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Field measurements are the most exact way to 
collect detailed information about forest proper-
ties, but such data collection is expensive and time 
consuming. In most cases remote sensing is a less 
expensive supplement to ground measurements 
and is frequently used in forest inventories due to 
its cost efficiency and timely capabilities over large
areas, and it may be used for assessment of vari-
ous forest and ecosystem information (CAMPBELL 
l994; DE FRIES, TOWNSHEND 1994; VOGELMANN et 
al. 1998). One of the main disadvantages of single-
sourced remote sensing measurements is that data 
are usually collected at a single spatial resolution. 
Different airborne techniques can collect data at a
variety of spatial resolutions, but most of them are 
still very expensive. High-resolution remote sensing 

data are more costly than low-resolution data to both 
purchase and process.

The most commonly used methods for image clas-
sification of remotely sensed images are applied on a
pixel-by-pixel basis without considering potentially 
useful spatial information among neighbouring pix-
els. Semivariances quantify certain spatial informa-
tion and have been proven very useful in the analysis 
of various spatial data (CARR 1966; WOODCOCK, 
STRAHLER 1988a,b; CURRAN 1988). Up to now, the 
semivariances have been successfully used in for-
estry applications, but only in the case of expensive 
high-resolution data (ST-ONGE, CAVAYAS 1995; 
TREITZ, HOWARTH 2000). SONG and WOODCOCK 
(2002) demonstrated the potential of multi-resolu-
tion remote sensors for research of forest succession. 
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ABSTRACT: The objective of this study was to evaluate the applicability of Landsat 5 TM images for analysing the
textural information on pine forest stands in western Georgia, United States. Analysing spatial correlations between 
pixels measured by semivariances and cross-semivariances (cross-correlation between two radiometric bands) calcu-
lated from transects of Landsat TM images, we explored differences between semivariances associated with images of
stands of various ages, origins (natural vs. planted) and species (loblolly pine – Pinus taeda L. – versus longleaf pine 
– Pinus palustris Mill.). We analysed both ground measurements and the satellite images using the visible, the near 
infrared, and the middle-infrared bands. We also analysed semivariances and cross-semivariances calculated from 
the Normalized Difference Vegetation Index and the Ratio Vegetation Index. The results showed that in spite of the
relatively low Landsat TM spatial resolution (30m) the semivariograms and cross-semivariograms provided potentially 
useful information about the above-mentioned classes. The semivariances and cross-semivariances calculated from
Landsat TM images of loblolly pine stands depend both on the age and the stand origin. In particular, large differences
exist in semivariance and cross-semivariance sills. Significant differences also exist between semivariances calculated
from stands of loblolly and longleaf pine.
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If the semivariance has a classic form, it is a very 
efficient tool in remotely sensed image analysis. For
example, it can be used for estimating the necessary 
spatial resolution because its range determines the 
distance above which ground resolution elements 
are not related (CURRAN 1988). RAMSTEIN and 
RAFFY (1989) stated that land cover classes could 
be well differentiated by the semivariance range (as-
suming an exponential semivariance model). Many 
present studies (ST-ONGE, CAVAYAS 1995; WALLACE 
et al. 2000) show that range and sill should be taken 
together for this purpose. However, it is not very 
clear if spatial pattern information produced by 
the semivariances calculated from low-resolution 
remote sensing images could improve a broad-scale 
forest classification (STRAHLER et al. 1986). There
are also some important difficulties in the applica-
tion of semivariance for forest classification. Very
often semivariances of forested areas are much more 
complicated than the “classic” form described in the 
literature, and can show periodic and aspatial varia-
tions. The first type of semivariance occurs in studies
of repetitive patterns while the second one occurs 
when studying random patterns. These kinds of semi-
variances have been reported and described e.g. by 
CURRAN (1988), and they are much more difficult to
model and interpret. The usefulness of “non-classic”
types of semivariances for classification is usually con-
siderably less due to severe difficulties in estimation of
their parameters. In addition, because of the large file
sizes of remotely sensed images, accurate semivariance 
modelling is computationally unreasonable. Instead 
of the accurate modelling of semivariances most au-
thors propose to calculate a set of texture measures 
of spatial variability (TMSV) or semivariances for the 
first consecutive lags (semivariance textural classifier
algorithm, STC) within a moving window based on 
the semivariance value (CHICA-OLMO, ABARCA-HER-
NANDEZ 2000; MIRANDA et al. 1992, 1996). Recently, 
several other parameters of semivariance were also 

analysed for classification using parameters that do not
require modelling, e.g. semivariances at consecutive 
lags, ratios of semivariances for consecutive pairs of 
lags, the slope of the semivariance for consecutive pairs 
of lags, mean semivariance and different measures of
semivariance shape (HERZFELD, HIGGINSON 1996; 
JAKOMULSKA, CLARKE 2001).

The results of applications of low-resolution re-
mote sensors for observations of forested areas are 
rather scarce. WOODCOCK et al. (1988a,b) calculated 
semivariances from remote images of forested areas 
using one visible (red) band of the Thematic Mapper
sensor at a 30-meter spatial resolution. MIRANDA et 
al. (1992, 1996) used relatively inexpensive micro-
wave images to classify Brazilian rainforest. Using 
both high and low resolution remote sensing images 
of conifer canopy structure, COHEN et al. (1990) 
concluded that the range of semivariances calculated 
using Landsat TM data was not useful for estimating 
tree crown sizes. The authors also indicated that sills
of these semivariances were very similar in magni-
tude. However, calculations were limited only to the 
visible portion of the image spectrum and did not 
combine multiple-band textural information.

The Landsat TM satellite is appropriate for map-
ping and investigating broad vegetative types. It uses 
three bands in the visible portion of the spectrum, 
three bands in the reflective-infrared portion of the
spectrum and one band in the thermal portion of the 
spectrum. The spatial resolution of the TM sensor
of the Landsat satellite is 30 metres for the visible 
bands and 120 metres for the thermal band. Landsat 
TM data are relatively inexpensive; satellite images of 
areas located in the USA can be purchased from the 
EROS Data Center for approximately $500–600 per 
each 185 × 185 km scene (prices as for May 2003). 
Classification methods based on spectral informa-
tion from Landsat TM images are appropriate for 
discriminating between classes with sufficiently
different spectral characteristics. For example, it is

Table 1. Some forest parameters for the studied stands of loblolly pine and longleaf pine

Stand Number 
(N)

Area (ha) Stems per ha Site index (base 25) Basal area (m2/ha)
mean min max mean min max mean min max mean min max

Loblolly planted young 47 86.2 33.4 235.8 1,766 1,216 2,506 56 48 65 10.07 4.59 18.37
Loblolly planted medium 35 80.2 57.8 207.4 1,406 561 1,730 59 48 65 21.67 11.50 26.87
Loblolly natural young 10 4.5 0.2 10.5 1,103 247 1,977 56 53 59 × × ×
Loblolly natural medium 36 8.1 0.4 68.1 801 247 1,545 62 56 63 8.04 5.74 17.22
Loblolly natural old 34 10.2 6.6 13.7 504 247 1,483 58 55 63 14.9 6.89 22.96
Longleaf planted medium 5 25.1 0.7 78.3 487 200 500 55 45 56 4.65 4.59 5.74
Longleaf natural old 5 26.6 6.1 31 355 275 450 52 40 56 8.27 3.67 14.24
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relatively easy to discriminate between water, fields,
and hardwood and coniferous forests (BAUER et al. 
1994; EVANS 1994). A more difficult situation oc-
curs when spectral characteristics of studied areas 
are very similar (e.g. for various coniferous stands, 
BROCKHAUS, KHORRAM 1992). In this case texture 
information can be essential.

The objective of this study was to evaluate the
applicability of relatively inexpensive, low-resolu-
tion Landsat 5 TM images for analysing the textural 
information of the images of loblolly pine forests 
(Pinus taeda L.) in western Georgia, USA, using 
geostatistical methods. Loblolly pine is the most 
important timber tree in the southeastern USA. 
Occupying approximately 12 million hectares (both 
natural stands and plantations), the species has ac-
counted for nearly 60% of all seedlings planted in 
the USA (SHEFFIELD, KNIGHTS 1982). We analysed 
different ages and origins of loblolly pine stands us-
ing semivariances and cross-semivariances. To check 
if semivariances can discriminate between different
species, we compared semivariances for loblolly pine 
with those of longleaf pine (Pinus palustris Mill.).

MATERIAL AND METHODS

In this study remote sensing images were related 
to vegetation data through the use of ground-valida-
tion data collected in the field. The study area was
located in the western part of the state of Georgia, 
USA. The ground reference forest data was covered
by the Landsat TM scene, path 019/row 37, collected 
in November 1997. The ground data collected for
each reference site contained stand level informa-
tion including stand-polygon GIS/GPS coordinates, 
vegetation type (e.g. species) as well as quantitative 
data (e.g. age, diameter at breast height, basal area, 
and density).

To calculate reliable semivariances we limited our 
subject data to large loblolly pine stands described 
in Table 1. In order to compare the loblolly pine 
stand textural characteristics with another species 
we also used data from longleaf pine stands. We 
divided all studied stands into three age classes: 
young (6–15 years old), medium (16 to 30 years 
old) and old (older than 30 years). We differenti-
ated also between planted and natural stands. We 
used data collected for 162 stands of loblolly pine  
(82 planted and 80 natural). No ground data for old 
planted stands of loblolly pine was available. In order 
to show the effect of the pine species on semivariance
we also used data collected from medium-age planted 
longleaf pine stands (16–30 years old) and from old 
natural longleaf pine stands (older than 30 years). Some 

characteristics of the studied classes of forest stands are 
given in Table 1.

In this study we used digital numbers (DN) from 
the RED band (red, 0.63–0.69 µm), the NIR band 
(reflective-infrared, 0.76–0.90 µm) and the MIR
band (mid-infrared 1.55–1.75 µm). The RED band
is sensitive enough to discriminate between plant 
species. The NIR band is especially sensitive to the
amount of vegetation biomass present in a scene. 
The MIR band is sensitive to the amount of water in
plants (ERDAS Field Guide 1990). Together with the 
spectral characteristics of the images we also studied 
the geostatistical characteristics of the Normalized 
Difference Vegetation Index (NDVI) introduced by
Rouse (ROUSE et al. 1973; NEMANI et al. 1993) as 
well as the Ratio Vegetation Index (RVI) proposed 
by JORDAN (JORDAN 1969; DE JONG 1994; BROWN 
et al. 2000). The NDVI index has been found to be a
sensitive indicator of the presence and condition of 
green vegetation (TUCKER et al. 1986) whereas the 
Ratio Vegetation Index is sensitive to the existence 
of forest underbrush (BROWN et al. 2000).

Geostatistics comprises many methods for evalu-
ating the autocorrelation that commonly exists 
in spatial data. The central tool of geostatistics is
semivariance that is a measure of spatial continuity. 
The graphical expression of the semivariance is the
semivariogram. The application of the semivariance
requires that the data meet the intrinsic hypothesis 
for a regionalised variable (JOURNEL, HUIBREGTS 
1978). This hypothesis requires that the expected
value of differences in data is zero for all vectors h 
separating any two points in the region of interest, 
and that the semivariance in the data is a function 
only of the vector h between samples.

Semivariance (γ) is half the expected squared 
difference between values of data at a distance of
separation or lag, h, a vector in both distance and 
direction. The experimental semivariance γ(h) is 
calculated as:

                1      N(h)
γ(h) = ——— ∑[Z(xi) – Z(xi + h)]2  (1)
            2N(h)  i=1

where:  h  –  lag (in pixels) over which γ (semivariance) is 
measured,

 N  –  the number of observations used in the esti-
mate of γ(h),

 Z  –  the value of the variable of interest at spatial 
position xi.

The value Z(xi + h) is the variable value at lag h 
from x.

Semivariances are roughly summarised by three cha- 
racteristics:
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–  sill – the plateau that the semivariance reaches. 
The sill is the amount of variation explained by
the spatial structure;

–  range of the influence (correlation). The distance
at which the semivariance reaches the sill;

–  nugget effect – the vertical discontinuity at the
origin. The nugget effect is a combination of sam-
pling error and short-scale variations that occur 

at a scale smaller than the closest sample spacing. 
The sum of the nugget effect and sill is equal to the
variance of the sample.

Remotely sensed images can also be used in semi-
variance calculations. In this study semivariances were 
calculated for each stand separately using the digital 
numbers (DN) or vegetation indices from the remotely 
sensed images as data values Z(xi). We calculated the 

Table 2. Minimum, maximum, mean, and standard deviation of DN values calculated from Landsat 5 TM images of investigated 
loblolly and longleaf pine stands

Loblolly pine Longleaf pine
planted natural planted 

medium
natural 

oldyoung medium young medium old

RED

minimum 11.00 10.00 13.00 11.00 12.00 13.00 12.00
maximum 52.00 43.00 31.00 41.00 37.00 39.00 53.00
mean 18.74 15.19 19.91 16.06 16.35 20.71 21.49
std. dev. 3.28 2.20 3.95 2.95 2.41 3.00 5.31

NIR

minimum 14.00 12.00 21.00 22.00 11.00 24.00 55.00
maximum 63.00 58.00 47.00 53.00 55.00 54.00 0.53
mean 38.84 35.96 34.56 37.88 32.44 36.70 34.75
std. dev. 4.48 4.64 6.48 4.38 3.99 2.89 5.44

MIR

minimum 14.00 5.00 20.00 14.00 2.00 24.00 10.00
maximum 108.00 103.00 86.00 93.00 87.00 107.00 118.00
mean 42.82 27.63 47.38 30.15 34.19 51.08 52.08
std. dev. 11.81 7.81 14.93 9.79 7.71 9.14 18.71

NDVI

minimum –0.15 –0.20 0.00 –0.03 –0.42 0.075 –0.01
maximum 0.59 0.63 0.52 0.57 0.51 0.053 0.52
mean 0.30 0.40 0.24 0.40 0.33 0.28 0.24
std. dev. 0.14 0.08 0.13 0.10 0.07 0.07 0.10

RVI  
(NIR/RED)

minimum 1.00 0.28 1.43 1.00 1.00 1.6 0.83
maximum 3.65 3.44 3.27 3.19 3.21 3.25 3.34
mean 2.26 1.80 2.41 1.85 2.08 2.46 2.37
std. dev. 0.33 0.28 0.36 0.32 0.26 0.22 0.39

Fig. 1. Isotropic semivariances 
calculated from Landsat 5 TM 
images of a loblolly pine stand 
planted in 1988
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Fig. 2. Isotropic semivariances for different types of loblolly pine stands, calculated from Landsat 5 TM images using: (a) RED
channel, (b) NIR channel, (c) MIR channel, (d) NDVI, and (e) RVI (NIR/RED)
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semivariances for RED, MIR and NIR bands as well as 
semivariances for NDVI and RVI indices.

The semivariances were computed in possibly ho-
mogeneous and large stands, changing for compari-
son purposes only one essential stand feature, e.g. 
age (young, medium, old) or type (planted, natural). 
The detailed stand parameters are shown in Table 1.
The calculations were performed using all possible
pairs of pixels in remotely sensed images of inves-
tigated stands, for lags changing from about 30 m 
(the spatial resolution of Landsat TM) with a step of 
about 30 m, up to about 500 m (approximately half 
of the length of the smallest forest stand used for 

the semivariance calculations). The calculations did
not show noticeable dependence of semivariances 
with the change of direction of vector h. Therefore
in our analyses we concentrated on isotropic (om-
nidirectional) semivariance for which the direction 
of separation vector h is unimportant. The mean
semivariance was then calculated by averaging all 
semivariances γi for the same stand type.

Another measure of spatial correlation analysed in 
this paper is the cross-semivariance:

              1      N
γWZ = ——— ∑[W(xi) – W(xi + h)] [Z(xi) – Z(xi + h)] (2)
             2N   i=1

Fig. 3. The exemplary semivariances calculated from (a) RED,
(b) NIR, and (c) MIR bands of the remote images of 1,000 m 
× 1,000 m natural and planted loblolly pine stands

Fig. 4. The semivariances calculated from the remote images
of medium and old loblolly pine and longleaf pine stands for 
the (a) RED, (b) NIR, and (c) MIR bands; lines for natural old 
longleaf pine in figures (a) and (c) were scaled down by mul-
tiplying semivariances by 0.5
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where:  xi  –  a data location,
 h  –  a lag vector,
 Z(xi), W(xi) – the DN values at location x for different

bands,
 N  –  the number of data pairs spaced in a distance 

and direction h units apart.
The cross-semivariance quantifies the joint spa-

tial variability (cross-correlation) between two 
radiometric bands (DEUTCH, JOURNEL 1998; JA-
KOMULSKA, CLARKE 2001). The experimental
cross-semivariances were calculated in the same way 
as semivariances described above. The obtained ex-
perimental semivariances (or cross-semivariances) 
were used to fit an appropriate theoretical model
(MCBRATNEY, WEBSTER 1986). These models could
allow us to calculate semivariance values that are 

necessary for other geostatistical analyses such as 
kriging, cokriging, etc.

All remotely sensed images were analysed using 
ERDAS 8.5 software. Semivariance calculations and 
analyses were performed using GS+, version 3.1 
(ROBERTSON 1998) as well as Variowin, version 2.2 
(PANNATIER 1996) geostatistical packages.

RESULTS

The basic descriptive statistics for the remotely
sensed images of the studied stands are presented 
in Table 2. These statistics reveal some distinctions
between different stands, but do not provide any tex-
tural information. To explore the textural continuity 
of the studied stands, we calculated and analysed 

Table 3. Parameters of semivariogram models fitted to mean experimental semivariograms calculated from investigated stands:
nugget (c0), structural variability connected with exponential model (c1), range of exponential model (a1), slope of linear model 
(c2), indicative goodness of fit (IGF)

Loblolly pine Longleaf pine

planted natural planted 
medium

natural 
oldyoung medium young medium old

c0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

c1 6.320 3.188 8.000 5.954 4.231 7.145 22.841

RED a1 128.800 160.070 105.083 252.170 212.84 164.500 344.400

NIR

c2 0.002 0.001 0.001 0.006 0.002 0.002 0.010

IGF 1.18E-04 1.15E-04 2.17E-02 4.56E-04 9.56E-04 5.13E-05 4.19E-03

c0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

c1 15.026 16.036 11.428 17.178 12.368 6.677 60.923

a1 191.838 223.153 112.684 243.589 206.692 143.530 128.340

MIR

c2 0.002 0.006 0.039 0.004 0.004 0.002 0.010

IGF 4.05E-04 2.06E-04 5.94E-03 3.35E-03 3.31E-03 2.55E-05 1.46E-03

c0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

c1 72.120 46.040 114.207 77.558 48.227 67.9233 131.229

a1 187.906 222.043 98.367 278.160 218.42 128.34 349.96

c2 0.009 0.006 0.000 0.083 0.045 0.010 0.159

NDVI

Power 1.000 1.000 0.000 1.000 1.000 1.000 1.000

IGF 1.02E-04 2.42E-04 3.20E-03 2.00E-03 2.28E-03 1.46E-03 1.02E-03

c0 0.000 0.000 0.000 0.000 0.000 × ×

c1 0.00425 0.005 0.004 0.006 0.0045 × ×

a1 141.55 135.640 122.200 146.300 180.760 × ×

RVI (NIR/
RED)

c2 1.80E-06 2.70E-06 3.45E-06 2.70E-06 5.00E-07 × ×

IGF 4.32E-05 5.27E-05 2.62E-04 9.38E-05 9.18E-04 × ×

c0 0.000 0.000 0.000 0.000 0.000 × ×

c1 0.059 0.059 0.059 0.064 0.047 × ×

a1 135.289 163.907 108.459 148.557 117.495 × ×

c2 1.50E-05 1.80E-05 0.000 8.21E-05 5.40E-05 × ×

IGF 1.46E-04 8.55E-05 2.51E-04 1.17E-03 7.45E-04 × ×
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der to show them together. For the small separation 
distances (a few lags) the semivariance curve rises 
relatively fast. Then, at the larger distances, it exhib-
its a gentle sloping and becomes almost linear.

The results of semivariance calculations using DN
from RED, NIR and MIR bands as well as the analysed 
vegetation indices are presented in Fig. 2. The largest
differences between semivariances calculated for the
investigated loblolly pine stands were obtained from 
the RED (Fig. 2a) and MIR (Fig. 2c) bands. Distinctly 
smaller differences were observed between semivari-
ances calculated for DN from the NIR band as well 
as between semivariances calculated from vegetation 
indices. Careful examination of Fig. 2 also shows that 
natural stands have higher semivariance values than 
equal-age planted stands.

Typical situations in which semivariances were cal-
culated from the images of middle-aged loblolly pine 
stands of 1,000 m × 1,000 m are shown in Fig. 3. For 
all bands the semivariances calculated from smaller 
areas are less regular, but semivariance values for 
natural stands are still significantly higher than for
planted ones. Similarly, as for mean semivariances 
calculated from all stands of a given type, the largest 
difference between semivariances was found for the
RED and MIR bands (Figs. 3a and 3c).

We also compared semivariograms for different
species of pine by calculating semivariances for 
planted and natural stands of longleaf pine. The
corresponding semivariances of loblolly pine and 
longleaf pine calculated from the DN for the RED, 
NIR and MIR bands are shown in Fig. 4 (note that the 
lines for natural old longleaf pine in figures (a) and
(c) were scaled down by multiplying semivariances 
by 0.5). Large differences exist between semivari-
ances calculated from loblolly pine and longleaf pine 

Fig. 5. The cross-semivariances between RED, MIR and NIR
bands for (a) planted and (b) natural medium-aged stands of 
loblolly pine

the semivariances from digital images for RED, 
MIR and NIR bands as well as the cross-semivari-
ances between these bands. We also calculated the 
semivariances for the vegetation indices (NDVI and 
RVI). Fig. 1 shows the most typical shape of semivari-
ograms calculated from Landsat 5 TM images of the 
investigated stands. The semivariances in this figure
were standardised (divided by their variances) in or-

Fig. 6. The cross-correlations
between the RED and MIR bands 
calculated for various loblolly 
pine stands
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stands. Except for the NIR band (Fig. 4b) the values 
of semivariance for longleaf pine are much higher 
than those of loblolly pine calculated for the stands 
of similar type and age. The values of semivariances
at the distance of a few lags can also be used as a 
discriminative parameter.

To check if the parameters of the semivariance 
model can be used as discriminative parameters for dif-
ferent pine stands, we modelled the above-described 
experimental semivariances. The best fit of mean ex-
perimental semivariances for most of the investigated 
stands was provided by the sum of the nugget effect
model, exponential model and linear model:

γm(h) = c0 + c1{1 – exp (–3h / a1)} + c2h (3)

where:  c0  –  the nugget value,
 c1  –  the structured variability connected with the 

exponential model,
 a1  –  the practical range of the exponential model,
 c2  –  the slope of the linear model.

In a few cases for young loblolly pine stands only 
the nugget effect model and exponential model were
used for experimental semivariogram modelling. The
parameters of the model semivariances for investi-
gated loblolly pine stands as well as for longleaf pine 
stands are summarised in Table 3. The Indicative
Goodness of Fit (IGF) values for the analysed cases 
are also shown in Table 3. IGF gives a measure of how 
well the model of semivariance fits the experimental
semivariance points (PANNATIER 1996).

Fig. 5 shows the cross-semivariances quantifying the 
joint spatial variability between two bands calculated 
between bands RED, MIR and NIR, for planted and 
natural, medium-aged stands of loblolly pine. The larg-
est cross-correlations exist between the RED and MIR 
bands both for the planted and for natural stands. The
cross-correlations between bands RED and NIR as well 
as between MIR and NIR are substantially smaller. In 
the case of natural stands, values of cross-semivariance 
are much higher than for planted stands (Fig. 5b).

Fig. 6 presents the cross-correlations between the RED 
and MIR bands calculated for the studied loblolly pine 
stands. We can see from this figure that all age classes
are well separated. The largest cross-semivariance val-
ues were obtained for young stands and the smallest for 
old stands, both for planted and natural ones. Because 
of the higher semivariance values for natural stands, the 
semivariances of natural medium and young planted 
stands are very close to each other.

DISCUSSION

The initial increase of the semivariance curve 
(Fig. 1) results from the fast decrease of spatial cor-

relation at the distances of a few lags. This means
that the spatial correlations between pixels decrease 
rapidly for short distances. At longer distances the 
semivariances do not reach saturation but increase 
almost linearly. This can be explained by a trend
that exists in the data. The trend is rather difficult to 
interpret; it may be caused by many reasons such as 
for example differential illumination of the imaged
area.

In order to check whether the semivariograms can 
be treated as “spatial signatures” of different types
of coniferous forests we calculated semivariances 
for different types of loblolly pine stands using the
DN values from RED, NIR and MIR bands as well 
as the analysed vegetation indices (NDVI and RVI). 
Natural stands have higher semivariance values 
than even-age planted stands (Fig. 2). This can be
explained by the higher variability of natural stand 
textures in comparison with those of planted stands. 
This tendency was also clearly observed for semi-
variances calculated from smaller, separate stands 
(Fig. 3). Distinctly smaller differences were observed
between semivariances calculated from vegetation 
indices (Figs. 2d and 2e). This somewhat surprising
behaviour of semivariances calculated using vegeta-
tion indices could be explained by the smoothing ef-
fect in that these indices are the ratios of DN coming 
from different bands.

As can be seen in Table 2, the nugget effect is
negligible for almost all experimental semivariances 
under study. The positive slope of the linear model,
which describes the trend in the data, is usually very 
slight. This linear behaviour of the semivariances is
distinctly visible only at distances longer than the 
range of the exponential model. The increase of
semivariance caused by the trend at the distance of 
the range of the exponential model is much smaller 
than the practical sill of this model. Therefore, the
existence of the trend does not interfere with the 
application of the semivariances for classification of
forests using the Landsat 5 TM images.

The most important component in the model of
the mean semivariogram γm(h) is the exponential 
term with well-defined ranges and sills. Because of
the relatively low spatial resolution of the Landsat 
5 TM data (30 m), and therefore the large size of 
support (JUPP et al. 1988, 1989), the ranges within 
a single stand, connected with the individual trees, 
are too short to observe. However, a distinct spatial 
correlation reflected by the exponential model ex-
ists at distances many times longer than the Landsat  
5 TM spatial resolution (Table 3). The image’s spatial
properties result from a complex combination of 
both cover and object size. The correlation described



56 J. FOR. SCI., 51, 2005 (2): 47–59

by the exponential model may be attributed to the 
similarity in arrangements of bigger objects such 
as small sub-stands or groups of trees, areas with 
similar understorey, etc. The differences in arrange-
ments of such bigger objects can be dependent on 
the age and stand origin. Because of the scale of 
observation, it is not surprising that there is little 
differentiation between pine stands observed in
ranges of the exponential model. However, in spite 
of the low resolution of the Landsat 5 TM images of 
pine stands, we found distinct differences in semi-
variance sills arising from the exponential model  
(Table 3). The differences depend both on the age and
the stand origin. As was shown by SONG and WOOD-
COCK (2002), at low spatial resolution the semivari-
ance from the scene with larger objects should have 
a higher sill. One can conclude that the parameters 
of the exponential term in the semivariance model, 
especially the sills, quantify well the investigated 
pine stands and confirm the spatial character of the
patterns of forest stands.

The cross-semivariances quantify the joint spatial
variability between two bands. The cross-correla-
tions exist between the RED and MIR bands both 
for the planted and for natural stands as well as 
much higher values of cross-semivariance for natural 
stands (Fig. 5). Also, the cross-correlations between 
the RED and MIR bands are well separated for all 
analysed age classes (Fig. 6). Therefore, the cross-
semivariances, which add new spatial information, 
can also be used for texture-based classification.

CONCLUSIONS

In the presented study, using semivariances and 
cross-semivariances, we analyse the spatial proper-
ties of low-resolution remote images of loblolly pine 
and longleaf pine forests of different ages and origins.
The semivariances and cross-semivariances were
calculated from remotely sensed images of studied 
stands using digital numbers (DN) and vegetation in-
dices (NDVI and RVI) as data values Z(xi). The mean
semivariances were then calculated by averaging all 
semivariances for the same stand type (Eq. 2).

The typical mean semivariance shows a relatively
fast rise for the few first lags. Then it exhibits a 
gentle sloping and becomes almost linearly shaped 
for the larger distances. The small linear increase of
semivariances at longer distances can be explained 
by a trend that may exist in the data. The shapes of
semivariances are similar for both very large stands 
of tens of hectares and small ones of a few hectares. 
We found distinct differences in mean semivari-
ances of images for the studied stands. This means

that in spite of the low-resolution of Landsat 5 TM 
remote images and the existence of a small trend in 
the data, the obtained experimental semivariances 
can be treated as “spatial signatures” for the studied 
stands.

The observed differences between semivariances
at the distances of several lags arise from different
spatial correlations existing in the studied stands 
at distances from a few tens to a few hundreds of 
meters. A relatively low-resolution of Landsat 5 TM  
remote images does not allow us to distinguish 
individual trees. The observed spatial correlations
can be attributed to the similarity in arrangements 
of bigger objects such as groups of trees or small 
sub-stands, areas with similar understorey, etc. The
largest differences in semivariances were obtained
for RED and MIR bands. In the cases of these bands 
the semivariance values for natural stands were re-
markably higher than for planted stands. This can
be explained by the higher variability of the texture 
of natural stands in comparison with that of planted 
stands. The semivariances calculated from vegeta-
tion indices for different loblolly pine stands showed
much smaller differences than those calculated from
the DN of studied bands. This fact can be explained
by the smoothing effect arising from the use of DN
coming from different bands in vegetation indices
and having different spatial properties. It was also ev-
ident that the semivariances calculated from Landsat 
5 TM images were useful for discriminating differ-
ent-age loblolly pine stands. We also found large 
differences between semivariances calculated from
images of loblolly pine and longleaf pine stands.

The best fit of mean experimental semivariances
for most of the investigated stands was provided by 
the sum of the three models: the nugget effect model,
exponential model, and linear model. It was found 
that most important in the model of mean semivari-
ance is the exponential term with well-defined range
and sill. Both the nugget effect and the contribution
to the semivariance arising from a linear term at 
short distances were significantly smaller than the
exponential term. The parameters of the exponen-
tial term in the semivariance model, especially the 
sills, differentiate well the investigated pine stands
and confirm the spatial character of the patterns of
forest stands.

The cross-semivariances between investigated
bands were also calculated and analysed. The larg-
est cross-correlations were found between the RED 
and NIR bands both for planted and natural loblolly 
pine stands. The cross-correlations between bands
RED and MIR as well as between MIR and NIR were 
substantially smaller. In the case of natural stands 
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the values of cross-semivariances were much higher 
than those for planted stands. It was also shown us-
ing cross-semivariances that all different-age loblolly
pine stands were well separated. The largest cross-
semivariance values were obtained for young stands 
and the smallest ones for old stands, both for planted 
and natural stands.

This study demonstrates that geostatistical tech-
niques used with relatively inexpensive low-reso-
lution Landsat 5 TM images can be helpful in 
evaluating spatial characteristics of loblolly pine and 
longleaf pine stands. High-resolution or multi-reso-
lution satellite investigations, which give the highest 
accuracy, are still very expensive when they are used 
over large areas. Therefore, efforts to exploit spatial
information from Landsat TM remote images of for-
est areas are still necessary.
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Semivariogramová analýza textury dat z Landsatu TM 5 u porostů borovice 
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ABSTRAKT: Cílem studie bylo zhodnotit použitelnost snímků z družice borových porostů v západní Georgii ve Spo-
jených státech. Při analýze prostorových korelací mezi pixely měřenými pomocí semivariancí a křížových semivariancí 
(křížové korelace mezi dvěma radiometrickými pásmy), počítanými z transektů ve snímcích z družice Landsat TM, jsme 
zjistili rozdíly mezi semivariancemi vztahujícími se ke snímkům porostů různého stáří, původu (přirozené versus uměle 
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založené porosty) a druhu (borovice kadidlová Pinus taeda L. versus borovice bahenní Pinus palustris Mill.). Analyzovali 
jsme jak pozemní měření, tak družicové snímky využívající viditelné, blízké infračervené a střední infračervené pásmo 
spektra. Také jsme analyzovali semivariance a křížové semivariance vypočtené z normalizovaného diferenčního indexu 
vegetačního pokryvu (Normalized Difference Vegetation Index) a vegetačního indexu (Ratio Vegetation Index). Výsledky
ukázaly, že přes relativně malé prostorové rozlišení Landsatu TM semivariogramy a křížové semivariogramy poskytly 
potenciálně užitečnou informaci o uvedených třídách. Semivariance a křížové semivariance počítané na snímku Landsatu 
TM pro borovici kadidlovou a borovici bahenní závisejí jak na věku, tak na původu porostu. Velké rozdíly existují zejmé-
na v prazích semivariancí a křížových semivariancí. Významné diference existují také mezi semivariancemi počítanými  
z porostů borovice kadidlové a bahenní.
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