J. For. Sci., 2026, 72(1):1-13 | DOI: 10.17221/38/2025-JFS

Soil macroarthropod dynamics in response to environmental disturbances in a forest remnant ecosystem: A case study at Cibodas Botanical GardenOriginal Paper

Anita Rianti ORCID...1, Fenky Marsandi ORCID...2, Taufikurrahman Nasution ORCID...1, Musyarofah Zuhri ORCID...3, Muhammad Efendi ORCID...3, Hari Prayogi4, Setyawan Agung Danarto ORCID...1, Hidayatul Fajri ORCID...5,6, Vivin Silvaliandra Sihombing ORCID...1, Dian Anggraini Indrawan ORCID...7
1 Research Center for Ecology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Bogor, Indonesia
2 Research Center for Biota Systems, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Bogor, Indonesia
3 Research Center for Applied Botany, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Bogor, Indonesia
4 Research Center for Limnology and Water Resources, National Research and Innovation Agency, Bogor, Indonesia
5 Department of Biology, Faculty of Biology and Agriculture, Universitas Nasional, Jakarta, Indonesia
6 Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency, Bogor, Indonesia
7 Research Center of Biomass and Bioproducts, Research Organization for Nanotechnology and Materials, National Research and Innovation Agency, Serpong, Indonesia

Disturbing the remaining forest ecosystem in the Cibodas Botanical Garden (CBG) has affected the dynamics of the soil macroarthropod communities. This study was conducted in three remaining forest locations in the CBG with different levels of disturbance. Soil macroarthropod samples were collected using the pitfall trap method with 30 traps and analysed using the Shannon-Wiener diversity index, Pielou's evenness, Simpson's dominance, and Margalef's species richness to assess the dynamics of the soil macroarthropod community. This study analysed how these communities respond to different levels of disturbance in the garden, namely Jalan Akar (JA; low), Wornojiwo (WJ; moderate), and Ciismun (CI; high), which were influenced by tourism activities and local environmental conditions. The results showed that individuals from the Hymenoptera group accounted for 60.05% of the total number of soil macroarthropods found. Site WJ, which experienced moderate disturbance, had the highest number of individuals and species richness of soil macroarthropods. In contrast, site CI, which experienced high levels of disturbance, had a lower number of individuals and lower species richness, diversity and evenness indices. Site JA, which experienced low levels of disturbance, exhibited higher diversity and evenness indices. These results demonstrate that disturbance affects the presence of soil macroarthropods at their respective levels of disturbance. However, analysing the spatial distribution of soil macroarthropods in each studied taxon using the Morisita index revealed that they were dominantly clustered and exhibited varied distribution patterns. The study concludes that maintaining minimal disturbance is essential to preserve soil biodiversity and ecological balance in managed forest ecosystems such as the Cibodas Botanical Garden.

Keywords: abundance; diversity; ecosystem; forest; soil macroarthropods

Received: May 16, 2025; Revised: December 6, 2025; Accepted: December 9, 2025; Prepublished online: January 29, 2026; Published: January 30, 2026  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Rianti A, Marsandi F, Nasution T, Zuhri M, Efendi M, Prayogi H, et al.. Soil macroarthropod dynamics in response to environmental disturbances in a forest remnant ecosystem: A case study at Cibodas Botanical Garden. J. For. Sci. 2026;72(1):1-13. doi: 10.17221/38/2025-JFS.
Download citation

References

  1. Bengtsson J. (2002): Disturbance and resilience in soil animal communities. European Journal of Soil Biology, 38: 119-125. Go to original source...
  2. Blaimer B.B., Santos B.F., Cruaud A., Gates M.W., Kula R.R., Mikó I., Rasplus J.Y., Smith D.R., Talamas E.J., Brady S.G., Buffington M.L. (2023): Key innovations and the diversification of Hymenoptera. Nature Communications, 14: 1-18. Go to original source... Go to PubMed...
  3. Bottinelli N., Jouquet P., Capowiez Y., Podwojewski P., Grimaldi M., Peng X. (2015): Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil and Tillage Research, 146: 118-124. Go to original source...
  4. Bowd E., Blanchard W., McBurney L., Lindenmayer D. (2021): Direct and indirect disturbance impacts on forest biodiversity. Ecosphere, 12: 1-22. Go to original source...
  5. Castro D., Peña-Venegas C.P., Rodríguez-León C.H., Duran-Bautista E.H., Sterling A. (2025): Soil macroarthropod communities of Amazon degraded pastures restore differently during their natural regrowth. Nature Conservation, 58: 195-225. Go to original source...
  6. Coleman D.C., Geisen S., Wall D.H. (2024): Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. In: Paul E.A., Frey S.D. (eds): Soil Microbiology, Ecology and Biochemistry. 5th Ed. Amsterdam, Elsevier: 131-159. Go to original source...
  7. Collins S.L., Glenn S.M. (1997): Intermediate disturbance and its relationship to within- and between-patch dynamics. New Zealand Journal of Ecology, 21: 103-110.
  8. Coulis M., Hättenschwiler S., Coq S., David J.F. (2016): Leaf litter consumption by macroarthropods and burial of their faeces enhance decomposition in a mediterranean ecosystem. Ecosystems, 19: 1104-1115. Go to original source...
  9. Coyle D.R., Nagendra U.J., Taylor M.K., Campbell J.H., Cunard C.E., Joslin A.H., Mundepi A., Phillips C.A., Callaham M.A. (2017): Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action. Soil Biology and Biochemistry, 110: 116-133. Go to original source...
  10. Daudi E., Luswaga H., Mapunda P., Nchimbi H. (2025): The anthropogenic activities in Makere north forest reserve in Tanzania and implications to conservation. Global Ecology and Conservation, 57: 1-12. Go to original source...
  11. David J.F. (2014): The role of litter-feeding macroarthropods in decomposition processes: A reappraisal of common views. Soil Biology and Biochemistry, 76: 109-118. Go to original source...
  12. De Souza Bueno V., Fambrini F. (2020): Use of Pilou and Shannon Diversity Indexes in description of edaphic fauna in forests in South America. Benefits, 5: 1-7.
  13. Delong C., Burton P., Geertsema M. (2012): Natural disturbance processes. In: El-Shaarawi A.H., Piegorsch W.W. (eds): Encyclopedia of Environmetrics. Chichester, John Wiley & Sons: 315-322. Go to original source...
  14. Didham R.K., Basset Y., Collins C.M., Leather S.R., Littlewood N.A., Menz M.H.M., Müller J., Packer L., Saunders M.E., Schönrogge K., Stewart A.J.A., Yanoviak S.P., Hassall C. (2020): Interpreting insect declines: Seven challenges and a way forward. Insect Conservation and Diversity, 13: 103-114. Go to original source...
  15. Dippenaar-Schoeman A., Foord S. (2020): The Thomisidae of South Africa. South African National Survey of Arachnida Photo Identification Guide. Part 4, Version 1: 1-18.
  16. Dos Santos F.S., Johst K., Huth A., Grimm V. (2010): Interacting effects of habitat destruction and changing disturbance rates on biodiversity: Who is going to survive? Ecological Modelling, 221: 2776-2783. Go to original source...
  17. Durán J., Delgado-Baquerizo M. (2020): Vegetation structure determines the spatial variability of soil biodiversity across biomes. Scientific Reports, 10: 1-7. Go to original source... Go to PubMed...
  18. Eckert M., Gaigher R., Pryke J.S., Samways M.J. (2022): Conservation of complementary habitat types and small-scale spatial heterogeneity enhance soil arthropod diversity. Journal of Environmental Management, 317: 1-11. Go to original source... Go to PubMed...
  19. Edgecombe G.D. (2010): Arthropod phylogeny: An overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Structure and Development, 39: 74-87. Go to original source... Go to PubMed...
  20. Forstall-Sosa K.S., de Souza T.A.F., de Oliveira Lucena E., da Silva S.I.A., Ferreira J.T.A., do Nascimento Silva T., Santos D., Niemeyer J.C. (2021): Soil macroarthropod community and soil biological quality index in a green manure farming system of the Brazilian semi-arid. Biologia, 76: 907-917. Go to original source...
  21. Galloway A.D., Seymour C.L., Gaigher R., Pryke J.S. (2021): Organic farming promotes arthropod predators, but this depends on neighbouring patches of natural vegetation. Agriculture, Ecosystems and Environment, 310: 1-9. Go to original source...
  22. Gilbert B., Levine J.M. (2017): Ecological drift and the distribution of species diversity. Proceedings of the Royal Society B: Biological Sciences, 284: 1-10. Go to original source... Go to PubMed...
  23. Gongalsky K.B. (2021): Soil macrofauna: Study problems and perspectives. Soil Biology and Biochemistry, 159: 1-11. Go to original source...
  24. Gough C.M., Buma B., Jentsch A., Mathes K.C., Fahey R.T. (2024): Disturbance theory for ecosystem ecologists: A primer. Ecology and Evolution, 14: 1-11. Go to original source... Go to PubMed...
  25. Hamm M., Drossel B. (2017): Habitat heterogeneity hypothesis and edge effects in model metacommunities. Journal of Theoretical Biology, 426: 40-48. Go to original source... Go to PubMed...
  26. Huber J.T. (2009): Biodiversity of Hymenoptera. In: Foottit R.G., Adler P.H. (eds): Insect Biodiversity: Science and Society. Oxford, Wiley-Blackwell: 303-323. Go to original source...
  27. Jacobson A.P., Riggio J., M., Tait A.M., Baillie J.E.M. (2019): Global areas of low human impact ('Low Impact Areas') and fragmentation of the natural world. Scientific Reports, 9: 1-13. Go to original source... Go to PubMed...
  28. Jiang W., Shu Z., Lv Y., Su X., Wu X., Wang C., Wang K., Sun S., Liu G. (2025): Quantifying impacts of climate and land use changes on ecosystem services from statistic perspective. Ecological Indicators, 172: 1-19. Go to original source...
  29. Jorge J.S., Duarte A.F.V., Santos R.L., Freire E.M.X., Caliman A. (2024): Semi-arid's unsung heroes: Hymenoptera and the vital ecosystem services enabled by Encholirium spectabile, a rupicolous bromeliad in the Brazilian semi-arid region. Neotropical Entomology, 53: 514-530. Go to original source... Go to PubMed...
  30. Koneri R., Nangoy M.J. (2017): The distribution and diversity of spiders (Arachnida: Aranae) in Sahendaruman mountain, Sangihe Islands, north Sulawesi, Indonesia. Applied Ecology and Environmental Research, 15: 797-808. Go to original source...
  31. Kung'u G.N., Cousseau L., Githiru M., Habel J.C., Kinyanjui M., Matheka K., Schmitt C.B., Seifert T., Teucher M., Lens L., Apfelbeck B. (2023): Anthropogenic activities affect forest structure and arthropod abundance in a Kenyan biodiversity hotspot. Biodiversity and Conservation, 32: 3255-3282. Go to original source...
  32. Kurniawan I.D., Rahmadi C., Akbar R.T.M., Calva O., Ameliee F.A.Z., Ependi A.Z. (2023): Macroarthropod diversity, distribution, and community structure in Cikarae Cave of the Klapanunggal Karst, West Java. HAYATI Journal of Biosciences, 30: 995-1007. Go to original source...
  33. Lavelle P., Duran E., Rousseau L., Sanabria C., Vasquez J. (2021): Soil macroinvertebrate communities as indicators of ecosystem services in American tropical environments. Biodiversity Online Journal, 1: 1-4. Go to original source...
  34. Marsandi F., Fajri H., Hermansah (2024): Functional group diversity of soil macroarthropods in tropical rainforest areas of Bukit Pinang-Pinang Padang, Indonesia: Implications for ecosystem balance. Soil Science Annual, 75: 1-11. Go to original source...
  35. Marsandi F., Hermansah, Fajri H., Sujarwo W. (2023): Distribution of soil macroarthropods in differently using land parts of tropical rainforest Padang, Indonesia. Plant, Soil and Environment, 69: 291-301. Go to original source...
  36. Mathieu J., Antunes A.C., Barot S., Bonato A.E., Bartz M.L., Brown G.G., Calderon-Sanou I., Decaëns T., Fonte S.J., Ganault P., Gauzens B., Gongalsky K.B., Guerra C.A., Hengl T., Lavelle P., Marichal R., Mehring H., Peña-Venegas C.P., Castro D., Potapov A., Thébault E., Thuiller W., Witjes M., Zhang C., Eisenhauer N. (2022): Soil Fauna - A global synthesis effort on the drivers of soil macrofauna communities and functioning. Soil Organisms, 94: 111-126.
  37. McGunnigle N., Bardsley D., Nuberg I., Cedamon E., Pandit B.H. (2025): Intermediate levels of socio-ecological disturbance drive higher biodiversity in naturally regenerating forests: A case study from Nepal. Journal of Rural Studies, 115: 1-14. Go to original source...
  38. Melo T.S., de Azevedo Koch E.B., Rodrigues Santos de Andrade A., Caitano B., Lima Peres M.C., Domingos Brescovit A., Hubert Charles Delabie J. (2024): Ants (Hymenoptera: Formicidae) and spiders (Arachnida: Araneae) in different urban green areas: An analysis of their taxonomic and functional diversity. Studies on Neotropical Fauna and Environment, 59: 898-919. Go to original source...
  39. Morris E.K., Caruso T., Buscot F., Fischer M., Hancock C., Maier T.S., Meiners T., Müller C., Obermaier E., Prati D., Socher S.A., Sonnemann I., Wäschke N., Wubet T., Wurst S., Rillig M.C. (2014): Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution, 4: 3514-3524. Go to original source... Go to PubMed...
  40. Morris R.J. (2010): Anthropogenic impacts on tropical forest biodiversity: A network structure and ecosystem functioning perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 3709-3718. Go to original source... Go to PubMed...
  41. Murguía-Romero M., Serrano-Estrada B., Ortiz E., Villaseñor J.L. (2021): Taxonomic identification keys on the web: Tools for better knowledge of biodiversity. Revista Mexicana de Biodiversidad, 92: 1-14. Go to original source...
  42. Mutaqien Z., Zuhri M. (2011): Establishing a long-term permanent plot in remnant forest of Cibodas Botanic Garden, West Java. Biodiversitas Journal of Biological Diversity, 12: 218-224. Go to original source...
  43. Neves K.G. (2024): Botanic gardens in biodiversity conservation and sustainability: History, contemporary engagements, decolonization challenges, and renewed potential. Journal of Zoological and Botanical Gardens, 5: 260-275. Go to original source...
  44. Okolo C.C., Dippold M.A., Gebresamuel G., Zenebe A., Haile M., Bore E. (2020): Assessing the sustainability of land use management of northern Ethiopian drylands by various indicators for soil health. Ecological Indicators, 112: 1-12. Go to original source...
  45. Pásztor L., Botta-Dukát Z., Magyar G., Czárán T., Meszéna G. (2016): Ecological tolerance and the distribution of species. In: Theory-Based Ecology. Oxford, Oxford University Press: 71-92. Go to original source...
  46. Peng M.H., Hung Y.C., Liu K.L., Neoh K.B. (2020): Landscape configuration and habitat complexity shape arthropod assemblage in urban parks. Scientific Reports, 10: 1-12. Go to original source... Go to PubMed...
  47. Przybyszewski K.R., Silva R.J., Vicente R.E., Freitas J.V.G., Pereira M.J.B., Izzo T.J., Storck-Tonon D. (2020): Can baited pitfall traps for sampling dung beetles replace conventional traps for sampling ants? Sociobiology, 67: 376-387. Go to original source...
  48. Quiñones A.E., Pen I. (2017): A unified model of Hymenopteran preadaptations that trigger the evolutionary transition to eusociality. Nature Communications, 8: 1-13. Go to original source... Go to PubMed...
  49. Sagi N., Hawlena D. (2021): Arthropods as the engine of nutrient cycling in arid ecosystems. Insects, 12: 1-12. Go to original source... Go to PubMed...
  50. Scanes C.G. (2018): Human activity and habitat loss: Destruction, fragmentation, and degradation. Animals and Human Society: 451-482. Go to original source...
  51. Sheikh A.H., Ganaie G.A., Thomas M., Bhandari R., Rather Y.A. (2018): Ant pitfall trap sampling: An overview. Journal of Entomological Research, 42: 421-436. Go to original source...
  52. Siira-Pietikainen A., Haimi J., Siitonen J. (2003): Short-term responses of soil macroarthropod community to clear felling and alternative forest regeneration methods. Forest Ecology and Management, 172: 339-353. Go to original source...
  53. Smith R.S., Johnston E.L., Clark G.F. (2014): The role of habitat complexity in community development is mediated by resource availability. PLoS ONE, 9: 1-13. Go to original source... Go to PubMed...
  54. Souza J.L.P., de Baccaro F.B., Landeiro V.L., Franklin E., Magnusson W.E. (2012): Trade-offs between complementarity and redundancy in the use of different sampling techniques for ground-dwelling ant assemblages. Applied Soil Ecology, 56: 63-73. Go to original source...
  55. Strong W.L. (2016): Biased richness and evenness relationships within Shannon-Wiener index values. Ecological Indicators, 67: 703-713. Go to original source...
  56. Tamme R., Hiiesalu I., Laanisto L., Szava-Kovats R., Pärtel M. (2010). Environmental heterogeneity, species diversity and co-existence at different spatial scales. Journal of Vegetation Science, 21: 796-801. Go to original source...
  57. Tao Y., Wang Z., Ma C., He H., Xu J., Jin Y., Wang H., Zheng X. (2019): Vegetation heterogeneity effects on soil macro-arthropods in an alpine tundra of the Changbai mountains, China. Plants, 8: 1-12. Go to original source... Go to PubMed...
  58. Thom D., Seidl R. (2016): Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews of the Cambridge Philosophical Society, 91: 760-781. Go to original source... Go to PubMed...
  59. Todman L.C., Fraser F.C., Corstanje R., Deeks L.K., Harris J.A., Pawlett M., Ritz K., Whitmore A.P. (2016): Defining and quantifying the resilience of responses to disturbance: A conceptual and modelling approach from soil science. Scientific Reports, 6: 1-12. Go to original source... Go to PubMed...
  60. Tóth Z., Hornung E., Szlavecz K. (2021): Urban effects on saprophagous macroarthropods are mainly driven by climate: A global meta-analysis. Science of the Total Environment, 797: 1-9. Go to original source... Go to PubMed...
  61. Triplehorn C.A., Johnson N.F. (2005): Borror and DeLong's Introduction to the Study of Insects. 7th Ed. Belmont, Brooks/Cole: 864.
  62. Triyogo A., Budiadi., Widyastuti S.M., Subrata S.A., Budi S.S. (2020): Abundance of ants (Hymenoptera: Formicidae) and the functional groups in two different habitats. Biodiversitas, 21: 2079-2087. Go to original source...
  63. Tulande-M. E., Barrera-Cataño J.I., Alonso-Malaver C.E., Morantes-Ariza C., Basto S. (2018): Soil macrofauna in areas with different ages after Pinus patula clearcutting. Universitas Scientiarum, 23: 383-417. Go to original source...
  64. Vanolli B.S., Pereira A.P.A., Franco A.L.C., Cherubin M.R. (2023): Edaphic and epigeic macrofauna responses to land use change in Brazil. European Journal of Soil Biology, 117: 1-13. Go to original source...
  65. Vazquez E., Teutscherova N., Lojka B., Arango J., Pulleman M. (2020): Pasture diversification affects soil macrofauna and soil biophysical properties in tropical (silvo)pastoral systems. Agriculture, Ecosystems and Environment, 302: 1-10. Go to original source...
  66. Vikrant A., Pettersson S., Nilsson Jacobi M. (2022): Spatial coherence and the persistence of high diversity in spatially heterogeneous landscapes. Ecology and Evolution, 12: 1-8. Go to original source... Go to PubMed...
  67. Villanueva-López G., Lara-Pérez L.A., Oros-Ortega I., Ramírez-Barajas P.J., Casanova-Lugo F., Ramos-Reyes R., Aryal D.R. (2019): Diversity of soil macro-arthropods correlates to the richness of plant species in traditional agroforestry systems in the humid tropics of Mexico. Agriculture, Ecosystems and Environment, 286: 1-8. Go to original source...
  68. Wang C., Bian Z., Zhang Y., Guan D. (2024): Direct and indirect effects of linear non-cultivated habitats on epigaeic macroarthropod assemblages. Ecological Indicators, 160: 1-13. Go to original source...
  69. Wang Z.Z., Zhang P., He K., Zhu S.Y., Pu B. (2024): Diversity and distribution patterns of soil macroarthropod communities in the Nianchu River Basin, Tibet, China. Frontiers in Ecology and Evolution, 12: 1-11. Go to original source...
  70. Weithoff G., Walz N., Gaedke U. (2001): The intermediate disturbance hypothesis - Species diversity or functional diversity? Journal of Plankton Research, 23: 1147-1155. Go to original source...
  71. Wenninger A., Hollingsworth T., Wagner D. (2019): Predatory Hymenopteran assemblages in boreal Alaska: Associations with forest composition and post-fire succession. Ecoscience, 26: 205-220. Go to original source...
  72. Wilson M.C., Chen X.Y., Corlett R.T., Didham R.K., Ding P., Holt R.D., Holyoak M., Hu G., Hughes A.C., Jiang L., Laurance W.F., Liu J., Pimm S.L., Robinson S.K., Russo S.E., Si X., Wilcove D.S., Wu J., Yu M. (2016): Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landscape Ecology, 31: 219-227. Go to original source...
  73. Yang R., Dong X., Xu S., Li X., Wang K., Ye Y., Xiao W. (2025): Unveiling human impacts on global Key Biodiversity Areas: Assessing disturbance and fragmentation to inform conservation strategies. Geography and Sustainability, 6: 1-10. Go to original source...
  74. Yang Z., Liu X., Zhou M., Ai D., Wang G., Wang Y., Chu C., Lundholm J.T. (2015): The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient. Scientific Reports, 5: 1-7. Go to original source... Go to PubMed...
  75. Zhou J., Wang X., Wang X., Yao W., Tu Y., Sun Z., Feng X. (2024): Evaluation of ecosystem quality and stability based on key indicators and ideal reference frame: A case study of the Qinghai-Tibet Plateau. Journal of Environmental Management, 370: 1-17. Go to original source... Go to PubMed...
  76. Zuhri M., Mutaqien Z. (2013): The spread of non-native plant species collection of Cibodas Botanical Garden into Mt. Gede Pangrango National Park. Journal of Tropical Life Science, 3: 74-82. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.