J. For. Sci., 2021, 67(12):553-561 | DOI: 10.17221/105/2021-JFS

Influences of determined and estimated dendrometric variables on the precision of volumetric modellingOriginal Paper

José Antônio Aleixo da Silva ORCID...*, Rinaldo Luiz Caraciolo Ferreira
Departamento de Ciência Florestal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil

The use of independent variables in volumetric modelling is an important step in fitting models to represent tree or stand characteristics. The DBH measured at 1.3 m from the ground level and total tree height (Ht) are the most commonly used independent variables when modelling individual tree volumes. This work aimed to analyze the importance of independent variables in fitting and selecting volumetric equations. A total of 750 trees from an experiment with three Eucalyptus spp. clones planted in five spacings in the semi-arid region of Pernambuco were used. Four statistical procedures were applied to compare the equations: Adjusted Fit Index (AFI), Akaike information criterion (AIC), mean absolute percentage error (MAPE), and a completely random design having the real tree volume as control and the fit equations as treatments. The error measuring heights in the field (EH) was also analyzed. Four heights were evaluated: Ht, height estimated in the field (He) and heights adjusted (Ha) from hypsometric relationships using the DBH [Ha (a)] and D1.7 [Ha (b)], which was the diameter most correlated with the volume. The result indicates that all 18 fitted models provided high precision volumetric equations which do not differ at the 5% significance level.

Keywords: estimated height; adjusted height; hypsometric relationships; tree volume

Published: December 17, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Aleixo da Silva JA, Caraciolo Ferreira RL. Influences of determined and estimated dendrometric variables on the precision of volumetric modelling. J. For. Sci. 2021;67(12):553-561. doi: 10.17221/105/2021-JFS.
Download citation

References

  1. Akaike H. (1974): A new look at statistical model identification. IEEE Transactions on Automatic Control, 19: 716-723. Go to original source...
  2. Arney J.D. (2016): Biometric Method for Forest Inventory, Forest Growth and Forest Planning. The Forester's Guide. Portland, Forest Biometrics Research Institute: 329. Available at: http://fbrinstitute.org/wp-content/uploads/2016/11/FPS-GuideBook2014.pdf
  3. Burkhart H.E., Tomé M. (2012): Modeling Forest Trees and Stands. Dordrecht, Springer Netherlands: 457. Go to original source...
  4. Burnham K.P., Anderson D.R. (2004): Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research, 33: 261-304. Go to original source...
  5. Da Silva J.A.A., Borders B.E., Brister G.H. (1992): A tree volume equation based on two lower stem diameters for Caribbean pine in Sri Lanka. The Commonwealth Forestry Review, 71: 114-116.
  6. Da Silva J.A.A., Borders B.E. (1993): A tree volume equation based on two lower stem diameters for loblolly pine in the Southeastern United States. Southern Journal of Applied Forestry, 17: 160-162. Go to original source...
  7. Da Silva J.A.A., Silva I.P. (1995): Estatística experimental aplicada à ciência florestal. Recife, Imprensa Universitária da UFRPE: 294. (in Portuguese)
  8. De Oliveira C.P., Ferreira R.L.C., Da Silva J.A.A., Lima R.B., Silva E.A., Alves Júnior F.T., Da Silva A.F., Silva de Lucena J.D., Dos Santos N.A.T., Lopes I.J.C., Pessoa M.M.L., De Melo C.L.S.M.S. (2021): Prediction of biomass in dry tropical forests: An approach on the importance of total height in the development of local and pan-tropical models. Journal of Sustainable Forestry. Available at: https://www.tandfonline.com/doi/abs/10.1080/10549811.2021.1891940 Go to original source...
  9. De Souza S.R.R., Da Silva J.A.A., Ferreira T.A.E., Guera O.G.M. (2018): Redes neurais para estimativa volumétrica de clones de Eucalyptus spp. no Polo Gesseiro do Araripe. Revista Brasileira de Biometria, 36: 715-729. Go to original source...
  10. Ferreira J.C.S., da Silva J.A.A., Miguel E.P., Encinas J.I., Tavares J.A. (2011): Eficiência relativa de modelos volumétricos com e sem a variável altura da árvore. Acta Tecnológica, 6: 89-102. (in Portuguese) Go to original source...
  11. Guera O.G.M., Silva J.A.A., Ferreira R.L.C., Medel H.B., Lazo D.A. (2018): Artificial neural network for modeling hypsometric relationships of Pinus caribaea Morelet var. caribeae Barr. and Golf. Revista Brasileira de Biometria, 36: 891-915. Go to original source...
  12. Lima R.B., Ferreira R.L.C., da Silva J.A.A., Alves Júnior F.T., de Oliveira C.P. (2021): Estimating tree volume of dry tropical forest in the Brazilian Semi-Arid Region: a comparison between regression and artificial neural networks. Journal of Sustainable Forestry, 40: 281-299. Go to original source...
  13. Lynch T.B. (1995): Use of a tree volume equation on two lower-stem diameters for estimate forest volume from sample tree counts. Canadian. Journal of Forest Research 25: 871-877. Go to original source...
  14. Özçelik R., Diamantopoulou M.J., Eker M., Gürlevik N. (2017): Artificial neural network models: An alternative approach for reliable aboveground pine tree biomass prediction. Forest Science, 63: 291-302. Go to original source...
  15. Pretzsch H. (2009): Forest Dynamics, Growth and Yield: From Measurement to Model. Berlin, Springer: 664. Go to original source...
  16. Rex F.E., Dalla Corte A.P., Machado S.A., Silva C.A., Sanquetta C.R. (2019): Estimating above-ground biomass of Araucaria angustifolia (Bertol.) Kuntze using LiDAR data. Floresta e Ambiente, 26: e20171107. Go to original source...
  17. Santos H.G., Jacomine P.K.T., Anjos L.H.C., Oliveira V.A., Oliveira J.B., Coelho M.R., Lumbreras J.F., Cunha T.J.F. (2006): Sistema brasileiro de classificação de solos. Rio de Janeiro, Embrapa Solos: 286. (in Portuguese)
  18. Schlaegel B.E. (1981): Testing, reporting, and using biomass estimation models. In: Gresham C.A. (ed.): Proceedings of the 1981 Southern Forest Biomass Workshop, Georgetown, June 11-12, 1981: 95-112.
  19. Schumacher F.X., Chapman R.A. (1948): Sampling Methods in Forestry and Range Management. Durham, Duke University: 222.
  20. Schumacher F.X., Hall F.S. (1933): Logarithmic expression of timber volume. Journal of Agriculture Research, 47: 719-734.
  21. Silva J.W.L. (2020): Modelos estatísticos e técnicas de inteligência artificial para estimativa do volume de clones de Eucalyptus spp. com adição de variáveis climáticas. [Ph.D. Thesis.] Recife, Universidade Federal Rural de Pernambuco. (in Portuguese)
  22. Spurr S.H. (1952): Forest Inventory. New York, Ronald Press: 476.
  23. Vanclay J.K. (1994). Modelling Forest Growth and Yield: Aplications to Mixed Tropical Forests. Wallingford, CAB International: 312.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.