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Basic source materials for the forest evaluation are both 
data of the forest management plan and data of the cadas-
tral documentation. The basis for correct determination of 
the evaluated land and stand value is its truly defined area.
For the calculation of the lot and parts acreage the change-
affected lots are always considered. The sum of their areas 
is an invariable to which the calculation of the new state 
should be adjusted if the admissible limit is not exceeded. 
The simple methods of adjustment used until now cannot 
be employed in more complicated cases, otherwise they 
do not grant the unique solution.

When we want to look for an optimum variant from 
the given possibilities, we have to solve the problem of 
finding the maximum or minimum, i.e. the highest and the 
lowest values of the studied quantities. These two terms 
are embraced in the term extreme (Lat. extremum). That 
is why the problems of finding the maximum or minimum
are called the extremal problems. Solutions of a certain 
class of these problems based on the “Lagrangian func-
tion” belong to the branch of mathematics the Swiss 
mathematician L. Euler called “the calculus of variations” 
(ALEXEJEV et al. 1991).

The paper deals with the applicability of this method 
on an example of real division of shared ownership  
of a forest land. The so-called singular ownership is  
a frequent case of such shared ownership in this country. 
In the real division of the shared ownership the relation-
ship of a participant to the whole is expressed as the ideal 
share with the size of the participant’s share in the who- 

le (total value of the forest) being expressed as a frac-
tion.

The price (value) of a forest is very often set as the 
sum of land and stand values. The graphical basis for the 
calculation of land price is, apart from the cadastral map, 
also the typological map showing to what group of forest 
types (GFT) the segment belongs; to calculate the price 
of the stand we use either stand or outline map. To apply 
the proposed method to simultaneous valuation of forest 
lands and stands and their division according to a given 
share, it is suitable first to create segments of the same
(constant) value of the smallest unit of area (price map) 
by intersection of the typological and the stand map. Thus 
it is possible to better identify the corresponding parts of 
boundaries of GFT and units of forest spatial arrange-
ment. Then it is necessary to compare the situation on the 
mentioned forestry maps with the state of land registration 
– real-estate cadastre.

In its technical part, the real-estate cadastre links up to 
all previous records, especially to the earlier real-estate 
records from 1964–1992 and to the archived land cadastre. 
However, the map collection heritage, taken over by the 
real-estate cadastre in 1993, is quite fragmentary. Fur-
thermore, many maps do not show the ownership of the 
real estate to a necessary extent. As regards the accuracy 
of the area determination, it is of great importance if the 
maps are:
–  maps measured, processed and managed by the numeri-

cal method with the prevailing quality of areas 1 or 2 
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(according to the mapping technology called THM or 
later ZMVM), i.e. the areas determined either from di-
rectly measured data or from coordinates of the break 
points of the plot boundary lines,

–  maps measured or processed and managed by the 
graphical method with the prevailing quality of areas 
0 (THM graphical, other numerical and decimal maps, 
fathom maps), i.e. the areas determined graphically 
from a map.

From the paper of BUMBA (1992) it is possible to 
deduce that the percentage of the area corresponding to 
the first, more accurate method of area determination is
around 15%, while the remaining 85% is represented by 
the less accurate, graphically determined areas. Similarly, 
the areas of segments of forest plots determined on the 
basis of forest maps and the areas of segments of evaluated 
agricultural land can be generally regarded as graphically 
determined although they are obtained from collections 
of digital maps. 

The calculation of areas always includes all the plots 
affected by the change. The sum of their present areas is 
an invariant to which the calculation of areas in the new 
situation – unless the difference exceeds an acceptable 
limit – must be adjusted. To calculate the areas of parcels 
(and segments) we use the traditional methods that have 
been elaborated from the oldest instructions and direc-
tives to the currently valid regulation of the Czech Office
for Surveying Mapping and Cadastre (2001). However, 
in more complicated cases of intersections between reg-
istration and evaluation layers, the simple adjustment 
procedures described in these regulations are insufficient
and their application may lead to deformations of areas of 
the respective parcel group.

When solving complicated situations with intersecting 
layers of different land records, the author of division or 
valuation of real property, valuation or typological layers 
and price maps has to adjust the vector of the corrections 
in the areas of segments in accordance with the given 
conditions. Various approximate solutions of the particu-
lar situation can be found and deduced in a logical way. 
However, the objective of this article is to show a clear 
mathematical apparatus for the adjustment of graphi-
cally determined areas and to give at least one example 
expressing some characteristics of the adjustment. Work 
with areas determined from graphical map materials is 
presumed.

MATERIAL AND METHODS

Non-homogeneous measurements belonging to dif-
ferent aggregates of normal distribution with different 
characteristics of standard deviation, but with the same 
position characteristic, have to be standardised, i.e. 
expressed proportionally in the units of their accuracy 
using the weight of the measurement. The measurements 
are thus converted to one virtual homogeneous set with 
normal distribution. [Instead of the term “standard devia-
tion” σ, geodetic literature prefers the term “mean square 

error” m due to the expression of the possible existence 
of not only random but also systematic errors; reported 
e.g. by BÖHM et al. (1990).] For the correct adjustment of 
areas it is therefore important to assess the weight of the 
graphically measured area in a suitable way. The deduc-
tion is described e.g. in VIŠŇOVSKÝ and ČIHAL (1985). 
The mean square error of the graphically determined area l  
is m = k √I , where k is a constant for the specific area. As
follows from the equation, the mean square error increases 
in proportion to the square root of the area. If k = 1 for 
an individual weight, then it is possible to express from 
the following relation 

               1           1         1           1       1         1
p1:...: pn = ––– :...: ––– = ––– :...: ––– = –– :...: ––   (1)

              m
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2l1              k
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                                                               1
the relation for an individual weight pi = –– 

                                                               li

where: pi – the weight,
            li – the area.

From the above-mentioned formula the deviation in 
the closure of the calculation of areas must be divided in 
proportion to the areas.

The principle of adjustment is shown on an example 
solving the adjustment of 15 segments of plots together 
with other “additional” conditions. We have one parcel 
from the real-estate cadastre that has to be divided into 

1. Situation   
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four new segments A1, A2, A3, A4. For this reason a suit-
able division of the plot was proposed. According to the 
proposal, the planned position of the new boundaries 
was staked out in the terrain and the geometric plan was 
worked out. Only in this plan the areas of the segments  
A1 – A4 were specified, with the quality of area marked 
either (1), (2) or (0), i.e. the areas determined either nu-
merically or graphically. The intersection of the areas ac-
cording to the stand and typological map created segments 
marked B1, B2, B3, B4 of the constant value. The task of the 
author of valuation is to determine the sizes of segments 
l1 – l15 through adjustment so that the prices C1, C2, C3, C4 
of the newly divided plots A1 – A4 are equal and, at the 
same time, the vector of the residues is minimised in the 
sense of LSM. In the case of insertion of additional price 
conditions, their number must be lower than the number 
of necessary measurements.

The specification of the task is described in Fig. 1, the
numerical values are presented in Table 1. Determina-
tion of the degrees of freedom is presented in Table 2. 
A sufficient condition for unambiguous determination
of all segments is the knowledge of eight of them. For 
example, with the use of segments l5, l6, l7, l9, l10, l11, l13, 
l14 it is possible to calculate all the remaining ones. The 
number of degrees of freedom determines the number of 
the basic condition equations.

In our example there are 7 degrees of freedom. Theo-
retically it is possible to add the maximum of k = 8 ad-
ditional conditions. In that case, however, the task would 
lead to the calculation without adjustment and it would be 
possible to solve it directly from the system of condition 
equations. The areas are presented in m2; the valuation of 
areas is in monetary units (MU).

Further in the text means:
vector of correlates  k = (Ka, Kb, Kc, ... , Kj)

T

vector of measurements  l = (l1, l2, l3, ... , ln)
T

vector of adjusted values  l = (L1, L2, L3, ... , Ln)
T

vector of closures  u = (Ua, Ub, Uc, ... , Uj)
T

vector of corrections  v = (v1, v2, v3, ... , vn)
T.

However, the measured areas are affected by unavoida-
ble errors, therefore, after their substitution into the condi-
tion equations we obtain the so-called deviation equations, 
where Ui are the deviations from the zero value (closures). 
When we add unknown corrections vi (as the matrix  
v = l – l) to the individual areas at this moment, the condi-
tion equations will be fulfilled exactly, which, regarding
the system of calculations of closures, leads to the so-
called modified condition equations (Table 3).

For the calculation procedure described below it is nec-
essary to ensure linear independent conditions, that is why 

Table 1. Specification of the problem

Parcels A Given areas (m2) Segments of parcels Measured areas (m2)
 A1 17,990 l1 2,641
A2 17,700 l2 4,698
A3 17,110 l3 5,530
A4 16,600 l4 5,082
Total 69,400 l5 2,481

Segments B and MU/m2 Given areas (m2) l6 4,683
B1 5 MU 6,192 l7 5,319
B2 6 MU 17,668 l8 5,200
B3 7 MU 21,752 l9 1,049
B4 8 MU 23,788 l10 4,680
Total 69,400 l11 5,436

Conditions C Given value (MU) l12 6,005
C1 119,884 l13 3,547
C2 119,884 l14 5,506
C3 119,884 l15 7,491
C4 119,884 Total 69,348
Total 479,536

Table 2. Determination of the degrees of freedom

Number of observations   n = 15
Number of necessary measurements k = 8
Number of redundant measurements (degrees of freedom) r = n – k = 7
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condition No. 8 in Table 3 was omitted in further calcula-
tions as it is already included in the total sum of A type 
parcels and therefore it is redundant. For the assessment 
of the price of each A type parcel there are 4 additional 
conditions, but, analogically, one of them is redundant and 
has to be omitted (arbitrary one). For this reason condi-
tion No. 12 was omitted in further calculations. Thus the 
number of independent condition equations decreased to 
s = 10. The system of equations is non-homogeneous due 
to the unavoidable residues of areas.

The coefficients of corrections of the modified condition
equations can be arranged into the so-called shape matrix 
A. After notation  

          a1    b1    ...     j1          a2    b2    ...     j2
A =   

 :      :      .      :                 .           .                       . 
          an    bn    ...     jn 

it is possible to transform the system of equations into 
the short form: ATv + u = 0, where u = ATl – u0, while 
the elements of vector u0 are the given areas and pos-
sibly the proposed values of the new parcels. It is not 
possible to directly figure out the individual unknowns
as their number is higher than the number of equations. 
The problem would have an infinite number of solutions.
According to Frobenius theorem, the system of equations 
has a solution if and only if the rank of the matrix of the 
system is equal to the rank of the augmented matrix of 
the system. Further to this, if the rank of the matrix of the 
system equals the number of unknowns, the system has 
only one solution. As in our case the number of unknowns 
n = 15 and the rank of the matrix h(A) = 10, it would be 
theoretically possible, in addition to the so-called basic 
solution, to choose and a priori determine n – h(A) = 5 
unknowns and to calculate the rest of them directly from 
the system of condition equations. Although the number of 
such selections is given by the combination number
                 n          15
Cs (n) = (     ) = (      ) = 3,003

  
               s           10

not all of the selections enable a unique solution.
In order to obtain a unique solution we have to use an-

other known relation for minimisation of the Euclidean 
metric:

                   n
|| v || E = √ ∑pivi

2 = min
                  i = 1

This function may be compared to criteria function 
known from optimisation tasks solved by mathemati-
cal programming. If the matrix of weights is denoted as  
P = diag (p1, p2, ... , pn) , the minimum condition will be 
in matrix notation: 
    vTPv = min   (2)

The adjusted corrections of condition measurements 
may be calculated in various ways. A generalised solu-
tion of the LSM was presented e.g. by MÍKA (1985). The 
simplest method of finding the minimum of a function,
with the simultaneous satisfaction of further conditions, 
seems to be the calculation with the use of Lagrange 
coefficients.

The rule for the use of multiplicators was first published
in 1788 by a French mathematician J. L. Lagrange in his 
Mécanique analytique for a wide class of tasks of the 
calculus of variations – so-called Lagrange problems. 
Lagrange wrote [quotation according to ALEXEJEV et al. 
(1993)]: “It is possible to assert the following principle. If 
we are looking for the maximum or minimum of a func-
tion of several variables with the condition that there is 
a relation between these variables given by one or more 
equations, it is necessary to add to the minimised function 
the functions determining the equations of the relation, 
multiplied by indeterminate multiplicators and then look 
for the maximum or minimum of this sum as if the vari-
ables were independent. The obtained equations together 
with the equations of the relations enable us to solve all 
the unknowns.” 

According to the above-mentioned procedure, the 
system of the modified condition equations is multiplied
in sequence by the so-far indeterminate Lagrange coeffi-
cients (converted by multiplication -2 and called correlates 

Table 3. Condition equations and modified condition equations

Order Condition equations Modified condition equations Ui

1 A1 = l1 + l2 + l3 + l4 v1 + v2 + v3 + v4 + U1 = 0 –39
2 A2 = l5 + l6 + l7 + l8 v5 + v6 + v7 + v8 + U2 = 0 –17
3 A3 = l9 + l10 + l11 + l12 v9 + v10 + v11 + v12 + U3 = 0 +60
4 A4 = l13 + l14 + l15 v13 + v14 + v15 + U4 = 0 –56
5 B1 = l1 + l5 + l9 v1 + v5 + v9 + U5 = 0 –21
6 B2 = l2 + l6 + l10 + l13 v2 + v6 + v10 + v13 + U6 = 0 –60
7 B3 = l3 + l7 + l11 + l14 v3 + v7 + v11 + v14 + U7 = 0 +39
8 B4 = l4 + l8  + l12 + l15 v4 + v8  + v12 + v15 + U8 = 0 +238
9 C1 = 5l1 + 6l2 + 7l3 + 8l4 5v1 + 6v2 + 7v3 + 8v4 + U9 = 0 +875

10 C2 = 5l5 + 6l6 + 7l7 + 8l8 5v5 + 6v6 + 7v7 + 8v8 + U10 = 0 –548
11 C3 = 5l9 + 6l10 + 7l11 + 8l12 5v9 + 6v10 + 7v11 + 8P12 + U11 = 0 –467
12 C4 = 6l13 + 7l14 + 8l15 6v13 + 7v14 + 8v15 + U12 = 0 –132
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according to C. F. Gauss) −2Ka, −2Kb, ... , −2Kj and added 
to the equation of the minimum condition. Thus the new 
“Lagrange function” is created:

Ω = vTPv – 2kT (ATv + u) = min     (3)

To determine the minimum of this function it is neces-
sary to partially differentiate it by the individual variables 
and then equate these derivations to zero in sequence:

∂Ω––––– = 2Pv – 2Ak = 0  (4)
∂v

From the relation we can deduce the equations for 
individual corrections: v = P–1Ak. These equations are 
then substituted into the modified condition equations
and the result after rearrangement is the system of nor-
mal equations for the calculation of unknown correlates. 
The arrangement of the equations in matrix notation is:  
ATP–1Ak + u = 0 . Here it is possible to denote the matrix 
as N = ATP–1A, where the matrix N is a symmetric matrix 
of coefficients of normal equations. The equations are in
the form Nk + u = 0  and their solutions are correlates  
k = –N–1u. 

Subsequently the unknown correlates are calculated 
and from the equations of corrections it is also possible 
to calculate the individual vi values. After substitution, the 
calculation with the weights is:

v = –P–1A (ATP–1A)–1 u   (5)

(without the necessity to quantify the k vector). Finally, 
the adjusted values

l = l + v   (6)

are calculated. The calculation is shown for example by 
BÖHM et al. (1990).

The adjusted values of corrections are presented for 
comparison in Table 4. 

After the calculation of the adjusted segments of plots it 
is possible to assess the a priori mean square error m0 for 
unit weight according to the known formulas:

                vTPv
m0 = ± √ ––––––  (7)
                    

r

and the mean square errors of the individual measured 
quantities from the relation:

   M2 = m0
2P–1 (8)

where:  M = diag (m1, m2. ..., mn) – the matrix of the mean  
square errors,

  M2 – the matrix of variances.

In the case of adjustment with additional conditions, 
the calculated mean square errors characterise, rather than 
the accuracy of measurement, the correspondence of the 
proposed division (i.e. direction of the partitioning lines, 
proposed price of the divided plots) with the topology of 
the assignment and the extent of deformation of the input 
measurement. To evaluate the degree of this deformation, 
it is possible to calculate the ratio of the statistics τ with 
the use of:
a) measurement without additional conditions,
b)  including additional conditions.

In both cases, the same number of degrees of freedom  
r = 7 is considered. The mentioned statistics are as fol-
lows:
a)  If the presented problem is calculated without ad-

ditional conditions, the apriori mean square error for 

Corrections of segments 
(m2)

Areas of segments after 
adjustment (m2)

Areas of segments rounded 
(m2)

Control calculation of 
condition equations (m2, 

MU)

v1 = 265.58 L1 = 2,906.58 L1 = 2,907 A1 = 17,990

v2 = 239.22 L2 = 4,937.22 L2 = 4,937 A2 = 17,700

v3 = –88.20 L3 = 5,441.80 L3 = 5,442 A3 = 17,110

v4 = –377.60 L4 = 4,704.40 L4 = 4,704 A4 = 16,600

v5 = –110.94 L5 = 2,370.06 L5 = 2,370 B1 = 6,192

v6 = –52.76 L6 = 4,630.24 L6 = 4,630 B2 = 17,668

v7 = 26.32 L7 = 5,345.32 L7 = 5,345 B3 = 21,752

v8 = 154.37 L8 = 5,354.37 L8 = 5,354 B4 = 23,788

v9 = –133.65 L9 = 915.35 L9 = 915 C1 = 119,885

v10 = –264.85 L10 = 4,415.15 L10 = 4,415 C2 = 119,883

v11 = –16.36 L11 = 5,419.64 L11 = 5,420 C3 = 119,884

v12 = 354.85 L12 = 6,359.85 L12 = 6,360 C4 = 119,884

v13 = 138.38 L13 = 3,685.38 L13 = 3,685

v14 = 39.24 L14 = 5,545.24 L14 = 5,545

v15 = –121.62 L15 = 7,369.38 L15 = 7,369

Table 4. Results of the example
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unit weight (denoted by index a) is: m0
a = ± 0.346 (m2) 

and the mean square error of the measurement of for 
example segment l1 is: m1

a = ± 17.8  (m2).
b)  If the presented problem is calculated with additional 

conditions, the a priori mean square error for unit 
weight (denoted by index b) is: m0

b = ± 4.46 (m2) and 
the mean square error of the measurement of for exam-
ple segment l1 is: m1

b = ± 229 (m2).
From the comparison of the mean square errors
               m0

b

τ(apriori) = ––– = 12.9  (9)
               m0

a

it is possible to deduce to what extent the additional 
conditions worsened the calculated statistics and thus to 
express the degree of deformation that, in an ideal case, 
should approach τ(apriori) = 1. A more objective comparison 
may be performed with the use of a posteriori statistics. 
For this purpose it is necessary to calculate the covariance 
matrices of the adjusted measured quantities Ca and Cb. 
These matrices are calculated as: 

    C = m0
2 P–1

(aposteriori)  (10)

and the inversion weight matrix of the plot segments after 
adjustment is calculated as:

P–1
(aposteriori) = P–1 – P–1AN–1ATP–1 = P–1A(ATP–1A)–1ATP–1 (11)

Similar deduction is described for example in BÖHM 
et al. (1990). The covariance matrixes are symmetric; the 
main diagonal elements contain the variances (squares of 
the mean square errors) while the off-diagonal elements 
contain covariances.

We choose a suitable criterion of optimality for assess-
ment of the proposed solution. In relation to the previously 
described calculation of the ratio τ(apriori), such a suitable 
criterion is the so-called A-optimality, as described e.g. 
by PÁZMAN (1980) or KUBÁČEK and KUBÁČKOVÁ 
(2000). A-optimality is defined by the calculation of the 
covariance matrix trace. The optimisation plan minimises 
the scalar trC – trace of covariance matrix. This is in 
fact minimisation of the Euclidean norm of the vector of  
a posteriori mean square values. On the other hand, the 
simplicity of calculation of this criterion is compensated 
by omission of the influence of the predicted covariances.
It is possible to determine

                  √ tr1Cτ(aposteriori) = ––––– = 10.2  (12)
                  √ tr2C
If there are more solutions to the division proposal, the 

better proposal in the sense of A-optimality will be the 
proposal with the lower τ(apriori) or better τ(aposteriori).

For the sake of completeness it is possible to present 
the results of the calculation of a posteriori errors of the 
adjusted plot segments. For example, the mean square 
error of the adjusted area of segment L1 calculated
a)  without additional conditions is  

m1
a = ± 12.5 (m2),

b)  from adjustment with additional conditions is  
m1

b = ± 118  (m2).

RESULTS AND DISCUSSION

From the mathematical aspect, the minimising condi-
tion of the LSM is expressed by the minimising condition 
of the Euclidean norm (metrics) of a standardised vector 
of corrections v. This method can be used in all cases 
with excessive number of measurements, in this case of 
the redundantly measured segments of plots. If it is still 
possible to presume that the measured data show at least 
approximately normal distribution of probability, the use 
of LSM is fully justified – see e.g. KUBÁČEK and PÁZMAN 
(1979) or KUBÁČEK (1983). For the adjustment itself, the 
question of error distribution makes no significant influ-
ence. At the same time, the principle of adjustment of the 
condition measurements allows us to solve problems and 
closures of areas at intersections of various layers.

A sequel of previous as well as present legislative rules 
and rules for the administration of the cadastre documenta-
tion and also rules for the preparation of forest management 
plans admits the adjustment of areas, however, only in an 
rough way that can be applied to simple cases only. The 
adjustment of original areas of segments of evaluated soil-
ecological units (ESEU) during division of agricultural land 
is not mentioned in the present cadastre rules at all.

This method can help solve such tasks of land division 
where the intersections of various layers of land registra-
tion, evaluation and typological or price documentation 
occur. For example:
a)  adjustment of areas of segments between parcels of 

real-estate cadastre and simplified records,
b)  adjustment of areas of segments between parcels of real-

estate cadastre and areas created by ESEU on agricul-
tural land or areas of segments of GFT on forest land,

c)  adjustment of areas of segments between parcels of 
real-estate cadastre and documentation for valuation 
with the use of added price conditions.

According to Act No. 344/1992, the areas in the cadastre 
documentation are recorded as rounded to integral square 
metres. Similarly, the calculation of forest valuation 
must show the same accuracy. If the adjustment of parcel 
segments was supposed to satisfy the additional price 
conditions even after rounding to integral MU, finding an
integral solution with the use of other methods would be 
either impossible or, in the case of large systems of equa-
tions, very difficult. For this purpose, after the calculation
of LSM it is possible to apply some methods of discrete 
programming, such as the method of cutting hyperplanes 
in the calculation by the simplex method, branch and 
boundaries method and other methods, as summarised e.g. 
by PELIKÁN (2001). In practice, however, the solution of 
this discretisation problem is made significantly easier by
the Decree to Property Valuation Act No. 540/2002, which 
sets down that the total price is rounded to 10 CZK.

The characteristics of the presented area adjustment 
can be summarised as follows: 
a)  In connection with all previous as well as present ca-

dastre and forest management plan rules, it is necessary 
to adjust with weights. The size of these weights is best 
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determined as the reciprocal value of the corresponding 
area of adjusted segment.

b) Segments of areas can be adjusted by the method of 
adjustment of condition measurements, either by in-
determinate Lagrange coefficients (correlates) or by 
adjustment of intermediary measurements. With re-
spect to difficulty of the creation of normal equations
(not always their number), the first method using the
correlates is unambiguously more convenient.

c) Functions determining the equations of adjustment cor-
rections are linear. In case they are not solved together 
with additional conditions, the coefficients of the shape
matrix A at the adjustment of the condition measure-
ments are equal either 0 or +1. In case that there are 
some additional (price) conditions, the coefficients in
the respective condition equations agree with the valu-
ation of the segment of the plot (in MU).

d) In case that the total adjusted area is equal in both 
boundaries of parcels from different layers (parcels 
are overlapping completely), in order to eliminate the 
possible singularity of the system of normal equations 
it is necessary to exclude redundant conditions and to 
ensure that the linear vectors of the shape matrix A are 
linearly independent.

e) As regards the preparation of various tasks of land divi-
sion according to the previously set price, it is possible 
to supplement the condition equations with other – ad-
ditional conditions, and then to adjust the areas with 
satisfaction of all these a priori conditions. The number 
of solved conditions must be lower than the number 
of measurements n; in case it equals the number of 
measurements n, it is not the case of adjustment.

f) The variation range of possible values of corrections is 
often determined in practice by the size of limit devia-
tions in accordance with other standards and rules – for 
example Decree No. 84/1996 or Decree No. 190/1996. 
Using the standard procedures it is possible to deter-
mine the accuracy characteristics of the quantities 
before and after valuation. In the case of valuation with 

additional conditions, these statistics do not necessarily 
show the real accuracy of the input data, but they can 
still illustrate to what extent the proposed land divi-
sion and evaluation are suitable from the typological 
aspect.
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Využití variačního počtu pro dělení lesních pozemků

M. MATĚJÍK

Lesnická a dřevařská fakulta, Mendelova zemědělská a lesnická univerzita, Brno, Česká republika

ABSTRAKT: Příspěvek obsahuje využití metody nejmenších čtverců (MNČ) pro účely dělení a oceňování pozemků. Tuto metodu 
je možné použít všude tam, kde existuje nadbytečný počet měření, v tomto případě dílů ploch. Z matematického hlediska je mini-
malizační podmínka MNČ jako normovaná podmínka ∑ pvv = min. , která minimalizuje euklidovskou normu ||v||E n-rozměrného 
vektoru reziduí dílů ploch za současného splnění daných podmínek. Výpočet je ukázán klasickým postupem variačního počtu pomocí 
Lagrangeovy funkce. Pokud jsou do výpočtu vloženy navíc další dodatečné podmínky, je možné na podkladě uvedených kritérií 
posoudit míru deformace zvoleného řešení na měřené veličiny. Využití metody vyrovnání podmínkových měření může pomoci řešit 
úlohy při dělení parcel na podkladě průniků vrstev parcel podle katastru nemovitostí a podle dřívějších pozemkových evidencí, 
bonitačních, typologických, cenových a jiných mapových podkladů.

Klíčová slova: výměra; pozemek; dělení pozemků; katastr nemovitostí; střední chyba; metoda nejmenších čtverců; variační 
počet; vyrovnání s podmínkami
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Ocenění (hodnota) lesa se nejčastěji stanoví součtem 
hodnoty pozemku a hodnoty porostu. Grafickým podkla-
dem pro výpočet ceny pozemku je vedle katastrální mapy 
mapa typologická, z níž se určí příslušnost dílu k soubo-
ru lesních typů (SLT) a pro výpočet ceny porostu mapa 
porostní nebo obrysová. V případě současného ocenění 
lesních pozemků a lesních porostů a jejich rozdělení pod-
le předem zadaného podílu je u navržené metody vhod-
né, aby se nejprve průnikem typologické a porostní mapy 
vytvořily díly o stejném (konstantním) ocenění nejmenší 
plošné jednotky (cenová mapa) a teprve s těmito díly se 
pak dále pracovalo. Je tak možné lépe ztotožnit odpoví-
dající si části hranic soborů lesních typů a jednotek pro-
storového rozdělení lesa. Situaci je pak třeba porovnat se 
stavem pozemkové evidence – katastru nemovitostí.

Do výpočtu výměr se berou vždy všechny změnou do-
tčené parcely. Součet jejich dosavadních výměr je inva-
riantou, na kterou musí být výpočet výměr nového stavu 
– pokud rozdíl nepřekročí dopustnou mez – vyrovnán. 
Pro výpočet výměr parcel (a dílů) se používá ustálených 
způsobů, které jsou propracovány od nejstarších instrukcí 
a směrnic až po předpis ČÚZK (2001), platný v součas-
né době. Ve složitějších případech průniků evidenčních 
nebo bonitačních vrstev jsou v nich uvedené jednoduché 
postupy vyrovnání nedostatečné a jejich aplikace může 
vést až k deformacím výměr řešené skupiny parcel.

Vyrovnané opravy podmínkových měření lze počítat 
různým postupem. Zobecněné řešení MNČ uvádí na-
příklad MÍKA (1985). Pro nalezení minima funkce za 
současného splnění dalších podmínek je početně nejjed-
nodušší výpočet pomocí Lagrangeových koeficientů.

V práci je řešena možnost využití variační metody na 
příkladu reálného rozdělení podílového spoluvlastnictví 
k lesnímu pozemku, jehož situace je zobrazena na obr. 1. 
Sestaví se soustava podmínkových rovnic, do nichž se 
dosadí měřené hodnoty. Soustava přetvořených podmín-
kových rovnic se v klasickém řešení vynásobí po řadě 
zatím neurčitými součiniteli, Lagrangeovými koeficien-
ty a sečte se s rovnicí podmínky minima. Utvoří se tak 

nová „Lagrangeova funkce“ (3). Pro určení minima této 
funkce je nutné ji parciálně derivovat podle jednotlivých 
proměnných a tyto derivace postupně položit rovny nule 
(4). Vypočtou se hodnoty neznámých korelát a z rovnic 
oprav se vypočtou jednotlivé hodnoty vi. V rozepsaném 
tvaru je výpočet s vahami (5). Nakonec se vypočtou 
vyrovnané hodnoty podle (6). Po výpočtu vyrovnaných 
dílů ploch je možné stanovit apriorní střední chybu m0 
pro jednotkovou váhu a střední chyby jednotlivých mě-
řených veličin ze vztahu (8); v maticovém vyjádření je  
M matice středních chyb a M2  matice variancí. V pří-
padě vyrovnání s dodatečnými podmínkami vypočítané 
střední chyby více než přesnost měření charakterizují to, 
zda navržený způsob dělení (např. směr dělících přímek, 
navrhovaná cena oddělených pozemků) odpovídá topo-
logii zadání a do jaké míry vstupní měření deformuje. 
Pro posouzení míry této deformace je možné vypočítat 
poměr statistik τ pomocí: 
a) měření bez dodatečných podmínek,
b) včetně dodatečných podmínek.

Objektivnějším porovnáním je využití aposteriorních 
statistik. K tomu účelu je nutné vypočítat kovarianční 
matice vyrovnaných měřených veličin Ca, Cb. Tyto ma-
tice se vypočítají podle vzorce (10), přičemž inverzní 
váhová matice P–1

(aposteriori) dílů ploch po vyrovnání se 
vypočítá podle vzorce (11). Je možné určit vhodné kri-
térium optimality pro posouzení zvoleného řešení. Ve 
vztahu k uvedenému výpočtu poměru τ(apriori) je takovým 
vhodným kritériem tzv. A – optimalita, která je definová-
na pomocí výpočtu stopy kovarianční matice. Optimali-
zační plán minimalizuje skalár trC – stopu kovarianční 
matice. Jedná se vlastně o minimalizaci euklidovské nor-
my vektoru aposteriorních středních chyb. Jednoduchost 
výpočtu tohoto kritéria je na druhé straně vyvážena tím, 
že neuvažuje vliv odhadnutých kovariancí. Je možné ur-
čit τ(aposteriori)  podle (12). Pokud je k dispozici více řešení 
návrhu dělení, pak lepším návrhem ve smyslu A – opti-
mality bude návrh s menším τ(apriori) nebo lépe τ(aposteriori).
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