dall’s shape space: the estimation of mean shapes and
the description of sample variation of shape using the
geometry of Procrustes distance. The multivariate
part of geometric morphometrics is usually carried
out in a linear tangent space to the non-Euclidean
shape space in the vicinity of the mean shape.

More generally, it is the class of morphomet-
ric methods that preserve complete information

about the relative spatial arrangements of the data
throughout an analysis. As such, these methods al-
low visualisation of group and individual differences,
sample variation, and other results in the space of the
original specimens.

Kendall’s shape space is the fundamental geomet-
ric construction, named after David Kendall, un-
derlying geometric morphometrics. Kendall’s shape
space provides a complete geometric setting for
analyses of Procrustes distances between arbitrary
sets of landmarks. Each point in this shape space
represents the shape of a configuration of points in
some Euclidean space, irrespective of size, position,
and orientation. In shape space, scatters of points
correspond to scatters of entire landmark configura-
tions, not merely scatters of single landmarks. Most
multivariate methods of geometric morphometrics
are linearisations of statistical analyses of distances
and directions in this underlying space.

MATERIAL AND METHODS

The studied material consisted of 191 Norway
spruce sample trees from the permanent sample
plot Doubravcice 1, felled in 1965, and 191 sample
trees from the permanent Norway spruce sam-
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Table 1. Characteristics of the examined material, §(X) being arithmetic mean of centroid sizes, 1 arithmetic mean of heights,

d arithmetic mean calculated from the diameters at 1/10 of the stem height

1/10

Kongel's tree  Number of Doubravcice 1 Stihlice
class stems S(X) (m) 7 (m) d,,, (cm) S(X) (m) 7 (m) d,, (cm)

1 9 37.15 24.66 25.96 22.83 15.15 16.68
2a 42 34.16 22.67 22.52 19.67 13.05 12.18
2b 51 32.86 21.81 19.02 17.35 11.51 10.88
3 54 28.35 18.81 15.76 16.35 10.85 10.10

29 25.51 16.93 14.17 13.69 9.09 8.66
5 6 22.95 15.23 12.83 11.28 7.48 8.05

ple plot Stihlice, felled in 2002. Both plots belong
to the School Forest Enterprise in Kostelec nad
Cernymi lesy. The mean age of the sample trees on
Doubrav¢ice plot was 70 years, 30 years on Stihlice
plot. The mean stand diameter d on Stihlice plot was
15.3 cm, the mean stand height /1 was 14.5 m, the top
stand height &, was 16.0 m, volume per ha 235 m?,
stand density 1.02, site class 32, forest type 3P1.
The mean stand diameter d_on Doubravcice 1 plot
was 21.6 cm, the mean stand height hg was 23.3 m,
the top stand height /, , was 26.3 m, volume per
ha 454.1 m?, stand density 0.99, site class 26, forest
type 2K3.

The stems were classed into six Konsel’s tree
classes. Tree class 1 is composed of dominants (9 in-
dividuals), tree class 2a of co-dominant major trees
(42 individuals), tree class 2b of co-dominant minor
trees (51 individuals), tree class 3 of intermediate
trees (54 individuals), tree class 4 of shadegrown vital
trees (29 individuals), tree class 5 consists of 6 dying
or dead individuals. Mean characteristics of centroid
size, height and diameter in 1/10 of the stem height
are listed in Table 1.

So-called landmarks were identified on the mor-
phological stem curve. These landmarks originate
either at the bottom edge of a stump (approximately
in 1/100 of the stem height) and at 1/20 of the stem
height and continue by tenths of the stem length
symmetrically at its left and right part including the
stem top. Each landmark is localised using x (diam-
eter) and y (height) coordinates. These coordinates
form the matrix k x m, where kis the number of
landmarks and m is the number of dimensions. In
our case k =23 and m = 2. The matrix is called an
original configuration matrix and represents a basis
for further Procrustes statistic processing.

Bookstein coordinates and stem shape diameters
Bookstein coordinates (uB/,, VB].)T,j =3, ...,k (Book-

STEIN 1984, 1986 in BOOKSTEIN 1991) are the re-
maining coordinates of the object after translating,
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rotating, and rescaling. The baseline is positioned so
that either landmark 1 is sent to (0, 0) and landmark
2 is sent to (1, 0), or to preserve symmetry, baseline
landmarks are sent to (—1/2, 0) and (1/2, 0).

Fitting using the baseline is a simple procedure,
but it can be criticised on the grounds that the base-
line landmarks are chosen subjectively and will be
weighted disproportionably in the fitting process.
Procrustes fitting treats all landmarks equivalently,
avoiding the subjective weighting of two particular
landmarks as in baseline fitting.

In our case, the baseline was placed between the
mean stem base and the stem top. The coordinates of
these two landmarks are (—1/2, 0) and (1/2, 0). Con-
sequently, there were 22 landmarks symmetrically
placed on the morphological curve. The first pair is
in 1/100 of the stem height and the remaining pairs
by the tenths of the stem height. These landmarks
are labelled as so-called pseudo-landmarks. They
are designed on the organism around the outline
between anatomical landmarks.

Bookstein coordinates are calculated in the fol-
lowing way:

lﬁ=«%—xmg—x9+@fﬂ0@fym”yM‘§”)

Ve={(x, = 2), - ) = (0, — y) (%, — %)}/ D7,

where j=3,..,k D* =

p =, %)+ @,-y) >0and
— oo <ul, V¥ <o,
or equivalently by formula (MARDIA 1991 in DRYDEN,

MARDIA 1998):

U=cA(X-b) (2)

This formula gives us the geometrical interpre-
tation of Bookstein coordinates: U = (uB/,, VB/)T,
X =(x,, yl,)T, j=3,..,k c>0 is the scale, A is the
m x m rotation matrix, where we rotate by a radians,
b is the translation vector.

Example: Consider a 10 m high stem of the di-
ameter d,, = 0.05 m at 1/10 of its height. Then the

1/10
coordinates of the mean stem basis are X, = (0, 0)"
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and the stem top X, = (10. 0)". These two landmarks
compose a baseline with the coordinates of (-1/2, 0)*
and (1/2, 0)T. Bookstein coordinates of the landmark
on the morphological stem curve at 1/10 of its height
X, = (1,0.05)" are:

B

u’y |\ 1 (COSO( sin o {xs

Ve N (x, - %)+ (9, - y)* | —sina cos al ||y,
(x, —x,)/2

_L%—xﬂ2

where a = arctan {(y, — y,)/(x, — x,)}, thus

u®, ~ 1 (foso sin 0 {C)l )
v2.] V(10 - 0)*+ (0 - 0)* \-sin0 cos 0 .05
(10 - 0)/2 -0.4

“\0=0)2 ]| ~|0.005

If the x-coordinates of morphological landmarks
are placed at relative distances (in our case by 1/10
of the stem height), #", assumes the same values in
all stems as well. Furthermore, let us consider the
stem being symmetrical by the vertical axis, which
would simplify the situation as it would limit the
number of variables. The stem can be described as
a multidimensional object by means of “stem shape
diameters”. Thus, the stem shape diameters (b ) are
the diameters at the relative sections (in our case
m = 1/100, 1/20, 1/10, ..., 9/10 of the stem height),
divided by the stem height (%), therefore

b, =d Ih

Dividing by the height is in fact elimination of the
size from the object in the sense of intuitive definition
of the shape. In the case of Procrustes coordinates, the
size is eliminated by dividing by the centroid size.

Centroid size is the square root of the sum of
squared distances of a set of landmarks from their
centroid, or, equivalently, the square root of the
sum of the variances of the landmarks about that
centroid in x- and y-directions. Centroid size is used
in geometric morphometrics because it is approxi-
mately uncorrelated with every shape variable when
landmarks are distributed around mean positions
by independent noise of the same small variance at
every landmark and in every direction.

The centroid size is given by

where X, is the (i, j)-th entry of X and the arithmetic mean of
the j-th dimension is

— k
x=lyx

j %t:l i
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Note: The stem height does not necessarily have to
be used as a baseline; it can be e.g. the diameter in
1/100 of the stem height or another diameter in the
lower part of the stem. In that case, we obtain shape
quotients and shape series.

The values of Spearman coefficient of correlation
of dependence between centroid size and diameters
at 1/100, 1/20, 1/10, ..., 9/10 of the stem height for
stems from Doubravcice plot are as follows:
0.77,0.85,0.86, 0.86, 0.86, 0.86, 0.86, 0.85, 0.82, 0.77,
0.72.

All coefficients of correlation are statistically sig-
nificant on the level of 0.05.

In dendrometry, ideal column volume is often used
to eliminate the stem size in 3D space. The values of
Spearman coefficient of correlation of dependence
between centroid size and volumes of ideal columns
with their bases at 1/100, 1/20, 1/10, ..., 9/10 of stem
height are as follows:

0.78, 0.85, 0.86, 0.87, 0,86, 0.87, 0.86, 0.86, 0.84, 0.81,
0.78.

All coefficients of correlation are statistically sig-
nificant on the level of 0.05. It is evident that there is
a strong relation between the values of centroid size
and “traditional” quantities.

Individual stem is therefore taken as one pick from
n objects described by m dimensions (stem shape di-
ameters (bw,)). Hence:b,= (b, , ..., b, ) i=1,..n

For this selection, it is possible to set a sample
vector for mean values z given by the following
equation:

N L
M=

b, (4)

1 13

=3
Estimation of the variance-covariance matrix is
ruled by the following equation:

§=—1% (b, 1) (b,~ )" (5)

The test of hypothesis that the data are derived
from multidimensional normal distribution

In this paper, we use a test based on multidimension-
al skewness (g, ) and kurtosis (g, ,) as described in
MELOUN and MILITKY (1998). We test simultaneous
validity of a hypothesis about symmetry (H: g, , = 0)
and about normality of kurtosis (H,,: 8, ,,=mm+ 2))
distribution variable of examination. The estima-
tion of sample skewness is given by the following
equation:

g, =13 (©)

i=1j=1
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where dl.}. =(b,-u)'"Ss™ (b]. — p) is squared Mahalano-
bis distance. Considering the H , hypothesis as valid,
then the test statistics

n
u = 6 Eim (7)
has asymptotically chi-square distribution )’, ., } .. 26

The estimation of sample kurtosis is given by the
following equation:

~ 1 ¢
&om= 2 ,.:ZI a, (8)
Considering the H , hypothesis as valid, then the
test statistics:

u,=@,,-2g,,)8m(m+2)/n)* )

has asymptotically normal distribution N(0, 1). This
approximation can be used providing the following
condition is fulfilled:

g, ,>mm+2)(n-1)/(n+1) (10)
The test of hypothesis that the mean
vectors are equal
Consider two independent random samples bx, . bx, .,
(from sampleyplot Doubravcice) and by, e by' , (from
sample plot Stihlice). The vectors b = (b5 e bk)T,
i =1, .., n are stem shape diameters. In our case
k=11and n = 191. We expect that stems from these

populations have mean shapes ¢ and K,

The test of hypothesis about mean vector equal-
ity (Hyp, = p, versus H:u, = p ) can be carried out
using Hotelling’s T? two-sample test. Let us use the
following test statistics:

~ nn(n +n,—m-1)

stat

(- p)'S™ (u,—p) (11)

(n,+n) (n, +n,—2)m

where

_(nl—l)Sl+(n2—1)S

2

p no+n,—2
is the pooled variance-covariance matrix and §, and
§, are variance-covariance matrices for individual
samples.

Provided the null hypothesis is valid, the test
statistics F, , has Fisher’s distribution with m and
n, + n,— m — 1 degrees of freedom. However, this
test can be used only in the case of normality of
both sets and homogeneity of variance-covariance
matrices.

RESULTS AND DISCUSSION

In the case of Doubravcice plot, the sample skew-
ness is g, = 27.52. The test statistics U, thus
equals 876, which is more than the critical value of
X’y (0.05) = 326.4. Sample kurtosis is g, |, = 184.6.
Test statistics U, = 17.0 and the critical value of
standardised normal distribution on the significance
fevel of 0.05 is 1.64. The criterion (10) is fulfilled as
g, ,, > 141.5. In both quantities, skewness and kurto-
sis, we therefore reject the coincidence with normal
distribution.

Italsoapplies to the case of Stihlice plot. Sample skew-
ness is g, |, = 61.03"and test statistics U, = 1,942.8.
Sample kurtosis is g, ,, = 235.83 and test statistics
U, =37.92. The criterion (10) is fulfilled again (g, , >
> 141.5). In this case, we also reject coincidence with
the normal distribution.

All tests carried out indicate a divergence from
multidimensional normal distribution in both sets.

Subsequently, the Box’s M test on homogeneity of
variance-covariance matrices, MARDIA et al. (1979)
was carried out. We reject the hypothesis about ho-

Table 2. Spearman coefficient of correlation for the dependence between stem shape diameters for all the stems from
Doubravéice 1 and Stihlice plots. All coefficients of correlation are significant on the level of 0.05

by, by, b, b, by, b,, b,, b,, b,, by by
by, 1 0.65 0.57 0.54 0.51 047 0.43 0.42 0.39 0.39 0.36
b,, 0.65 1 0.84 0.81 0.72 0.67 0.60 0.55 0.49 0.46 0.51
b,, 0.57 0.84 1 0.91 0.85 0.79 0.72 0.67 0.60 0.55 0.59
by, 0.54 0.81 0.91 1 0.92 0.87 0.81 0.77 0.70 0.66 0.64
b, 0.51 0.72 0.85 0.92 1 0.95 091 0.86 0.79 0.76 0.65
b,, 0.47 0.67 0.79 0.87 0.95 1 0.96 0.93 0.88 0.85 0.61
by, 0.43 0.60 0.72 0.81 0.91 0.96 1 0.96 0.92 0.90 0.56
b,, 0.42 0.55 0.67 0.77 0.86 0.93 0.96 1 0.95 0.93 0.54
b,, 0.39 0.49 0.60 0.70 0.79 0.88 0.92 0.95 1 0.96 0.52
by 0.39 0.46 0.55 0.66 0.76 0.85 0.90 0.93 0.96 1 0.49
b, 0.36 0.51 0.59 0.64 0.65 0.61 0.56 0.54 0.52 0.49 1
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Fig. 2. The columns show the shapes at -3, -2, -1, 0, 1, 2, 3, standard deviations along the first three PC for Stihlice plot
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mogeneity of variance-covariance matrices on the
significance level of 0.05.

The assumption of normality and equal covarianc-
es turned out to be questionable. Therefore, Monte
Carlo test was carried out with the null hypothesis
that the groups have equal mean shapes. The data
were randomly split into two groups of the same size
as the groups in the data, and the test statistic F,,
was evaluated for B random permutations T, ..., T,
The ranking r of the observed test statistic F, was
then used to give the p-value of the test:

r—1

-value=1 —
P B+1

For each pair of locations, 2,000 random permu-
tations were performed. P-value is less than 0.01,
therefore we reject the hypothesis about the equality
of mean shapes vectors.

Variability

The principal components analysis (PCA) was used
to analyse the shape variability. The prerequisite for the
use of PCA method is a higher rate of linear depend-
ence between the variables. Table 2 determines the
correlation matrix for stem shape diameters (b, ) for all
stems from Doubrav¢ice 1 and Stihlice plots. The table
shows that the prerequisite of a higher rate of linear de-
pendence between stem shape diameters is fulfilled.

The orthogonal eigenvectors of variance-cova-
riance matrix, denoted by x, i = 1, 2, ..., j, are the
principal components of variance-covariance ma-
trix with corresponding eigenvalues

A=A >..2N20
1 2 j
where: j = min (n — 1, m).

The summary of the first three principal compo-
nents for Doubrav¢ice 1 and Stihlice plots, calculated
from the stem shape diameters and from Procrustes

tangent coordinates is shown in Table 3. Eigenvalues
in Doubrav¢ice 1 plot are the same for both the stem
shape diameters and Procrustes tangent coordinates
and almost the same in Stihlice plot.

Graphic effect of the first three principal compo-
nents is the same in stem shape diameters as well as
in Procrustes tangent coordinates. For better illustra-
tion and with regard to already prepared programmes
by DRYDEN (2000), we carried out an analysis of the
first three principal components in Procrustes tan-
gent coordinates as shown in DRYDEN and MARDIA
(1998), the definitions having been introduced in the
same way as in KREPELA et al. (2004).

Figs. 1, 2, 3 and 4 show the graphic effect of the
first three principal components in both sets. The
first principal component explains approximately
83% variability in both sets. It has the same graphic
effect in both sets and coincides with the first princi-
pal components in the previous papers of KREPELA
etal. (2001, 2004), KRePELA (2002), for the Norway
spruce and Scotch pine. The other two principal
components in both sets do not have the same
graphic effect. If looking for differences in shapes
between the two sets, we can proceed in the frame
of scores of the individual principal components.
Let us express the squared Mahalanobis distance
D? of equation:

nn(n +n,—M-1)

- D>
@@t = (n +m) (n, + n,— 2)M

(12)

where M = (k — 1)m — m/2 (m — 1) -1 is the dimension of
shape space, k is the number of landmarks, m is the real di-

mension of object, as:
M
D*=Y s2/\
j=1 ]

where s, = v -wT X; are the scores in the direction of the
observed group difference, v, w are the sample means of
Procrustes tangent coordinates.

Table 3. Eigenvalues of the variance-covariance matrices of stem shape diameters and Procrustes tangent coordinates from
Doubrav¢ice 1 and Stihlice plots, and proportional expression of variability explained by them

Doubravdice 1

Stihlice

Stem shape diameters

Procrustes tangent

. Procrustes tangent
Stem shape diameters 5

coordinates coordinates
Eigenvalue
)4 )4 P )4
A 10° A/ Z),. 100 \.10° N/ ZN,. 100 \.10° A/ ZN,. 100 A 10 A/ ZN,. 100
(%) (%) (%) (%)
/11 10.488 83.5 1.5198 83.5 8.3487 83.2 1.0002 82.9
/12 1.6842 13.4 0.6090 13.4 0.7421 7.4 0.3196 8.5
/13 0.2364 1.9 0.2282 1.9 0.3884 3.9 0.2072 3.6
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in Stihlice plot

High values of s?/\ indicate which directions
of shape variability are associated with the differ-
ence between the groups. Table 4 shows the values
of F, from Equation (12) calculated for the first
15 principal components. The values of F,_ for fur-
ther principal components are less than 0.01.

It results from the table that principal components
No. 3, 2 and 4 contribute most to the difference be-

tween the sets.

The second principal component in Doubravcice
1 plot explains 13.4% of total variability. It concerns
the effect of “buttresses”. The variability issues from
the robust (thin) buttresses compared to the thin (ro-
bust) rest of the stem. The third principal component
explains 1.9% of the total variability. It concerns the
stems with damaged tops.

In Stihlice plot, the second principal component
(explaining 8.5% variability) is the asymmetrical
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Fig. 5. Courses of full Procrustes mean
shapes for single Konsel’s tree classes in
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graphic effect. In the lower part of the stem (up
to 1/104), the direction of this effect is reversed in
comparison with the remaining upper part of the
stem. The second principal component might be
explained from the biological aspect by rot in the
lower part of the stem caused by Armillaria ostoyae
(Romagn.) Herink.
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0.004

0.006 plots

The graphic effect of the third principal compo-
nent (3.6% variability) is rather complicated. In the
lower part of the stem (1/100/) and subsequently
at 5/10h..., 8/10h the effect has one direction
while at 1/204, 1/10k, 2/10k, 3/10h the direction
is reversed. So far, no biological explanation has
been found.
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Table 4. F

start

, partition of Equation (12) for the first 15 principal components

No. of principal

F, . partition

Component §
1-5 0.2785 5.0200 7.8300 1.2200 0.0000
6-10 0.0584 0.0612 0.1260 0.4900 0.1300
11-15 0.4470 0.0000 0.1600 0.1090 0.0097
Fig. 5 shows full Procrustes mean shapes for sin- References
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Nékteré moznosti popisu tvaru kmene smrku ztepilého (Picea abies [L.] Karst.)
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ABSTRAKT: Clanek se zabyva moznosti vyuziti Booksteinovych soufadnic pii studiu tvaru kmene, Booksteinovy sou-

tadnice jsou zjednoduseny do ,tvarovych kmenovych praméri“ a pro né je v rdmci soubora Doubravéice 1 a Stihlice

proveden test vicerozmérné normality, shody varian¢né-kovarian¢nich matic, test rovnosti vektort stfednich hodnot
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a vypocet hlavnich komponent. Hlavni komponenty jsou vypocteny také pro Procrustovy tangentové souradnice a je pro-

vedeno jejich grafické znédzornéni a porovnan{ mezi soubory. Soubory Doubrav¢ice 1 a Stihlice se li$i pfedevsim ve stéif

(70 a 30 let), nelisi se v zastoupeni stromovych tfid.

Klicova slova: smrk ztepily (Picea abies [L.] Karst.); tvar kmene; Booksteinovy soutradnice; tvarové kmenové prameéry;

Procrustovy tangentové soutradnice; analyza hlavnich komponent

Booksteinovy souradnice jsou jednou z tzv. ,geo-
metrickych metod“ popisu tvaru biologickych
i technickych objekti. Objekt (v nasem pripadé kmen)
je popsan pomoci hrani¢nich bodt umisténych na
morfologické ktivce, jejichZ x-ové a y-ové souradnice
vytvareji zakladni konfigura¢ni matice jednotlivych
kmend. Hrani¢ni body byly umistény do 1/100, 1/20,
1/10, ..., 9/10 vysky kmene. Jako zdkladni Gsecka
(a baseline) byla pouzita vyska kmene. Stfed baze
kmene ma tedy souradnice (—1/2, 0) a vrchol kmene
(1/2, 0). Geometricky je kmen ve vodorovné po-
zici a zdkladni usecka prochdzi osou kmene a ma
velikost rovnu 1. Booksteinovy souradnice jednot-
livych hrani¢nich boda (uB/., VB},)T, j=3, .., k, potom
zarucuji otoceni, posunuti a preskalovani zakladnich
konfigura¢nich matic s ohledem na zdkladni tsecku,
kterd je pro véechny kmeny stejnd. V nasem pripadé
mame zjednodusenou situaci, nebot uvazujeme kmen
jako symetrické téleso (primeér je urcen jako aritme-
ticky pramér dvou kolmo na sebe mérenych praméra)
a navic vysky postupuji po relativnich vzdalenostech,
takZe pro vSechny kmeny soufadnice 4, nabyva
stejnych hodnot. Tim mtzeme pfejit k ,tvarovym
kmenovym primérim” — b .]Jde vlastné o primeéry
v relativnich sekcich vydélené vyskou kmene.
Vyska kmene se tedy pouziva k odstranéni velikosti
z objektu. V Procrustové analyze se k odstranéni ve-
likosti pouziva centrélni velikost. V klasické lesnické
dendrometrii se k odstranéni velikosti pouzivaji
praméry bud v relativnich, nebo v absolutnich
vyskdch (tvarové kvocienty, tvarové rady) a dale ob-
jemy idedlnich valct pfi vypoctu vytvarnic.

Pomoci tvarovych kmenovych primért bylo
popséano vSech 191 kment v souboru Doubravci-
ce 1 i vsouboru Stihlice. Oba srovnévané soubory
pochézeji z podobnych riistovych podminek na SLP
Kostelec nad Cernymi lesy, maji stejné zastoupeni
stromovych trid a jejich hlavni odlisnost predstavuje
vék (70 a 30 let).

Cilem bylo provést test rovnosti vektort stfednich
hodnot tvarovych kmenovych pramért mezi obéma
soubory a provést rozbor variability.

Klasicky test rovnosti stfednich tvarovych vektort
je parametricky. Predem tedy bylo nutné ovérit nor-
malitu dat a homogenitu varianc¢né-kovariancnich
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matic. K tomuto acelu jsme pouzili testy zalozené
na vicerozmérné sikmosti a $picatosti, resp. Boxtv
M-test. Jak predpoklad normality, tak predpoklad
homogenity varianc¢né-kovarian¢nich matic byly
zamitnuty. K porovndni rovnosti vektord stfednich
hodnot jsme tedy pouzili Monte Carlo test, ktery
prokdzal, Ze oba soubory se lisi ve vektoru svych
stfednich hodnot.

Ddle byla provedena analyza hlavnich komponent
pro tvarové kmenové priméry i pro Procrustovy
tangentové souradnice. Vysledek je obsazen v tab. 3.
Procento variability vysvétlené prvnimi tfemi hlavni-
mi komponentami se lisi, ne vsak zasadné, pouze
u souboru Stihlice. Graficky efekt prvnich tfi hlav-
nich komponent je stejny jak pro kmenové tvarové
praméry, tak pro Procrustovy tangentové souradnice.
Proto jsme dale pouzili Procrustovy tangentové
souradnice (vzhledem k lepsi ndzornosti a také jiz
ke zhotovenym funkcim ve statistickém programu
S-plus).

Obé prvni hlavni komponenty v obou soubo-
rech vysvétluji priblizné 83 % variability. Maji
symetricky graficky efekt po celé délce kmene
(obr. 1-4) a tento efekt je totozny s efektem
»nejvétsich® hlavnich komponent v predchozich
¢lancich autort — KREPELA et al. (2001, 2004),
KREPELA (2002) u smrku i u borovice. Druhd hlavni
komponenta v souboru Doubravcice 1 vysvétluje
13,4 % celkové variability. Jde o efekt ,kofenovych
nabéht“ Variabilita pochazi ze silnych (azkych)
kofenovych nabéht oproti izkému (silnému) zbytku
kmene. Treti hlavni komponenta vysvétluje 1,9 %
celkové variability. Jde o kmeny s poskozenym vrcho-
lem.

V souboru Stihlice ma druha hlavni komponenta
(vysvétluje 8,5 % variability) asymetricky graficky
efekt. Ve spodni ¢asti kmene (do 1/10/4) je smér
tohoto efektu opacny nez ve zbyvajici horni ¢asti
kmene. Biologické vysvétleni pro druhou hlavni
komponentu by bylo mozné hledat v hnilobé spodni
¢asti kmene zptsobené vaclavkou Armillaria ostoyae
(Romagn.) Herink. Tteti hlavni komponenta (3,6 %
variability) md graficky efekt dosti komplikovany. Ve
spodni ¢dsti kmene (1/100/) a déle v5/104, ..., 8/10h
ma tento efekt jeden smér a v 1/20k, 1/10h, 2/104,
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3/10h smér opacny. Biologické vysvétleni pro tuto
komponentu se nepodafilo nalézt.

Nejvétsi tvarové rozdily mezi obéma soubory je
nutno hledat v ramci variability vysvétlené 3., 2. a 4.
hlavni komponentou, jak udava tab. 4.

Obr. 5 a 6 znazornuji tvarové praméry ziskané
z plnych Procrustovych souradnic pro jednotlivé
Konselovy stromové tridy. V souboru Doubrav¢i-
ce 1 vidime tfi skupiny tvar@. Prvni tvofi stromy

predrustavé, druhou skupinu pak stromy drovnové
hlavni a posledni skupinu vristavé ustupujici stromy,
zastinéné zivotaschopné stromy a stromy odumira-
jici a odumrelé. V souboru Stihlice jsou skupiny
dvé. Prvni je tvofena predrustavymi stromy, druhd
pak ostatnimi stromovymi tridami, mezi nimiz jesté
nedoslo k tvarové diferenciaci. Stromova trida 4
byla napadena hnilobou — proto doslo ke tvarovému
zbytnéni ve spodni ¢dsti kmene.
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