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Calculus of variations and its application to division of forest land
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ABSTRACT: The paper deals with an application of the least squares method (LSM) for the purposes of division and evaluation
of land. This method can be used in all cases with redundant number of measurements, in this case of segments of plots. From the
mathematical aspect, the minimisation condition of the LSM is a standardised condition Y pvv = min., minimising the Euclidean
norm ||v||,, of an n-dimensional vector of residues of plot segments at simultaneous satisfaction of the given conditions. The tradi-
tional procedure of calculus of variations with the use of Lagrangian function is shown. If some additional conditions are included
in the calculation, on the basis of the criteria presented in this article it is possible to evaluate the degree of deformation of the
selected solution in relation to the measured quantities. The application of the method of adjustment of condition measurements
may help solve the problems of parcel division on the basis of intersection of the parcel layers according to the real-estate cadastre
and according to previous land records, valuation, typological, price and other map sources.
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ment with conditions

Basic source materials for the forest evaluation are both
data of the forest management plan and data of the cadas-
tral documentation. The basis for correct determination of
the evaluated land and stand value is its truly defined area.
For the calculation of the lot and parts acreage the change-
affected lots are always considered. The sum of their areas
is an invariable to which the calculation of the new state
should be adjusted if the admissible limit is not exceeded.
The simple methods of adjustment used until now cannot
be employed in more complicated cases, otherwise they
do not grant the unique solution.

When we want to look for an optimum variant from
the given possibilities, we have to solve the problem of
finding the maximum or minimum, i.e. the highest and the
lowest values of the studied quantities. These two terms
are embraced in the term extreme (Lat. extremum). That
is why the problems of finding the maximum or minimum
are called the extremal problems. Solutions of a certain
class of these problems based on the “Lagrangian func-
tion” belong to the branch of mathematics the Swiss
mathematician L. Euler called “the calculus of variations”
(ALEXEIJEV et al. 1991).

The paper deals with the applicability of this method
on an example of real division of shared ownership
of a forest land. The so-called singular ownership is
a frequent case of such shared ownership in this country.
In the real division of the shared ownership the relation-
ship of a participant to the whole is expressed as the ideal
share with the size of the participant’s share in the who-
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le (total value of the forest) being expressed as a frac-
tion.

The price (value) of a forest is very often set as the
sum of land and stand values. The graphical basis for the
calculation of land price is, apart from the cadastral map,
also the typological map showing to what group of forest
types (GFT) the segment belongs; to calculate the price
of the stand we use either stand or outline map. To apply
the proposed method to simultaneous valuation of forest
lands and stands and their division according to a given
share, it is suitable first to create segments of the same
(constant) value of the smallest unit of area (price map)
by intersection of the typological and the stand map. Thus
it is possible to better identify the corresponding parts of
boundaries of GFT and units of forest spatial arrange-
ment. Then it is necessary to compare the situation on the
mentioned forestry maps with the state of land registration
— real-estate cadastre.

In its technical part, the real-estate cadastre links up to
all previous records, especially to the earlier real-estate
records from 1964—1992 and to the archived land cadastre.
However, the map collection heritage, taken over by the
real-estate cadastre in 1993, is quite fragmentary. Fur-
thermore, many maps do not show the ownership of the
real estate to a necessary extent. As regards the accuracy
of the area determination, it is of great importance if the
maps are:

— maps measured, processed and managed by the numeri-
cal method with the prevailing quality of areas 1 or 2
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(according to the mapping technology called THM or
later ZMVM), i.e. the areas determined either from di-
rectly measured data or from coordinates of the break
points of the plot boundary lines,

— maps measured or processed and managed by the
graphical method with the prevailing quality of areas
0 (THM graphical, other numerical and decimal maps,
fathom maps), i.e. the areas determined graphically
from a map.

From the paper of BUMBA (1992) it is possible to
deduce that the percentage of the area corresponding to
the first, more accurate method of area determination is
around 15%, while the remaining 85% is represented by
the less accurate, graphically determined areas. Similarly,
the areas of segments of forest plots determined on the
basis of forest maps and the areas of segments of evaluated
agricultural land can be generally regarded as graphically
determined although they are obtained from collections
of digital maps.

The calculation of areas always includes all the plots
affected by the change. The sum of their present areas is
an invariant to which the calculation of areas in the new
situation — unless the difference exceeds an acceptable
limit — must be adjusted. To calculate the areas of parcels
(and segments) we use the traditional methods that have
been elaborated from the oldest instructions and direc-
tives to the currently valid regulation of the Czech Office
for Surveying Mapping and Cadastre (2001). However,
in more complicated cases of intersections between reg-
istration and evaluation layers, the simple adjustment
procedures described in these regulations are insufficient
and their application may lead to deformations of areas of
the respective parcel group.

When solving complicated situations with intersecting
layers of different land records, the author of division or
valuation of real property, valuation or typological layers
and price maps has to adjust the vector of the corrections
in the areas of segments in accordance with the given
conditions. Various approximate solutions of the particu-
lar situation can be found and deduced in a logical way.
However, the objective of this article is to show a clear
mathematical apparatus for the adjustment of graphi-
cally determined areas and to give at least one example
expressing some characteristics of the adjustment. Work
with areas determined from graphical map materials is
presumed.

MATERIAL AND METHODS

Non-homogeneous measurements belonging to dif-
ferent aggregates of normal distribution with different
characteristics of standard deviation, but with the same
position characteristic, have to be standardised, i.e.
expressed proportionally in the units of their accuracy
using the weight of the measurement. The measurements
are thus converted to one virtual homogeneous set with
normal distribution. [Instead of the term “standard devia-
tion” o, geodetic literature prefers the term “mean square
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error” m due to the expression of the possible existence
of not only random but also systematic errors; reported
e.g. by BOHM et al. (1990).] For the correct adjustment of
areas it is therefore important to assess the weight of the
graphically measured area in a suitable way. The deduc-
tion is described e.g. in VISNOVSKY and CIHAL (1985).
The mean square error of the graphically determined area /
is m =k \I, where k is a constant for the specific area. As
follows from the equation, the mean square error increases
in proportion to the square root of the area. If £ =1 for
an individual weight, then it is possible to express from
the following relation

=——1. =— . 1
iy Ry Nl MY
. o . 1
the relation for an individual weight p, = T

where: p, — the weight,
[ — the area.

From the above-mentioned formula the deviation in
the closure of the calculation of areas must be divided in
proportion to the areas.

The principle of adjustment is shown on an example
solving the adjustment of 15 segments of plots together
with other “additional” conditions. We have one parcel
from the real-estate cadastre that has to be divided into
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Table 1. Specification of the problem

Parcels A Given areas (m?) Segments of parcels Measured areas (m?)
A, 17,990 1 2,641
A, 17,700 X 4,698
A, 17,110 I, 5,530
A, 16,600 1, 5,082
Total 69,400 1 2,481
Segments B and MU/m? Given areas (m?) 1, 4,683
B, 5 MU 6,192 L 5,319
B, 6 MU 17,668 1 5,200
B, 7 MU 21,752 I, 1,049
B, 8 MU 23,788 L, 4,630
Total 69,400 1, 5,436
Conditions C Given value (MU) 1, 6,005
C, 119,884 1, 3,547
C, 119,884 1, 5,506
C, 119,884 1, 7,491
C, 119,884 Total 69,348
Total 479,536

four new segments A , A, A,, A,. For this reason a suit-
able division of the plot was proposed. According to the
proposal, the planned position of the new boundaries
was staked out in the terrain and the geometric plan was
worked out. Only in this plan the areas of the segments
A — A, were specified, with the quality of area marked
either (1), (2) or (0), i.e. the areas determined either nu-
merically or graphically. The intersection of the areas ac-
cording to the stand and typological map created segments
marked B, B,, B,, B, of the constant value. The task of the
author of valuation is to determine the sizes of segments
1, -1, through adjustment so that the pricesC,, C,, C,, C,
of the newly divided plots A — A, are equal and, at the
same time, the vector of the residues is minimised in the
sense of LSM. In the case of insertion of additional price
conditions, their number must be lower than the number
of necessary measurements.

The specification of the task is described in Fig. 1, the
numerical values are presented in Table 1. Determina-
tion of the degrees of freedom is presented in Table 2.
A sufficient condition for unambiguous determination
of all segments is the knowledge of eight of them. For
example, with the use of segments 1, 1, 1, 1., 1,,, 1,, 1.,
1,, it is possible to calculate all the remaining ones. The
number of degrees of freedom determines the number of
the basic condition equations.

Table 2. Determination of the degrees of freedom

In our example there are 7 degrees of freedom. Theo-
retically it is possible to add the maximum of & = 8 ad-
ditional conditions. In that case, however, the task would
lead to the calculation without adjustment and it would be
possible to solve it directly from the system of condition
equations. The areas are presented in m?; the valuation of
areas is in monetary units (MU).

Further in the text means:

vector of correlates k=K,K,K,.., Kj)T
I1=0,L, L, .., 1)
vector of adjusted values 1=(L,L,, L, ...,L)"
u=U,U,U,..,U)

V=,V Ve V)N

vector of measurements

vector of closures

vector of corrections

However, the measured areas are affected by unavoida-
ble errors, therefore, after their substitution into the condi-
tion equations we obtain the so-called deviation equations,
where U . are the deviations from the zero value (closures).
When we add unknown corrections v, (as the matrix
v=1-1) to the individual areas at this moment, the condi-
tion equations will be fulfilled exactly, which, regarding
the system of calculations of closures, leads to the so-
called modified condition equations (Table 3).

For the calculation procedure described below it is nec-
essary to ensure linear independent conditions, that is why

Number of observations
Number of necessary measurements

Number of redundant measurements (degrees of freedom)

n=15
k=8
r=n—-k=17
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Table 3. Condition equations and modified condition equations

Order  Condition equations Modified condition equations U,
1 A =L+ +1L+] v, tv, vty +U =0 -39
2 A, =1L +1+1L+1 vitvotv tve+ U, =0 -17
3 A3:l‘)+110+]11 +112 V9+V10+V11+V12+U3 =0 +60
4 A4 = 113 + 114 + 115 V]3 + v14 + V]5+ U4 = 0 756
5 B =1+L+] v, v, v+ U =0 21
6 B,=L+1+1,+1, v, v, tv, +v,+U =0 —60
7 B,=L+L+1,+1, v, tv, tv +v, + U =0 +39
8 B,=1,+1 +1,+1; v, tv, +v, v+ U =0 +238
9 C, =5l +6l,+7 +8l, 5v, +6v,+7v,+8v,+ U, =0 +875

10 C, =5l +6l + 71 + 8l Svi+6v +Tv, +8v,+U =0 —548
11 C,=5l,+6l +71, +81, 5vy+6v, +7v, +8P,+U, =0 —467
12 C,=6l,+71,+8l 6v,+7v,+8v +U, =0 -132

condition No. 8 in Table 3 was omitted in further calcula-
tions as it is already included in the total sum of A type
parcels and therefore it is redundant. For the assessment
of the price of each A type parcel there are 4 additional
conditions, but, analogically, one of them is redundant and
has to be omitted (arbitrary one). For this reason condi-
tion No. 12 was omitted in further calculations. Thus the
number of independent condition equations decreased to
s =10. The system of equations is non-homogeneous due
to the unavoidable residues of areas.

The coefficients of corrections of the modified condition
equations can be arranged into the so-called shape matrix
A. After notation

al bl ]1

a2 b2 -]2
A= :

an .bn ‘]n

it is possible to transform the system of equations into
the short form: A’v + u = 0, where u = A’l — u, while
the elements of vector u, are the given areas and pos-
sibly the proposed values of the new parcels. It is not
possible to directly figure out the individual unknowns
as their number is higher than the number of equations.
The problem would have an infinite number of solutions.
According to Frobenius theorem, the system of equations
has a solution if and only if the rank of the matrix of the
system is equal to the rank of the augmented matrix of
the system. Further to this, if the rank of the matrix of the
system equals the number of unknowns, the system has
only one solution. As in our case the number of unknowns
n = 15 and the rank of the matrix h(A) = 10, it would be
theoretically possible, in addition to the so-called basic
solution, to choose and a priori determine n—h(A) =5
unknowns and to calculate the rest of them directly from
the system of condition equations. Although the number of
such selections is given by the combination number

c.m=(")=(};)=3003
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not all of the selections enable a unique solution.

In order to obtain a unique solution we have to use an-
other known relation for minimisation of the Euclidean
metric:

n
vl =, 32 = min
i=1

This function may be compared to criteria function
known from optimisation tasks solved by mathemati-
cal programming. If the matrix of weights is denoted as

P =diag (p,, p,, ... , p,) , the minimum condition will be
in matrix notation:
v'Pv = min 2)

The adjusted corrections of condition measurements
may be calculated in various ways. A generalised solu-
tion of the LSM was presented e.g. by MiKA (1985). The
simplest method of finding the minimum of a function,
with the simultaneous satisfaction of further conditions,
seems to be the calculation with the use of Lagrange
coefficients.

The rule for the use of multiplicators was first published
in 1788 by a French mathematician J. L. Lagrange in his
Mécanique analytique for a wide class of tasks of the
calculus of variations — so-called Lagrange problems.
Lagrange wrote [quotation according to ALEXEJEV et al.
(1993)]: “It is possible to assert the following principle. If
we are looking for the maximum or minimum of a func-
tion of several variables with the condition that there is
a relation between these variables given by one or more
equations, it is necessary to add to the minimised function
the functions determining the equations of the relation,
multiplied by indeterminate multiplicators and then look
for the maximum or minimum of this sum as if the vari-
ables were independent. The obtained equations together
with the equations of the relations enable us to solve all
the unknowns.”

According to the above-mentioned procedure, the
system of the modified condition equations is multiplied
in sequence by the so-far indeterminate Lagrange coeffi-
cients (converted by multiplication -2 and called correlates
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according to C. F. Gauss) 2K , -2K, ..., —2Kj and added
to the equation of the minimum condition. Thus the new
“Lagrange function” is created:

Q =v’Pv -2k’ (A'v + u) = min 3)

To determine the minimum of this function it is neces-
sary to partially differentiate it by the individual variables
and then equate these derivations to zero in sequence:

oQ
ov

=2Pv-2Ak=0 )

From the relation we can deduce the equations for
individual corrections: v = P'Ak. These equations are
then substituted into the modified condition equations
and the result after rearrangement is the system of nor-
mal equations for the calculation of unknown correlates.
The arrangement of the equations in matrix notation is:
ATP'AK +u=0. Here it is possible to denote the matrix
as N= ATP'A, where the matrix N is a symmetric matrix
of coefficients of normal equations. The equations are in
the form Nk + u = 0 and their solutions are correlates
k=-N"'u.

Subsequently the unknown correlates are calculated
and from the equations of corrections it is also possible
to calculate the individual v, values. After substitution, the
calculation with the weights is:

v=-P'A (ATP'A) ' u %)

(without the necessity to quantify the k vector). Finally,
the adjusted values

1=1+v (6)

Table 4. Results of the example

are calculated. The calculation is shown for example by
BOHM et al. (1990).

The adjusted values of corrections are presented for
comparison in Table 4.

After the calculation of the adjusted segments of plots it
is possible to assess the a priori mean square error m, for
unit weight according to the known formulas:

my =4y Y )

and the mean square errors of the individual measured
quantities from the relation:

M2 = m P! (8)

where: M = diag (m, m,.
square errors,
M?— the matrix of variances.

..., m ) — the matrix of the mean

In the case of adjustment with additional conditions,
the calculated mean square errors characterise, rather than
the accuracy of measurement, the correspondence of the
proposed division (i.e. direction of the partitioning lines,
proposed price of the divided plots) with the topology of
the assignment and the extent of deformation of the input
measurement. To evaluate the degree of this deformation,
it is possible to calculate the ratio of the statistics T with
the use of:

a) measurement without additional conditions,
b) including additional conditions.

In both cases, the same number of degrees of freedom
r =7 is considered. The mentioned statistics are as fol-
lows:

a) If the presented problem is calculated without ad-
ditional conditions, the apriori mean square error for

Corrections of segments

(m?)

Areas of segments after
adjustment (m?)

Control calculation of

Areas of segments rounded .. . )
condition equations (m?,

(m?)

MU)
v = 265.58 L = 2,906.58 L= 2,907 A= 17,990
v, = 239.22 L,= 493722 L= 4,937 A= 17,700
v, = ~88.20 L= 5,441.80 L= 5,442 A= 17,110
v, = -377.60 L= 4,704.40 L= 4,704 A,= 16,600
v = ~110.94 L, = 2,370.06 L= 2,370 B, = 6,192
v, = -52.76 L= 4,630.24 L= 4,630 B,= 17,668
v, = 26.32 L= 5,345.32 L= 5,345 B,= 21,752
V= 154.37 L= 5,354.37 L= 5,354 B,= 23,788
v, = ~133.65 L,= 915.35 L,= 915 C = 119,885
V= ~264.85 L,= 4,415.15 L,= 4,415 C,= 119,883
v, = -16.36 L, = 5,419.64 L, = 5,420 C,= 119,884
v, = 354.85 L,= 6,359.85 L,= 6,360 C,= 119,884
V= 138.38 L,= 3,685.38 L,= 3,685
V= 39.24 L,= 5,545.24 L,= 5,545
V= ~121.62 L= 7,369.38 L= 7,369
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unit weight (denoted by index a) is: m* =+ 0.346 (m?)
and the mean square error of the measurement of for
example segment 1 is: m *==+17.8 (m?).

b) If the presented problem is calculated with additional
conditions, the a priori mean square error for unit
weight (denoted by index b) is: m” = + 4.46 (m?) and
the mean square error of the measurement of for exam-
ple segment 1, is: m * =+ 229 (m?).

From the comparison of the mean square errors
_my
wriory ~ 12.9 9
0

it is possible to deduce to what extent the additional

conditions worsened the calculated statistics and thus to

express the degree of deformation that, in an ideal case,
should approacht . = 1. Amore objective comparison
may be performed with the use of a posteriori statistics.

For this purpose it is necessary to calculate the covariance

matrices of the adjusted measured quantities C* and C®.

These matrices are calculated as:
C=mS P (10)

and the inversion weight matrix of the plot segments after
adjustment is calculated as:

P =P P'ANA’P = PTA(ATPA) AP (1)

(aposteriori)

(aposteriori)

Similar deduction is described for example in BOHM
et al. (1990). The covariance matrixes are symmetric; the
main diagonal elements contain the variances (squares of
the mean square errors) while the off-diagonal elements
contain covariances.

We choose a suitable criterion of optimality for assess-
ment of the proposed solution. In relation to the previously
described calculation of the ratio T aprioriy? such a suitable
criterion is the so-called A-optimality, as described e.g.
by PAZMAN (1980) or KUBACEK and KUBACKOVA
(2000). A-optimality is defined by the calculation of the
covariance matrix trace. The optimisation plan minimises
the scalar ##C — trace of covariance matrix. This is in
fact minimisation of the Euclidean norm of the vector of
a posteriori mean square values. On the other hand, the
simplicity of calculation of this criterion is compensated
by omission of the influence of the predicted covariances.
It is possible to determine

1
S T

Vaposteriori) V2C

If there are more solutions to the division proposal, the
better proposal in the sense of A-optimality will be the
proposal with the lower Taprioriy OF better T aposterioriy

For the sake of completeness it is possible to present
the results of the calculation of a posteriori errors of the
adjusted plot segments. For example, the mean square
error of the adjusted area of segment L, calculated
a) without additional conditions is

m==+12.5 (m?),
b) from adjustment with additional conditions is

mp’==118 (m?).

(12)
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RESULTS AND DISCUSSION

From the mathematical aspect, the minimising condi-
tion of the LSM is expressed by the minimising condition
of the Euclidean norm (metrics) of a standardised vector
of corrections v. This method can be used in all cases
with excessive number of measurements, in this case of
the redundantly measured segments of plots. If it is still
possible to presume that the measured data show at least
approximately normal distribution of probability, the use
of LSM is fully justified — see e.g. KUBACEK and PAZMAN
(1979) or KUBACEK (1983). For the adjustment itself, the
question of error distribution makes no significant influ-
ence. At the same time, the principle of adjustment of the
condition measurements allows us to solve problems and
closures of areas at intersections of various layers.

A sequel of previous as well as present legislative rules
and rules for the administration of the cadastre documenta-
tion and also rules for the preparation of forest management
plans admits the adjustment of areas, however, only in an
rough way that can be applied to simple cases only. The
adjustment of original areas of segments of evaluated soil-
ecological units (ESEU) during division of agricultural land
is not mentioned in the present cadastre rules at all.

This method can help solve such tasks of land division
where the intersections of various layers of land registra-
tion, evaluation and typological or price documentation
occur. For example:

a) adjustment of areas of segments between parcels of
real-estate cadastre and simplified records,

b) adjustment of areas of segments between parcels of real-
estate cadastre and areas created by ESEU on agricul-
tural land or areas of segments of GFT on forest land,

c¢) adjustment of areas of segments between parcels of
real-estate cadastre and documentation for valuation
with the use of added price conditions.

According to Act No. 344/1992, the areas in the cadastre
documentation are recorded as rounded to integral square
metres. Similarly, the calculation of forest valuation
must show the same accuracy. If the adjustment of parcel
segments was supposed to satisfy the additional price
conditions even after rounding to integral MU, finding an
integral solution with the use of other methods would be
either impossible or, in the case of large systems of equa-
tions, very difficult. For this purpose, after the calculation
of LSM it is possible to apply some methods of discrete
programming, such as the method of cutting hyperplanes
in the calculation by the simplex method, branch and
boundaries method and other methods, as summarised e.g.
by PELIKAN (2001). In practice, however, the solution of
this discretisation problem is made significantly easier by
the Decree to Property Valuation Act No. 540/2002, which
sets down that the total price is rounded to 10 CZK.

The characteristics of the presented area adjustment
can be summarised as follows:

a) In connection with all previous as well as present ca-
dastre and forest management plan rules, it is necessary
to adjust with weights. The size of these weights is best
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determined as the reciprocal value of the corresponding
area of adjusted segment.

b) Segments of areas can be adjusted by the method of
adjustment of condition measurements, either by in-
determinate Lagrange coefficients (correlates) or by
adjustment of intermediary measurements. With re-
spect to difficulty of the creation of normal equations
(not always their number), the first method using the
correlates is unambiguously more convenient.

¢) Functions determining the equations of adjustment cor-
rections are linear. In case they are not solved together
with additional conditions, the coefficients of the shape
matrix A at the adjustment of the condition measure-
ments are equal either 0 or +1. In case that there are
some additional (price) conditions, the coefficients in
the respective condition equations agree with the valu-
ation of the segment of the plot (in MU).

d) In case that the total adjusted area is equal in both
boundaries of parcels from different layers (parcels
are overlapping completely), in order to eliminate the
possible singularity of the system of normal equations
it is necessary to exclude redundant conditions and to
ensure that the linear vectors of the shape matrix A are
linearly independent.

e) Asregards the preparation of various tasks of land divi-
sion according to the previously set price, it is possible
to supplement the condition equations with other — ad-
ditional conditions, and then to adjust the areas with
satisfaction of all these a priori conditions. The number
of solved conditions must be lower than the number
of measurements #; in case it equals the number of
measurements #, it is not the case of adjustment.

f) The variation range of possible values of corrections is
often determined in practice by the size of limit devia-
tions in accordance with other standards and rules — for
example Decree No. 84/1996 or Decree No. 190/1996.
Using the standard procedures it is possible to deter-
mine the accuracy characteristics of the quantities
before and after valuation. In the case of valuation with

additional conditions, these statistics do not necessarily
show the real accuracy of the input data, but they can
still illustrate to what extent the proposed land divi-
sion and evaluation are suitable from the typological
aspect.
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VyuZziti varia¢niho poctu pro déleni lesnich pozemki
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ABSTRAKT: Piispévek obsahuje vyuziti metody nejmengich &tvercti (MNC) pro tiéely déleni a ocetiovani pozemki. Tuto metodu
je mozné pouzit vSude tam, kde existuje nadbytecny pocet méfeni, v tomto ptipadé dilti ploch. Z matematického hlediska je mini-
malizaéni podminka MNC jako normovana podminka ¥ pvv = min. , ktera minimalizuje euklidovskou normu |jv||  n-rozmémého
vektoru rezidui dilti ploch za sou¢asného splnéni danych podminek. Vypocet je ukazan klasickym postupem variaéniho po¢tu pomoci
Lagrangeovy funkce. Pokud jsou do vypoctu vlozeny navic dalsi dodate¢né podminky, je mozné na podkladé uvedenych kritérii
posoudit miru deformace zvoleného feSeni na métené veliCiny. Vyuziti metody vyrovnani podminkovych méteni mize pomoci fesit
ulohy pfi déleni parcel na podkladé prinikti vrstev parcel podle katastru nemovitosti a podle diivéjsich pozemkovych evidenci,
bonitaénich, typologickych, cenovych a jinych mapovych podkladu.

Kli¢ova slova: vymeéra; pozemek; déleni pozemk; katastr nemovitosti; stfedni chyba; metoda nejmensich ¢tverct; variaéni
pocet; vyrovnani s podminkami
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Ocenéni (hodnota) lesa se nejcastéji stanovi souctem
hodnoty pozemku a hodnoty porostu. Grafickym podkla-
dem pro vypocet ceny pozemku je vedle katastralni mapy
mapa typologicka, z niz se ur¢i pfislusnost dilu k soubo-
ru lesnich typt (SLT) a pro vypocet ceny porostu mapa
porostni nebo obrysova. V pripadé soucasného ocenéni
lesnich pozemkd a lesnich porosti a jejich rozdéleni pod-
le pfedem zadaného podilu je u navrzené metody vhod-
né, aby se nejprve prunikem typologické a porostni mapy
vytvorily dily o stejném (konstantnim) ocenéni nejmensi
plos$né jednotky (cenova mapa) a teprve s t€mito dily se
pak dale pracovalo. Je tak mozné Iépe ztotoznit odpovi-
dajici si ¢asti hranic soborl lesnich typt a jednotek pro-
storového rozdéleni lesa. Situaci je pak tfeba porovnat se
stavem pozemkové evidence — katastru nemovitosti.

Do vypoctu vymeér se berou vzdy vSechny zménou do-
téené parcely. Soucet jejich dosavadnich vymeér je inva-
riantou, na kterou musi byt vypocet vymér nového stavu
— pokud rozdil nepiekro¢i dopustnou mez — vyrovnan.
Pro vypocet vymér parcel (a dild) se pouziva ustalenych
zpusobt, které jsou propracovany od nejstarSich instrukci
a smémic az po piedpis CUZK (2001), platny v soucas-
nebo bonitaénich vrstev jsou v nich uvedené jednoduché
postupy vyrovnani nedostateéné a jejich aplikace mize
vést az k deformacim vymér feSené skupiny parcel.

Vyrovnané opravy podminkovych méfeni lze pocitat
rliznym postupem. Zobecnéné feseni MNC uvadi na-
ptiklad MiKA (1985). Pro nalezeni minima funkce za
soucasného splnéni dalSich podminek je pocetné nejjed-
nodussi vypocet pomoci Lagrangeovych koeficientt.

V préci je feSena moznost vyuziti variani metody na
ptikladu realného rozdéleni podilového spoluvlastnictvi
k lesnimu pozemku, jehoz situace je zobrazena na obr. 1.
Sestavi se soustava podminkovych rovnic, do nichz se
dosadi méfené hodnoty. Soustava pretvorenych podmin-
kovych rovnic se v klasickém feSeni vynasobi po fadé
zatim neuréitymi souciniteli, Lagrangeovymi koeficien-
ty a seCte se s rovnici podminky minima. Utvofi se tak

nova ,,Lagrangeova funkce® (3). Pro ur¢eni minima této
funkce je nutné ji parcialné derivovat podle jednotlivych
proménnych a tyto derivace postupné polozit rovny nule
(4). Vypoctou se hodnoty neznamych korelat a z rovnic
oprav se vypoctou jednotlivé hodnoty v. V rozepsaném
tvaru je vypocet s vahami (5). Nakonec se vypoctou
vyrovnané hodnoty podle (6). Po vypoctu vyrovnanych
dilii ploch je moZné stanovit apriorni stfedni chybu m,
pro jednotkovou vahu a stfedni chyby jednotlivych mé-
fenych veli¢in ze vztahu (8); v maticovém vyjadieni je
M matice stfednich chyb a M? matice varianci. V pfi-
pad¢é vyrovnani s dodateénymi podminkami vypocitané
stiedni chyby vice nez pfesnost méfeni charakterizuji to,
zda navrzeny zpisob déleni (napf. smér délicich piimek,
navrhovana cena oddé€lenych pozemki) odpovida topo-
logii zadani a do jaké miry vstupni meéfeni deformuje.
Pro posouzeni miry této deformace je mozné vypocitat
pomér statistik T pomoci:

a) méfeni bez dodate¢nych podminek,

b) véetné dodate¢nych podminek.

Objektivnéjsim porovnanim je vyuziti aposteriornich
statistik. K tomu ucelu je nutné vypocitat kovarian¢ni
matice vyrovnanych méfenych veli¢in C?, C*. Tyto ma-
tice se vypocitaji podle vzorce (10), pfi¢emz inverzni
vahova matice P (@posieriory 4110 ploch po vyrovnani se
vypocita podle vzorce (11). Je mozné urcit vhodné kri-
térium optimality pro posouzeni zvoleného feSeni. Ve
vztahu k uvedenému vypoctu poméru Caprions je takovym
vhodnym kritériem tzv. A — optimalita, ktera je definova-
na pomoci vypoctu stopy kovarianéni matice. Optimali-
zaéni plan minimalizuje skalar #C — stopu kovarianéni
matice. Jedna se vlastné o minimalizaci euklidovské nor-
my vektoru aposteriornich stfednich chyb. Jednoduchost
vypoctu tohoto kritéria je na druhé strané vyvazena tim,
ze neuvazuje vliv odhadnutych kovarianci. Je mozné ur-
Cit T aposterion podle (12). Pokud je k dispozici vice feSeni
navrhu déleni, pak lepSim navrhem ve smyslu A — opti-
mality bude navrh s mensim t nebo 1épe 1

(apriori) (aposteriori)®
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