J. For. Sci., 2024, 70(11):574-592 | DOI: 10.17221/44/2024-JFS

Impacts of management and changed hydrology on soil microbial communities in a floodplain forestOriginal Paper

Jiří Volánek1, Martin Valtera1, Ladislav Holík1, Martin Kománek2, Hana Burdová3, Josef Trögl3, Diana Polanská Nebeská3, Jitka Novotná4, Pavel Samec1,5, David Juřička1
1 Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
2 Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
3 Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
4 Czech Geological Survey, Brno, Czech Republic
5 Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic

Long-term human activities substantially altered floodplain regions of temperate Europe. Forest management and extensive changes in hydrology greatly affected natural floodplain soil properties, in which microbes play key roles. This study aims to assess the effects of human activities through a gradient of forest management intensity on soil microbial community (SMC), its biomass, activity, and structure. Soil chemical and physical-chemical properties were used to explain the general associations and within-site variation using principal component analysis (PCA), linear regression (LR) and linear mixed-effect regression (LMER) models. It was found that forest management application, regardless of its intensity, led to significant microbial biomass reduction. PCA revealed that microbial biomass, expressed as a sum of phospholipid fatty acids along with recalcitrant carbon fraction (ROC) best explained the variability in data. LR and LMER highlighted that bacteria are affected by floodplain forest management more than fungi, and that bacterial response to pH was highly diversified. Also, pH was identified as the best predictor of SMC structure and activity but not of its size. The study calls for further investigation in SMC interactions with ROC, soil-available Fe and Mn, and the role of redox-active metals in soil organic carbon degradation.

Keywords: enzyme activity; forest management; groundwater mineralisation; microbial community structure; soil microbial biomass

Received: June 28, 2024; Revised: October 2, 2024; Accepted: October 2, 2024; Prepublished online: November 20, 2024; Published: November 25, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Volánek J, Valtera M, Holík L, Kománek M, Burdová H, Trögl J, et al.. Impacts of management and changed hydrology on soil microbial communities in a floodplain forest. J. For. Sci. 2024;70(11):574-592. doi: 10.17221/44/2024-JFS.
Download citation

Supplementary files:

Download file44-2024-JFS_ESM.pdf

File size: 599.52 kB

References

  1. Agnihotri R., Gujre N., Mitra S., Sharma M.P. (2023): Decoding the PLFA profiling of microbial community structure in soils contaminated with municipal solid wastes. Environmental Research, 219: 114993. Go to original source... Go to PubMed...
  2. Alvarez G., Shahzad T., Andanson L., Bahn M., Wallenstein M.D., Fontaine S. (2018): Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming. Global Change Biology, 24: 4238-4250. Go to original source... Go to PubMed...
  3. Bani A., Pioli S., Ventura M., Panzacchi P., Borruso L., Tognetti R., Tonon G., Brusetti L. (2018): The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology, 126: 75-84. Go to original source...
  4. Bapiri A., Bååth E., Rousk J. (2010): Drying-rewetting cycles affect fungal and bacterial growth differently in an arable soil. Microbial Ecology, 60: 419-428. Go to original source... Go to PubMed...
  5. Bardgett R.D., Wardle D.A. (2010): Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change. New York, Oxford University Press: 300.
  6. Bárta J., Šlajsová P., Tahovská K., Picek T., Šantrůčková H. (2014): Different temperature sensitivity and kinetics of soil enzymes indicate seasonal shifts in C, N and P nutrient stoichiometry in acid forest soil. Biogeochemistry, 117: 525-537. Go to original source...
  7. Bauhus J., Baber K., Müller J. (2018): Dead wood in forest ecosystems. Advances in Ecological Research, 15: 9780199830060-0196. Go to original source...
  8. Blagodatskaya E.V., Anderson T.H. (1998): Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biology and Biochemistry, 30: 1269-1274. Go to original source...
  9. Błońska E., Lasota J., Tullus A., Lutter R., Ostonen I. (2019): Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests. Annals of Forest Science, 76: 1-14. Go to original source...
  10. Boukhatem Z.F., Merabet C., Tsaki H. (2022): Plant growth promoting actinobacteria, the most promising candidates as bioinoculants? Frontiers in Agronomy, 4: 849911. Go to original source...
  11. Brockett B.F., Prescott C.E., Grayston S.J. (2012): Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry, 44: 9-20. Go to original source...
  12. Brown A.G., Harper D., Peterken G.F. (1997): European floodplain forests: Structure, functioning and management. Global Ecology and Biogeography Letters, 6: 169-178. Go to original source...
  13. Burns R.G. (1982): Enzyme activity in soil: Location and a possible role in microbial ecology. Soil Biology and Biochemistry, 14: 423-427. Go to original source...
  14. Cade-Menun B.J., Elkin K.R., Liu C.W., Bryant R.B., Kleinman P.J., Moore P.A. (2018): Characterizing the phosphorus forms extracted from soil by the Mehlich III soil test. Geochemical Transactions, 19: 1-17. Go to original source... Go to PubMed...
  15. Cao H., Chen R., Wang L., Jiang L., Yang F., Zheng S., Wang G., Lin X. (2016): Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale. Scientific Reports, 6: 25815. Go to original source... Go to PubMed...
  16. Carreiro M.M., Sinsabaugh R.L., Repert D.A., Parkhurst D.F. (2000): Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81: 2359-2365. Go to original source...
  17. Chalupa J. (2018): Plán péče o přírodní rezervaci Plačkův les a říčka Šatava na období 2020-2029. Available at: https://drusop.nature.cz/ost/archiv/plany_pece/index.php?frame&ID=28329 (in Czech).
  18. Chang E.H., Tian G., Chiu C.Y. (2017): Soil microbial communities in natural and managed cloud montane forests. Forests, 8: 33. Go to original source...
  19. CHMI (2024): Měsíční a roční data dle zákona 123/1998 Sb. Prague, Czech Hydrometeorological Institute. Available at: https://www.chmi.cz/files/portal/docs/meteo/ok/open_data_2023/MDATA/T/HTML/Jihomoravsky.html (in Czech).
  20. Curtin D., Campbell C.A., Jalil A. (1998): Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biology and Biochemistry, 30: 57-64. Go to original source...
  21. Curtright A.J., Tiemann L.K. (2021): Intercropping increases soil extracellular enzyme activity: A meta-analysis. Agriculture, Ecosystems & Environment, 319: 107489. Go to original source...
  22. Decamps H., Fortune M., Gazelle F., Pautou G. (1988): Historical influence of man on the riparian dynamics of a fluvial landscape. Landscape Ecology, 1: 163-173. Go to original source...
  23. Demek J., Macka M. (1970): Pavlovské vrchy a jejich okolí. Regionálně-geografická studie. Brno, Geografický ústav ČSAV Brno: 198. (in Czech)
  24. Fang X., Zhang J., Meng M., Guo X., Wu Y., Liu X., Zhao K., Ding L., Shao Y., Fu W. (2017): Forest-type shift and subsequent intensive management affected soil organic carbon and microbial community in southeastern China. European Journal of Forest Research, 136: 689-697. Go to original source...
  25. Fanin N., Bertrand I. (2016): Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient. Soil Biology and Biochemistry, 94: 48-60 Go to original source...
  26. Fanin N., Hättenschwiler S., Schimann H., Fromin N. (2015): Interactive effects of C, N and P fertilization on soil microbial community structure and function in an Amazonian rain forest. Functional Ecology, 29: 140-150. Go to original source...
  27. Fanin N., Kardol P., Farrell M., Nilsson M.C., Gundale M.J., Wardle D.A. (2019): The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biology and Biochemistry, 128: 111-114. Go to original source...
  28. German D.P., Weintraub M.N., Grandy A.S., Lauber C.L., Rinkes Z.L., Allison S.D. (2011): Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 43: 1387-1397. Go to original source...
  29. Gömöryová E., Střelcová K., Fleischer P., Gömöry D. (2011): Soil microbial characteristics at the monitoring plots on windthrow areas of the Tatra National Park (Slovakia): Their assessment as environmental indicators. Environmental Monitoring and Assessment, 174: 31-45. Go to original source... Go to PubMed...
  30. Goulding C.J. (1979): Cubic spline curves and calculation of volume of sectionally measured trees. New Zealand Journal of Forestry Science, 9: 89-99.
  31. Guo L.B., Gifford R.M. (2002): Soil carbon stocks and land use change: A meta analysis. Global Change Biology, 8: 345-360. Go to original source...
  32. Guo Q., Gong L. (2024): Compared with pure forest, mixed forest alters microbial diversity and increases the complexity of interdomain networks in arid areas. Microbiology Spectrum, 12: e02642-23. Go to original source... Go to PubMed...
  33. Haase D., Gläser J. (2009): Determinants of floodplain forest development illustrated by the example of the floodplain forest in the District of Leipzig. Forest Ecology and Management, 258: 887-894. Go to original source...
  34. Hackl E., Pfeffer M., Donat C., Bachmann G., Zechmeister-Boltenstern S. (2005): Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biology and Biochemistry, 37: 661-671. Go to original source...
  35. Heteša J., Sukop J., Kopp R. (2004): Hydrobiologie tůní lužního lesa po revitalizačních zásazích. In: Kordilovský E., Hríb M. (eds): Lužní les v Dyjsko-moravské nivě. Břeclav, Moraviapress: 86-103. (in Czech)
  36. Hiiesalu I., Bahram M., Tedersoo L. (2017): Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Molecular Ecology, 26: 4846-4858. Go to original source... Go to PubMed...
  37. Holík L., Hlisnikovský L., Honzík R., Trögl J., Burdová H., Popelka J. (2019): Soil microbial communities and enzyme activities after long-term application of inorganic and organic fertilizers at different depths of the soil profile. Sustainability, 11: 3251. Go to original source...
  38. Hu Y., Xiang D., Veresoglou S.D., Chen F., Chen Y., Hao Z., Zhang X., Chen B. (2014): Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China. Soil Biology and Biochemistry, 77: 51-57. Go to original source...
  39. Janík D., Král K., Adam D., Vrška T., Lutz J. (2019): ForestGEO Dead Wood Census Protocol. Logan, Smithsonian Institute, Utah State University: 12.
  40. Jia Q.Q., Zhang X., Deng J., Huang L.Z. (2023): Labile Fe (III) phase mediates the electron transfer from Fe (II, III) (oxyhydr)oxides to carbon tetrachloride. Water Research, 245: 120636. Go to original source... Go to PubMed...
  41. Jones D.L., Hodge A., Kuzyakov Y. (2004): Plant and mycorrhizal regulation of rhizodeposition. New Phytologist, 163: 459-480. Go to original source... Go to PubMed...
  42. Jörgensen K., Granath G., Strengbom J., Lindahl B.D. (2022): Links between boreal forest management, soil fungal communities and below-ground carbon sequestration. Functional Ecology, 36: 392-405. Go to original source...
  43. Kahl T., Bauhus J. (2014): An index of forest management intensity based on assessment of harvested tree volume, tree species composition and dead wood origin. Nature Conservation, 7: 15-27. Go to original source...
  44. Kaiser K., Wemheuer B., Korolkow V., Wemheuer F., Nacke H., Schöning I., Schrumpf M., Daniel R. (2016): Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Scientific Reports, 6: 33696. Go to original source... Go to PubMed...
  45. Katsalirou E., Deng S., Nofziger D.L., Gerakis A. (2010): Long-term management effects on organic C and N pools and activities of C-transforming enzymes in prairie soils. European Journal of Soil Biology, 46: 335-341. Go to original source...
  46. Khalili B., Nourbakhsh F., Nili N., Khademi H., Sharifnabi B. (2011): Diversity of soil cellulase isoenzymes is associated with soil cellulase kinetic and thermodynamic parameters. Soil Biology and Biochemistry, 43: 1639-1648. Go to original source...
  47. Kowalska N., Šigut L., Stojanović M., Fischer M., Kyselova I., Pavelka M. (2020): Analysis of floodplain forest sensitivity to drought. Philosophical Transactions of the Royal Society B, 375: 20190518. Go to original source... Go to PubMed...
  48. Kramer C., Gleixner G. (2008): Soil organic matter in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation. Soil Biology and Biochemistry, 40: 425-433. Go to original source...
  49. Kunttu P., Junninen K., Kouki J. (2015): Dead wood as an indicator of forest naturalness: A comparison of methods. Forest Ecology and Management, 353: 30-40. Go to original source...
  50. Lavoie M., Mack M.C., Hiers J.K., Pokswinski S. (2012): The effect of restoration treatments on the spatial variability of soil processes under longleaf pine trees. Forests, 3: 591-604. Go to original source...
  51. Li Y., Shahbaz M., Zhu Z., Chen A., Nannipieri P., Li B., Deng Y., Wu J., Ge T. (2021): Contrasting response of organic carbon mineralisation to iron oxide addition under conditions of low and high microbial biomass in anoxic paddy soil. Biology and Fertility of Soils, 57: 117-129. Go to original source...
  52. Liu M., Sui X., Hu Y., Feng F. (2019): Microbial community structure and the relationship with soil carbon and nitrogen in an original Korean pine forest of Changbai Mountain, China. BMC Microbiology, 19: 1-14. Go to original source... Go to PubMed...
  53. Lladó S., López-Mondéjar R., Baldrian P. (2018): Drivers of microbial community structure in forest soils. Applied Microbiology and Biotechnology, 102: 4331-4338. Go to original source... Go to PubMed...
  54. Machar I., Hager H., Pechanec V., Kulhavy J., Mindas J. (2020): Floodplain forests - Key forest ecosystems for maintaining and sustainable management of water resources in alluvial landscape. In: Zelenakova M., Fialová J., Negm A.M. (eds): Assessment and Protection of Water Resources in the Czech Republic. Cham, Springer: 249-274. Go to original source...
  55. Malik A.A., Puissant J., Buckeridge K.M., Goodall T., Jehmlich N., Chowdhury S., Gweon H.S., Peyton J.M., Mason K.E., Agtmaal M., Blaud A., Clark I.M., Whitaker J., Pywell R.F., Ostle N., Gleixner G., Griffiths R.I. (2018): Land use driven change in soil pH affects microbial carbon cycling processes. Nature Communications, 9: 3591. Go to original source... Go to PubMed...
  56. Manning D.A.C., Lopez-Capel E., Barker S. (2005): Seeing soil carbon: Use of thermal analysis in the characterization of soil C reservoirs of differing stability. Mineralogical Magazine, 69: 425-435. Go to original source...
  57. Mayer M., Prescott C.E., Abaker W.E.A., Augusto L., Cécillon L., Ferreira G.W.D., James J., Jandl R., Katzensteiner K., Laclau J.P., Laganière J., Nouvellon Y., Paré D., Stanturf J.A., Vanguelova E.I., Vesterdal L. (2020): Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. Forest Ecology and Management, 466: 118127. Go to original source...
  58. McDaniel M.D., Kaye J.P., Kaye M.W. (2013): Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest. Soil Biology and Biochemistry, 56: 90-98. Go to original source...
  59. McRoberts R.E., Winter S., Chirici G., LaPoint E. (2012): Assessing forest naturalness. Forest Science, 58: 294-309. Go to original source...
  60. Mehlich A. (1984): Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409-1416. Go to original source...
  61. Moore-Kucera J., Dick R.P. (2008): PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence. Microbial Ecology, 55: 500-511. Go to original source... Go to PubMed...
  62. Naughton H.R., Tolar B.B., Dewey C., Keiluweit M., Nico P.S., Fendorf S. (2023): Reactive iron, not fungal community, drives organic carbon oxidation potential in floodplain soils. Soil Biology and Biochemistry, 178: 108962. Go to original source...
  63. Nazari M., Pausch J., Bickel S., Bilyera N., Rashtbari M., Razavi B.S., Zamanian K., Sharififar A., Shi L., Dippold M.A., Zarebanadkouki M. (2023): Keeping thinning-derived deadwood logs on forest floor improves soil organic carbon, microbial biomass, and enzyme activity in a temperate spruce forest. European Journal of Forest Research, 142: 287-300. Go to original source...
  64. Nožička J. (1956): Z minulosti jihomoravských luhů. Práce výzkumných ústavů lesnických ČSR, 10: 169-199. (in Czech)
  65. Orwin K.H., Dickie I.A., Holdaway R., Wood J.R. (2018): A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions. Soil Biology and Biochemistry, 117: 27-35. Go to original source...
  66. Parladé J., Martínez-Peña F., Pera J. (2017): Effects of forest management and climatic variables on the mycelium dynamics and sporocarp production of the ectomycorrhizal fungus Boletus edulis. Forest Ecology and Management, 390: 73-79. Go to original source...
  67. Pechanec V., Machar I., Sterbova L., Prokopova M., Kilianova H., Chobot K., Cudlin P. (2017): Monetary valuation of natural forest habitats in protected areas. Forests, 8: 427. Go to original source...
  68. Puissant J., Jones B., Goodall T., Mang D., Blaud A., Gweon H.S., Malik A., Jones D.L., Clark I.M., Hirsch P.R., Griffiths R. (2019): The pH optimum of soil exoenzymes adapt to long term changes in soil pH. Soil Biology and Biochemistry, 138: 107601. Go to original source...
  69. Raiesi F., Beheshti A. (2015): Microbiological indicators of soil quality and degradation following conversion of native forests to continuous croplands. Ecological Indicators, 50: 173-185. Go to original source...
  70. Ramsey P.W., Rillig M.C., Feris K.P., Holben W.E., Gannon J.E. (2006): Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches. Pedobiologia, 50: 275-280. Go to original source...
  71. Richter A., Schöning I., Kahl T., Bauhus J., Ruess L. (2018): Regional environmental conditions shape microbial community structure stronger than local forest management intensity. Forest Ecology and Management, 409: 250-259. Go to original source...
  72. Rinklebe J., Langer U. (2006): Microbial diversity in three floodplain soils at the Elbe River (Germany). Soil Biology and Biochemistry, 38: 2144-2151. Go to original source...
  73. Rinklebe J., Langer U. (2008): Floodplain soils at the Elbe River, Germany, and their diverse microbial biomass. Archives of Agronomy and Soil Science, 54: 259-273. Go to original source...
  74. Rondeux J., Sanchez C. (2009): Review of indicators and field methods for monitoring biodiversity within national forest inventories. Core variable: Deadwood. Environmental Monitoring and Assessment, 164: 617-630. Go to original source... Go to PubMed...
  75. Samaritani E., Shrestha J., Fournier B., Frossard E., Gillet F., Guenat C., Niklaus P.A., Pasquale N., Tockner K., Mitchell E.A.D., Luster J. (2011): Heterogeneity of soil carbon pools and fluxes in a channelized and a restored floodplain section (Thur River, Switzerland). Hydrology and Earth System Sciences, 15: 1757-1769. Go to original source...
  76. Sarr D.A., Odion D.C., Hibbs D.E., Weikel J., Gresswell R.E., Czarnomski N.M., Pabst R.J., Shatford J., Moldenke A.R. (2005): Riparian Zone Forest Management and the Protection of Biodiversity: A Problem Analysis. NCASI Technical Bulletin No. 908. Research Triangle Park, National Council for Air and Stream Improvement: 107. Available at: https://www.researchgate.net/publication/278668703_Riparian_zone_forest_management_and_the_protection_of_biodiversity_A_problem_analysis (accessed Nov 18, 2024).
  77. Schall P., Ammer C. (2013): How to quantify forest management intensity in Central European forests. European Journal of Forest Research, 132: 379-396. Go to original source...
  78. Scheibe A., Steffens C., Seven J., Jacob A., Hertel D., Leuschner C., Gleixner G. (2015): Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biology and Biochemistry, 81: 219-227. Go to original source...
  79. Shi J., Song M., Yang L., Zhao F., Wu J., Li J., Yu Z., Li A., Shangguan Z., Deng L. (2023): Recalcitrant organic carbon plays a key role in soil carbon sequestration along a long-term vegetation succession on the Loess Plateau. Catena, 233: 107528. Go to original source...
  80. Sinsabaugh R.L., Lauber C.L., Weintraub M.N., Ahmed B., Allison S.D., Crenshaw C., Contosta A.R., Cusack D., Frey S., Gallo M.E., Gartner T.B., Hobbie S.E., Holland K., Keeler B.L., Powers J.S., Stursova M., Takacs-Vesbach C., Waldrop M.P., Wallenstein M.D., Zak D.R., Zeglin L.H. (2008): Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11: 1252-1264. Go to original source... Go to PubMed...
  81. Slessarev E.W., Lin Y., Bingham N.L., Johnson J.E., Dai Y., Schimel J.P., Chadwick O.A. (2016): Water balance creates a threshold in soil pH at the global scale. Nature, 540: 567-569. Go to original source... Go to PubMed...
  82. Smith J.L., Paul E.A. (2017): The significance of soil microbial biomass estimations. In: Bollag J.M. (ed.): Soil Biochemistry. New York, Routledge: 357-398. Go to original source...
  83. Song Y., Song C., Yang G., Miao Y., Wang J., Guo Y. (2012): Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang Plain in Northeast China. Environmental Management, 50: 418-426. Go to original source... Go to PubMed...
  84. Suchomel J., Šipoš J., Košulič O. (2020): Management intensity and forest successional stages as significant determinants of small mammal communities in a lowland floodplain forest. Forests, 11: 1320. Go to original source...
  85. Sutfin N.A., Wohl E.E., Dwire K.A. (2016): Banking carbon: A review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surface Processes and Landforms, 41: 38-60. Go to original source...
  86. Tockner K., Stanford J.A. (2002): Riverine flood plains: Present state and future trends. Environmental Conservation, 29: 308-330. Go to original source...
  87. Turner B.L. (2010): Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Applied and Environmental Microbiology, 76: 6485-6493. Go to original source... Go to PubMed...
  88. Uwituze Y., Nyiraneza J., Fraser T.D., Dessureaut-Rompré J., Ziadi N., Lafond J. (2022): Carbon, nitrogen, phosphorus, and extracellular soil enzyme responses to different land use. Frontiers in Soil Science, 2: 814554. Go to original source...
  89. Valtera M., Volánek J., Holík L., Pecina V., Novotná J., Slezák V., Juřička D. (2021): The influence of forest management and changed hydrology on soil biochemical properties in a Central-European floodplain forest. Forests, 12: 270. Go to original source...
  90. Van Der Heijden M.G., Bardgett R.D., Van Straalen N.M. (2008): The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11: 296-310. Go to original source... Go to PubMed...
  91. Vítková L., Bače R., Kjučukov P., Svoboda M. (2018): Deadwood management in Central European forests: Key considerations for practical implementation. Forest Ecology and Management, 429: 394-405. Go to original source...
  92. Vrška T., Přívětivý T., Janík D., Unar P., Šamonil P., Král K. (2015): Deadwood residence time in alluvial hardwood temperate forests - A key aspect of biodiversity conservation. Forest Ecology and Management, 357: 33-41. Go to original source...
  93. Waldrop M.P., Holloway J.M., Smith D.B., Goldhaber M.B., Drenovsky R.E., Scow K.M., Dick R., Wylie B., Grace J.B. (2017): The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale. Ecology, 98: 1957-1967. Go to original source... Go to PubMed...
  94. Wardle D.A. (1992): A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews, 67: 321-358. Go to original source...
  95. Wardle D.A., Bardgett R.D., Klironomos J.N., Setälä H., Van Der Putten W.H., Wall D.H. (2004): Ecological linkages between aboveground and belowground biota. Science, 304: 1629-1633. Go to original source... Go to PubMed...
  96. Waring B.G., Averill C., Hawkes C.V. (2013): Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: Insights from meta-analysis and theoretical models. Ecology Letters, 16: 887-894. Go to original source... Go to PubMed...
  97. Wenger E.L., Zinke A., Gutzweiler K.A. (1990): Present situation of the European floodplain forests. Forest Ecology and Management, 33: 5-12. Go to original source...
  98. Willers C., Jansen van Rensburg P.J., Claassens S. (2015): Phospholipid fatty acid profiling of microbial communities - A review of interpretations and recent applications. Journal of Applied Microbiology, 119: 1207-1218. Go to original source... Go to PubMed...
  99. Winter S. (2012): Forest naturalness assessment as a component of biodiversity monitoring and conservation management. Forestry, 85: 293-304. Go to original source...
  100. Wu Y., Ma B., Zhou L., Wang H., Xu J., Kemmitt S., Brookes P.C. (2009): Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis. Applied Soil Ecology, 43: 234-240. Go to original source...
  101. Yadav K.K., Shrivastava N., Solanki A.C., Upadhyay S., Trivedi M. (2021): Actinobacteria interventions in plant and environment fitness. In: Solanki M.K., Kashyap P.L., Ansari R.A., Kumari B. (eds): Microbiomes and Plant Health. London, Academic Press: 397-427. Go to original source...
  102. Zak D.R., Tilman D., Parmenter R.R., Rice C.W., Fisher F.M., Vose J., Milchunas D., Martin C.W. (1994): Plant production and soil microorganisms in late-successional ecosystems: A continental-scale study. Ecology, 75: 2333-2347. Go to original source...
  103. Zbíral J., Malý S., Váňa M. (2011): Analýza půd III: Jednotné pracovní postupy. Brno, Central Institute for Supervising and Testing in Agriculture: 235. (in Czech)
  104. Zechmeister-Boltenstern S., Keiblinger K.M., Mooshammer M., Peñuelas J., Richter A., Sardans J., Wanek W. (2015): The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs, 85: 133-155. Go to original source...
  105. Zhang L., Zeng Q., Liu X., Chen P., Guo X., Ma L.Z., Dong H., Huang Y. (2019a): Iron reduction by diverse actinobacteria under oxic and pH-neutral conditions and the formation of secondary minerals. Chemical Geology, 525: 390-399. Go to original source...
  106. Zhang Y., Zheng N., Wang J., Yao H., Qiu Q., Chapman S.J. (2019b): High turnover rate of free phospholipids in soil confirms the classic hypothesis of PLFA methodology. Soil Biology and Biochemistry, 135: 323-330. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.