J. For. Sci., 2026, 72(1):42-55 | DOI: 10.17221/95/2025-JFS

Biomechanical optimisation strategy for selecting native shrubs and herbaceous plants with superior soil and water conservation properties in combating land degradation in central-western Inner MongoliaOriginal Paper

Rile Ge, Wei Zhao, Hui Zhi, Yahui Lu, Shuaixin Wei
College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China

To enhance the biomechanical database of plant root systems for soil reinforcement and erosion control in arid and semi-arid regions, and to provide a scientific basis for selecting superior native shrub and herb species in forestry and grassland measures for desertification control in central and western Inner Mongolia, this study investigated the root-soil interfacial friction characteristics of five typical native plant species – Caragana korshinskii and Hippophae rhamnoides, the semi-shrub Hedysarum mongolicum, and the perennial herbs Medicago sativa and Astragalus adsurgens – in two widely distributed non-zonal soils: loessial soil and aeolian sandy soil. Single-root pull-out tests were conducted on indoor-prepared root-soil composite samples to examine their responses to varying soil moisture levels. The results showed that within a soil moisture range of 4.6% to 20.6%, the single-root pull-out resistance and shear strength of all five species in both soil types followed a quadratic model Yax2 + bx + c (with all multiple correlation coefficients > 0.5), initially increasing and then decreasing with rising moisture content. Peak values occurred at 8.6% moisture, with consistently higher values observed in loessial soil than in aeolian sandy soil. This indicates an optimal soil moisture level for maximising root-soil interfacial friction resistance. Among the species, Hippophae rhamnoides and Medicago sativa exhibited superior pull-out performance in both soils, with Hippophae rhamnoides showing greater sensitivity to environmental variations in loessial soil. Redundancy analysis identified soil type and moisture content as key factors explaining variations in root pull-out shear strength. These findings demonstrate that mixed-species plantations, leveraging complementary root traits, can form more complex and stable root-soil structures, thereby enhancing surface soil mechanical stability. Further research is needed to elucidate the adaptive mechanisms linking plant traits, environmental conditions, and biomechanical characteristics.

Keywords: pullout resistive strength; root-soil interface; single resistance pull; soil moisture content

Received: December 11, 2025; Revised: January 15, 2026; Accepted: January 19, 2026; Published: January 30, 2026  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ge R, Zhao W, Zhi H, Lu Y, Wei S. Biomechanical optimisation strategy for selecting native shrubs and herbaceous plants with superior soil and water conservation properties in combating land degradation in central-western Inner Mongolia. J. For. Sci. 2026;72(1):42-55. doi: 10.17221/95/2025-JFS.
Download citation

References

  1. Ali N., Farshchi I., Mu'azu M.A., Rees S.W. (2012): Soil-root interaction and effects on slope stability analysis. The Electronic Journal of Geotechnical Engineering, 17: 319-328.
  2. Bardgett R.D., Mommer L., De Vries F.T. (2014): Going underground: Root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29: 692-699. Go to original source... Go to PubMed...
  3. Berry S.L., Roderick M.L. (2005): Plant-water relations and the fibre saturation point. New Phytologist, 168: 25-37. Go to original source... Go to PubMed...
  4. Bordoni M., Meisina C., Vercesi A., Bischetti G.B., Chiaradia E.A., Vergani C., Chersich S., Valentino R., Bittelli M., Comolli R., Persichillo M.G., Cislaghi A. (2016): Quantifying the contribution of grapevine roots to soil mechanical reinforcement in an area susceptible to shallow landslides. Soil & Tillage Research, 163: 195-206. Go to original source...
  5. Campbell K.A., Hawkins C.D. (2003): Paper birch and lodgepole pine root reinforcement in coarse-, medium-, and fine-textured soils. Canadian Journal of Forest Research, 33: 1580-1586. Go to original source...
  6. Docker B.B., Hubble T.C.T. (2008): Quantifying root-reinforcement of river bank soils by four Australian tree species. Geomorphology, 100: 401-418. Go to original source...
  7. Fan C.C., Chen Y.W. (2010): The effect of root system architecture on providing shearing resistance to root-permeated soils. Ecological Engineering, 36: 813-826. Go to original source...
  8. Fan C.C., Lu J.Z., Chen H.H. (2021): The pullout resistance of plant roots in the field at different soil water conditions and root geometries. Catena, 207: 105593. Go to original source...
  9. Fang X., Wang Z., Shen C., Chen C., Yao Z. (2024): Study on the pullout bearing characteristics of root piles in coral sand foundations under different water content states. Applied Ocean Research, 146: 103962. Go to original source...
  10. Flores-Rentería D., Yuste C.J., Valladares F., Rincón A. (2018): Soil legacies determine the resistance of an experimental plant-soil system to drought. Catena, 166: 271-278. Go to original source...
  11. Gao Q.F., Yu H., Zeng L., Zhang R., Zhang Y.H. (2023): Roles of vetiver roots in desiccation cracking and tensile strengths of near-surface lateritic soil. Catena, 226: 107068. Go to original source...
  12. Genet M., Stokes A., Salin F., Mickovski S.B., Fourcaud T., Dumail J.F., Van Beek R. (2005): The influence of cellulose content on tensile strength in tree roots. Plant and Soil, 278: 1-9. Go to original source...
  13. Gonzalez-Ollauri A., Mickovski S.B. (2017): Plant-soil reinforcement response under different soil hydrological regimes. Geoderma, 285: 141-150. Go to original source...
  14. Guo N., Li L., Cui J., Cai B. (2021): Effects of Funneliformis mosseae on the fungal community in and soil properties of a continuously cropped soybean system. Applied Soil Ecology, 164: 103930. Go to original source...
  15. Hales T.C., Cole-Hawthorne C., Lovell L., Evans S.L. (2013): Assessing the accuracy of simple field based root strength measurements. Plant and Soil, 372: 553-565. Go to original source...
  16. Ji X.D., Cong X., Dai X.Q., Zhang A., Chen L.H. (2018): Studying the mechanical properties of the soil-root interface using the pullout test method. Journal of Mountain Science, 15: 882-893. Go to original source...
  17. Li M., Wang X., Zhang C. (2020): A comparative study on root tensile strength and chemical composition of five shrubs and herbs for slope protection in arid regions. Catena, 194: 104681. Go to original source...
  18. Mao Z., Saint-André L., Genet M., Mine F.X., Jourdan C., Rey H., Courbaud B., Stokes A. (2012): Engineering ecological protection against landslides in diverse mountain forests: Choosing cohesion models. Ecological Engineering, 45: 55-69. Go to original source...
  19. Ma'ruf F.M. (2012): Shear strength of Apus bamboo root reinforced soil. Ecological Engineering, 41: 84-86. Go to original source...
  20. Noorasyikin M.N., Zainab M., Derahman A., Dan M.M., Madun A., Yusof Z.M., Pakir F. (2022): Mechanical properties of Bermuda grass roots towards sandy and clay soil for slope reinforcement. Physics and Chemistry of the Earth, 128: 103261. Go to original source...
  21. Norris E.J. (2005): Root reinforcement by hawthorn and oak roots on a highway cut-slope in Southern England. Plant and Soil, 278: 43-53. Go to original source...
  22. Norris J.E., Di Iorio A., Stokes A., Nicoll B.C., Achim A. (2008): Species selection for soil reinforcement and protection. In: Norris J.E., Stokes A., Mickovski S.B., Cammeraat E., van Beek R., Nicoll B.C., Achim A. (eds): Slope Stability and Erosion Control: Ecotechnological Solutions. Dordrecht, Springer: 167-210. Go to original source...
  23. Schwarz M., Cohen D., Or D. (2010). Root-soil mechanical interactions during pullout and failure of root bundles. Journal of Geophysical Research, 115: 701-719. Go to original source...
  24. Schwarz M., Cohen D., Or D. (2011): Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling. Joural of Geophysical Research: Earth Surface, 116: 167-177. Go to original source...
  25. Tosi M. (2007): Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy). Geomorphology, 87: 268-283. Go to original source...
  26. Veylon G., Ghestem M., Stokes A., Bernard A. (2015): Quantification of mechanical and hydric components of soil reinforcement by plant roots. Canadian Geotechnical Journal, 52: 1839-1849. Go to original source...
  27. Waldron L.J., Dakessian S. (1981): Soil reinforcement by roots: Calculation of increased soil shear resistance from root properties. Soil Science, 132: 427-435. Go to original source...
  28. Watson A., Phillips C., Marden M. (2000): Root strength, growth, and rates of decay: Root reinforcement changes of two tree species and their contribution to slope stability. In: Stokes A. (ed.): The Supporting Roots of Trees and Woody Plants: Form, Function and Physiology. Dordrecht, Springer Netherlands: 41-49. Go to original source...
  29. Wu T.H. (2013): Root reinforcement of soil: review of analytical models, test results, and applications to design. Canadian Geotechnical Journal, 50: 259-274. Go to original source...
  30. Xiao Y. (2016): Discussion of 'Dilatancy and friction angles based on in situ soil conditions' by Ozer Cinicioglu and Arshiya Abadkon. Journal of Geotechnical and Geoenvironmental Engineering, 142: 07016009. Go to original source...
  31. Xing S., Zhang G., Zhu P., Wang L., Wang Z., Wang C. (2023): Variation in shear strength of soil-root system under five typical land use types on the Loess Plateau of China. Catena, 222: 106883. Go to original source...
  32. Zhang C.B., Liu Y.T., Li D.R., Jiang J. (2020): Influence of soil moisture content on pullout properties of Hippophae rhamnoides Linn. Roots. Journal of Mountain Science, 17: 2816-2826. Go to original source...
  33. Zhang C., Liu B., Li M. (2021): Root morphological traits and biomechanical properties of Medicago sativa under different soil types and their correlations with pull-out resistance. Soil & Tillage Research, 213: 105147.
  34. Zhang S., Ma J., Liu S., Zhang L., Li Z., She F., Ding J., Li P., Tian C. (2025): Corrigendum to 'Effects of herbaceous plant roots on tensile strength of root-soil composite in loess hilly region'. Catena, 260: 109499. Go to original source...
  35. Zhou D.D., Liu J., Yao X.J., Zhang X., Hu N. (2011): Effects of soil moisture content on the residual strength of two plants root-soil composites. Advanced Materials Research, 1328: 160-164. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.